(1 - 2iyk,,™ it follows, after choosing &, = 1, that one eigenvector is |

: |
K[=( 1 )
1 - 2i

- 1
K"EK‘:(H%)‘ 4

Hence ky = ly and ky = ky. If ky = 1, then

Now for A, = 8 we have
(A~ 8EI0) =

In the equation k, + k, + ks = 0 we are free to select two of the variables th
Choosing, on the one hand, k, = 1, k3 = 0, and on the other, &, = 0, k3 = 1, we oly
linearly independent eigenvectors:

-1
K2 = 1 ‘ and K3 = 0
0

corresponding to a single eigenvalue,

B Complex Eigenvalues A matrix A may have complex eigenvalues.

'THEOREMSZ&' :

i
: 4 s K3 = i
Proof Since A is a matrix with real entries, the characteristic equation det(A 3 4
is a polynomial equation with real coefficients. From algebra we know that com
roots of such equations appear in conjugate pairs. In other words, if A = a +if1
then A = & — i is also a root. Now let K be an eigenvector of A corresponding to

definition, AK = AK, Taking complex conjugates of the latter equation gives .

AK = 1K or AK =K,

In Problems 7-22, find the eigenvalues and e1genvectors of the

(2~ 1 given matrix.
A= T ,
(2 w2> i (2 - \/E) 1 2 |

®
TN
[ )
p—

S— "

since A is a real matrix. The last equation indicates that K is an eigenvecto'_
ding to A.

( 8 -1
_ 16 0) 10.
- ~1 2
. m(l) . m(—S) 11. (__5 1) -
LAV AN ¥ 4 3
Az( 2 8) K = (0) 13, (0 ""5) 14.
I T VAN 5 —1 0

— = R
—_ =
\_‘_/

Example 5 Complex Eigenvalues and Eigenvectors

A e

[ |
—

Lr O
N

6 =1
Find the eigenvalues and eigenvectors of A = ( 5 4).

- 30 0
Solution The characteristic equation is - (2 + 2i) K, = (2 + 2:‘) 15,10 -5 9 16. [0 2 O)
61 I -1/ 1 5 -1 0 400 1
det(A - Al) = 5 4_A{=A2—10/\+29m0, o~ ( 1 -2 2 0 0 4 0 6 O)
| ~ : = | -2 1 =20 K =[1], 17 -1 —4 0 8. |0 2 1
From the quadratic formula, we find A, =5+ 2iand Ay = A, =5 - 20 2 9 1 1 0 0 -2 0 1 2
Now for A, =5 + 2i, we must solve 4 -1 0 0 -1 2. 1 0
(1 =20k - k=0 (*4 K=} 1 19.[1 0 0 200 |57 2 4
—(1+2Dky =0 0/ 1 1 -1 0 i 2

CHAPTER 8 Matrices 8.8 The Eigenvalue Problem
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The eigenvalues of A~ are the reciprocals of the eigenvalues of a
nonsingular matrix A. Furthermore, the eigenvectors for A and
A are the same. In Problems 23 and 24, verify these facts for the

given matrix.
1 2 -1

23.A=—*(? ;) 24, A=11 0 1
4 -4 5

A matrix A is singular if and only if A = 0 is an eigenvalue. In
Problems 25 and 26, verify that the given matrix A is singular,
Find the characteristic equation for A and verify that A = 0 is an
eigenvaiue.

6 0
25, B . A=
A (3 0) 26

Computer Lab Assignments
27. A square matrix A is said to be a stochastic matrix if ail
its entries are nonnegative and the sum of the entries in
each row {or the sum of the entries in each column) add

up to 1. Stochastic matrices are important in py

theory. :
(a) Verify that

s bt fafin

are stochastic matrices.

Use linear algebra software or a2 CAS ¢
eigenvalues and eigenvectors of the 3 X 3}
in part (a). Make up at least six more stochast

trices of various sizes, 2 X 2, 3 X 3,

5 % 5. Find the eigenvalues and eigenvector
matrix. If you discern a pattern, form a ¢g

and then try to prove it,

For the 3 % 3 matrix A in part (a), use

the so

to find A%, A%, A%, ... Repeat for the matric

you constructed in part (b). If you discern a

forma c@n’jéciure and then Ty to prove it
/ )

8.9 Powers of Matrices

B Introduction It is sometimes important to be able to quickly compute a
a positive integer, of an » X n matrix A:

A" = AAA - A
N—

m factors

power

Of course, computation of A™ could be done with the appropriate software orb

a short computer program, but even then, you should be aware that it is ineffic

simply use brute force to carry out repeated multiplications: A= AALAY =
AAAA = A(A% = A%A? and so on.

