Math 240 PRACTICE PROBLEMS FOR THE FINAL EXAM
 April 30, 2011

1. Find the general solution to the following DE.

$$
x^{2} y^{\prime \prime}-x y^{\prime}+2 y=0
$$

2. Find the general solution to the following DE.

$$
y^{\prime \prime}-2 y^{\prime}-3 y=\cos (x)
$$

3. Evaluate the (unoriented) surface integral $\iint_{S} G(x, y, z) d S$ given $G(x, y, z)=x z^{3}$ and S is the portion of the cone $z=\sqrt{x^{2}+y^{2}}$ inside the cylinder $x^{2}+y^{2}=1$.
4. (a) Find a number r such that the following differential equation

$$
x^{2} y^{\prime \prime}+(x-1) y^{\prime}-y=0
$$

has a power series solution of the form

$$
y(x)=x^{r} \cdot\left(1+\sum_{n=1}^{\infty} a_{n} x^{n}\right) .
$$

(b) For the number r you gave in (a), give a formula for the coefficients a_{n} 's which determines these coefficients recursively, and find a_{1} and a_{2}.
5. Let B be the 3×3 matrix

$$
B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right) .
$$

(a) Find the characteristic polynomial $\operatorname{det}\left(T \cdot \mathrm{I}_{3}-B\right)$ of B.
(b) Is B diagonalizable? If so, find an invertible matrix C such that $C^{-1} \cdot B \cdot C$ is a diagonal matrix. If not, explain why such a matrix C does not exist.
(c) (extra) Find a formula for the powers B^{n} of B. Compute the exponential e^{B} of B and also the matrix-valued function $e^{t B}$.
6. Let B be the 3×3 matrix

$$
B=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right) .
$$

Find the general solution of the system of linear ordinary differential equations

$$
\frac{d}{d t} \vec{u}(t)=B \cdot \vec{u}(t), \quad \text { where } \vec{u}(t)=\left(\begin{array}{l}
u_{1}(t) \\
u_{2}(t) \\
u_{3}(t)
\end{array}\right)
$$

7. Consider the matrix B with a parameter $a \in \mathbb{C}$,

$$
B(a)=\left(\begin{array}{cc}
-a & a-1 \\
a & -a
\end{array}\right) .
$$

Determine all values of the parameter a such that the matrix $B(a)$ is not diagonalizable.
8. Suppose that a function $x(t)$ on \mathbb{R} satisfies the differential equation

$$
\frac{d^{2} x}{d t^{2}}+6 \frac{d x}{d t}-7 x(t)=0 .
$$

In addition we have $x(0)=1$ and there exists a constant $C>0$ such that

$$
|x(t)| \leq C \quad \text { for all } t \in \mathbb{R}
$$

Determine this function $x(t)$.
9. Find all solutions of the differential equation

$$
\left[x^{2} \frac{d^{2}}{d x^{2}}+2 x \frac{d}{d x}-1\right] u(x)=x^{3}
$$

such that $u(1)=5$ and $\lim _{x \rightarrow 0^{+}} u(x)=0$
10. Find a non-trivial homogeneous linear ordinary differential equation satisfied by the function $x^{2} \cdot \log x$.
11. Let S be the surface

$$
S=\left\{\left(x, y, z \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=4\right.\right.
$$

oriented by the unit normal vector field

$$
\vec{N}(x, y, z):=\frac{1}{2}(x \vec{i}+y \vec{j}+z \vec{k}) \quad \text { for all }(x, y, z) \in S .
$$

Let S_{r} be the surface

$$
S_{r}=\left\{\left(x, y, z \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=4, x \geq 0\right\}\right.
$$

oriented by the restriction of \vec{N} to S_{r}.
(a) Compute the oriented surface integral

$$
\iint_{S}\left(\operatorname{curl}\left(x^{5} z \vec{i}+x y z \vec{j}+e^{y z} \vec{k}\right)+z \vec{k}\right) \cdot \vec{N} \mathrm{~d} A
$$