B Computation of A” We are going to sketch an alternative method for coﬁfp
by means of the following theorem known as the Cayley-Hamilton theorem.,

CTHEOREM 8.0 [ERRTIRET S

actetistic equation: © . 0

If (=~ 1)"A" + ¢, AT+ oo 4 A + ¢¢ = 0 is the characteristic equation 0t
Theorer 8.26 states that ‘

CHAPTER 8 Matrices

("1)”A” + Cn_lAn—l + o b C[A + Col = ),

atrices of Order 2 The characteristic equation of the 2 X 2 matrix A = <__§ i)

A-2= 0, and the eigenvalues of A ate A; = —1 and A, = 2. Theorem §.26 im-
2~ A ~ 21 = 0, or, solving for the highest power of A,

2
A =2 + A. 2

e multiply (2) by A, we get A> = 2A + A?, and if we use (2) again to eliminate
te right side of this new equation, then

A’ =2A + A’ =2A + 2L + A) = 2I + 3A.

wing in thiszmanner—in other words, multiplying the last result by A and using
liminate A°—we obtain in succession powers of A expressed solely in terms of
identity matrix Land A: :

At = 61 + 5A
A’ =101 + 11A (3)
A =221+ 21A

soon (verify). Thus, for example,

_ 1 0 -2 4 -30 84
Al = 22( ) + ( ) -
o )T 3T w5/ )

N_o ¢ we can de;termine the ¢, without actually carrying out the repeated multiplica-
nd resubstitutions as we did in (3). First, note that since the characteristic
: -1 3
must also hold for the eigenvalues A, = —1 and A, == 2, that is, A> = 2 + 34,
6.+ 54, A° = 10 + 11A, A® = 22 + 21X, .... It follows then that the equations

3 . 4
ion of the matrix A = ( )can be written A = 2 % A, results analogous to

=+ oA and A=+ oA (5)

d'for the sarme pair of constants ¢, and ¢,. We can determine the constants ¢, and ¢;
ply setting A = —1 and A = 2 in the last equation in {5) and solving the resulting

em of two equations in two unknowns. The solution of the system

(__ l)l‘ﬂ
2m

¢+ o(—1)
¢+ ef2)

It

lenam 1 m 21 : :
=32 F 2(.—1) 1, ¢ = %[2 = (—1)"]. Now by substituting these coefficients in
first equation in (5), adding the two matrices and simplifying each entry, we obtain
Lf _nm Y] " b
Am _ (3[ 12 m+ 4( 1), } : %[3’2 - (_1) :E)‘
=327 (=17 527 = (1)

should verify the result in (4) by setting m = 6 in (6). Note that (5) and (6) are valid
=0since A =Tand A' = A.

©)

Matrices of Order n  If the matrix A were 3 X 3, then the characteristic equation (1) is
Dic. polynomial equation, and the analogue of (2) would enable us to express A® in
£1, A, and A®. We could proceed as just illustrated to write any power A™ in terms
_,_and A’ In general, for an n X n matrix A, we can write

A=l + oA+ AT+ o, AT

___ére each of the coefﬁcients ¢ k=0,1,...,n ~— 1, depends on the value of m.

8.9 Powers of Matrices
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Cryptography ]

oduction The word cryptography is a combination of two Greek words: crypto,
. T e S NG g “hidden” or “secret,” and grapho, which means “writing.” Cryptography then is
e T e e IR e SEREATE R N mdyofmakmg ‘secret writings” or codes.

2 3) : : : : ‘His section we will consider a system of encoding and decoding messages that re-
( ‘both the sender of the message and the receiver of the message to know:

1.

) =l specified rule of carrespondence between a set of symbols (such as letters of the al-
2 ' habet and punctuation marks from which messages are composed) and a set of inte-

M\D »-*O

_ and
) . ~ . L Ije'ciﬂed nonsingular matrix A,

identif i ic section. Graph. . .
identify the given conic s P Encoding/Decoding A natural correspondence between the first twenty-seven non-

31. 5x% — 2uy + 5y° = 24 o a _éintegers and the letters of the alphabet and a blank space (to separate words} is
32. 13x% — i0xy + 13)7 = 288 :

(-
e
1

P b=

/E"“‘""\
O
fa S ]
\__‘_/

33. —3x% + 8xy + 3y* =20 . , 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
34, 16x% + 24y + N* - 3x + 4y =0 : . bocdef gh

j=]

i i k1l m an o p g r s t uw v w X ¥ I

35, Find a2 X 2 matrix A that has eigenvalues’ m (1) the numerical equivalent of the message

Pt D D e

A, = 3 and correspondingfgigeﬂ?ectors K Al : SEND THE DOCUMENT TODAY

P

<

|

|
et wd e D e

[y

. Find a 3 X 3 symmetric matrix that has eigéxjv:ah; ' 19 51440208504 15321 1351420020 1541 25 2)
1, A, = 3, and A; = 5 and corresponding eigenve '

|

[EE v I on- BN o - ]

ender will encode the message by means of the nonsingular matrix A and, as we
hall see, the recewer of the encoded message will decode the message by means of the
Tnique) rnatrix A1, The numerical message (2) is now written as a matrix. Since there

oW

_...1 ’Kzﬂ 0

oo e O e Do O &
O o O DD e OO

9 1 . . _' ‘ 23'symbols in the message, we need a matrix that will hold a minimum of 24 entries
- A s ann >< " diagonalizabi e m atrix therl . m-X n matrix has mn entries). We choose to write (2) as the 3 X 8 matrix
0 "o TP 19 5 14 4 0 20 8 5
e integer, then A M={0 4 15 3 21 13 § 14| 3)

. The mth power of a diagonal matrix 20 0 20 15 4 1 25 1)

a T

N : ofe that the last entry (as) in the message matrix M bas been simply padded with a

D . - r ce represented by the number 0. Of course, we could have written (2)as a6 X 4dora
: : 6. matrix but that would require a larger encoding matrix. A 3 X 8 matrix allows us

0 encode the message by means of a 3 X 3 matrix. The size of the matrices used is only

ncern when the encoding and decoding are done by hand rather than by a computer.

The encoding matrix A is chosen, or rather constructed, so that

0 0 2

L (s nonsinguiar,
In Problems 21-30, the given matrix A is symmetric. Find an

orthogonal matrix P that diagonalizes A and the diagonal matrix
D such that D = P7AP.

has only integer entries, and

Use this result to compute

2 0 ” S
) 0 3 0 : ' he last criterion is not particularly difficult to accomplish. We need only select the in-
22 ( 5 0) 0 0 -1 . :entries of A in such a manner that det A = 1. Fora2 X 2 ora3 X 3 matrix we
an then find A™! by the formulas in (4) and (5) of Section 8.6. If A has integer entries,

! has only integer entries.

" ( 1 -2 0 0 0 : hen alf the cofactors C 11> C1a, and so on are also integers. For the discussion on hand we
A2 In Problems 39 and 40, use the results of Problems 37 ail hodse - L O
find the indicated power of the given matiix. ' 1o -1
26. L 1) 5 ' (6 - 10) A={ 2 3 4] @)
= , A 40, A =
39. A (2 0 3 -5 > 4 s

CHAPTER 8 Matrices
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S du d*u d*u d

In the classic text Differential Equations by Ralph Palmer Agnew™ (used by the s

— A o — 2——*“10 +5u-—0
thor as a student), the following statement is made: x ar e P rg
It is not reasonable to expect students in this course to have computing skill and : dsx . ﬁiim Y &x ‘s _‘ﬁx_ o
equipment necessary for efficient solving of equations such as : dss ds* ds® e

problems 29-36, solve the given initial-value problem.
.y + 16y =0, y(0) =2,y (0) = -2

& & d
4.317% + 2‘179% + 141652 + 12052 + 3.169y = 0.

a dx

Although it is debatable whether computing skills have improved in the interveni . Py - Ll
years, it is a certainty that technology has. If one has access t0 a computer algebra s 235 +y=0, y(?) =0,y (_3_) =2
tern, equation (15) could be considered reasonable. After simplification and some re ’

beling of the output, Mathematica yields the (approximate} general solution dy dy

— 4= Sy =0, 1) =0,y(1)=2
y = ¢, 0o5(0.618605x) + ce T 5in(0.618605x) | : 3 dt

. ;:36“&4764782{ c08(0.75908 1) + c.e"7™% 5in(0.75908 1), : _...4)7" ~4y" =3y =0, y(0) m, 1,y (0) =5
: 33y +y 2y =0, W0) = y'0) =0
Y =2y +y =0, 0) = 5,y'(0) = 10
YR 129"+ 36y = 0, y(0) = 0, y'(0) = 1, y"(0) = -
=5y =6y =0, y(0) = y'(0) = 0,y"(0) = 1

We note in passing that the DSolve and dsolve commands in Mathematica and Maple,
Jike most aspects of any CAS, have their limitations.