(This integral is also written as

$$
\iint_{S}\left(\operatorname{curl}\left(x^{5} z \vec{i}+x y z \vec{j}+e^{y z} \vec{k}\right)+z \vec{k}\right) \cdot \vec{N} \mathrm{~d} S
$$

where $\mathrm{d} A$ is replaced by $\mathrm{d} S$.)
(b) Compute the oriented surface integral

$$
\iint_{S_{r}}\left(\operatorname{curl}\left(x^{5} z \vec{i}+x y z \vec{j}+e^{y z} \vec{k}\right)+z \vec{k}\right) \cdot \vec{N} \mathrm{~d} A
$$

(c) Compute the oriented surface integral

$$
\iint_{S_{r}} y \vec{i} \cdot \vec{N} \mathrm{~d} A=\iint_{S_{r}} y \vec{i} \cdot \mathrm{~d} S
$$

12. Show that the functions $x, \cos x, \sin x$ are linearly independent. In other words, if a, b, c are real numbers such that

$$
a x+b \cos x+c \sin x=0 \quad \text { for all } x \in \mathbb{R}
$$

then $a=b=c=0$.
(Hint: Every value of x gives a linear relation between a, b and c.)
13. True/False questions. Let A be a 4×4 matrix with real entries such that $\operatorname{det}\left(T \cdot \mathrm{I}_{4}-A\right)=$ $(T-1)^{2}(T+1)^{2}$. For each of the following statements, determine whether it is true or false.
(a) A^{2} is diagonalizable.
(b) If A^{2} is diagonalizable then $A^{2}=\mathrm{I}_{4}$.
(c) $A-\mathrm{I}_{4}$ is an invertible matrix.
(d) $A^{2}-\mathrm{I}_{4}$ is an invertible matrix.
(e) $\operatorname{dim}\left(\left\{\vec{x} \in \mathbb{R}^{4} \mid A^{2} \cdot \vec{x}=\vec{x}\right\}\right)=2$.
14. (extra) Let S be the surface obtained from the curve

$$
C:=\left\{(x, z) \in \mathbb{R}^{2} \mid z=(x-2)(1-x), 1 \leq x \leq 2\right\}
$$

on the (x, z)-plane by rotating C about the z-axis. In the cylindrical coordinates (r, θ, z), points on S satisfies

$$
z=(r-2)(1-r), \quad 1 \leq r \leq 2 .
$$

Let \vec{N} be the continuous unit normal vector field on S such that $\vec{N}\left(\frac{3}{2}, 0, \frac{1}{4}\right)=\vec{k}$. Orient the surface S by \vec{N}. Compute the oriented surface integral

$$
\iint_{S} \vec{k} \cdot \vec{N} \mathrm{~d} A \quad\left(=\iint_{S} \vec{k} \cdot \vec{N} \mathrm{~d} S\right)
$$

15. (extra) Consider the following ordinary differential equation with a parameter $a \in \mathbb{R}$,

$$
\left[\left(x^{3}+a x^{2}+a x+1\right) \frac{d^{2}}{d x^{2}}+a x(x+1) \frac{d}{d x}+1\right] u(x)=0
$$

For all but a finite number of real numbers a, the above differential equation has no irregular singularity at all points of \mathbb{R}, in the sense that for any $x_{0} \in \mathbb{R}$ the differential equation is either ordinary at $x=x_{0}$ or has a regular singular point at $x=x_{0}$. Find the exceptional values of the parameter a for which the differential equation has a irregular singular point.
16. (extra) Let $S:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=25, x+y+z \geq 1\right\}$, oriented by the unit normal vector field

$$
\vec{N}(x, y, z)=\frac{1}{5}(x \vec{i}+y \vec{j}+z \vec{k}), \quad \text { for all }(x, y, z) \in S
$$

Let $C=\partial S$ be the boundary of S, the circle

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=25, x+y+z=1\right\}
$$

Let \vec{t} be the unit tangent vector field on C giving C the orientation so that Stokes theorem holds.
(a) Determine the value $\vec{t}(-3,4,0)$ of the vector field \vec{t} at the point $(-3,4,0) \in C$.
(b) Compute the oriented line integral

$$
\oint_{C} \frac{-y \vec{i}+x \vec{j}}{x^{2}+y^{2}} \mathrm{~d} \vec{r},
$$

where C is oriented by the tangent vector field \vec{t} on C.