Finally, if we are faced with an initial-value problem consisting of, say, a four
order differential equation, then to fit the general solution of the DE to the four i initial
conditions we must solve a system of four linear equations in four unknowns {the-
€3, €4 in the general solution). Using a CAS to solve the system can save “fots of tirng,
See Problems 35, 36, 61, and 62 in Exercises 3.3.

ny + 2yll'

n Problems 37-40, solve the given boundary-value problem.
237y =10y + 25y =0, yO) = L,y(1) =0
38y +4y =0, ¥0) =0, y(w) = 0

of TN L
0y(2> 0

0.y -2y +2y =0, yO) =1, = 1

*MeGraw-Hill, New York, 1960.
g ¥ +y=0, y(0)=

1 Problems 41 and 42, solve the given problem first using the
orm of the general solution given in (10). Solve again, this time
sing the form given in (11).

ALy -3y =0, y0) =1,y (0) = 5
42y -y=0, y0) = Ly (1) =0

_ Pr()blems 4348, each figure represents the graph of a particu-
ar solution of one of the following differential equations:

2) ¥ -3y -dy=0 (b) ¥ +dy=20
() Y2y +y =0 @ y+y=0
Pu & © Y +2y' +2y =0 ® ¥-3+2y=0
R : SRR 3-6?’. 0 L AR : B atc_:_h a solution curve with one of the differential equations
] y y __5}, 0 . ¥ - . B id_zﬁ —dr =0 lain your reasoning.
Y+ 8y 416y =10 ¥~ 10y + 25y =0 AT E T : 44,
. izyrrwsyr__zyzo 8. y"+4y'«ﬂyﬁ0 ‘ym+3y+3y’+yzo
9. ¥ +9y =0 10. 3y"+y =0 Y -6y + 12y ~8y =0 ¢
11. y;!_4y’+5yﬂ0 12, 2y”+2yl+y:0 (4)+ "ot = () ’
13. 3y"+2 +y =0 14. 2y =3y +4y =0 zu g 0
. . Y= '
In Problems 15-28, find the general solution of the given higher- a‘4yy & : N i

order differential equation, . L 16=2 + 24 —3
15, Yy —4y" -5y =0 & . &y
16, y" -y =0 44y _yee0
17. y" =5y +3y +9y =10

+ 0y =10

Figure 3.6 "Graph for
Problem 44

Figure 3.5 G_‘ra';)h for

- dx4 e Problem 43

CHAPTER 3 Higher-Order Differential Equations

45.

47.

46,

Figure 3.7 Graph for
Problem 45

Figure 3.8 Graph for
Problem 46

48.

VA N ”

Figure 3.9 Graph for
Problem 47

Figure 3.10  Graph for
Prablem 48

Discussion Problems
49. The roots of a cubic auxiliary equation are m;, = 4 and

50.

51.

52.

53,

54.

55.

3.3 Homogeneous linear Equations with Constant Coefficients

my = my = -3, What is the corresponding homogeneous lin-
ear differential equation? Discuss: Is your answer unique?
Two roots of a cubic auxiliary equation with real coeffi-
cients are m, = —% and m, = 3 + i, What is the corre-
sponding homogeneous linear differential equation?

Find the general solution of y* + 6y" + y' — 34y = 0 ifit
is known that y, = ™% cos x is one solution.

To solve Y + y = (0 we must find the roots of m* + 1 = 0.
This is a trivial problem using a CAS, but it can also be
done by hand working with complex numbers. Observe
that m* + 1 = (m® + 1) — 2m% How does this help?
Solve the differential equation.

Verify that y = sinh x -2 cos (x + _761) is a particular

solution of y¥ ~ y = 0. Reconcile this particular solution
with the general solution of the DE.

Consider the boundary-value problem y" + Ay = 0,
¥(0) = 0, y(m/2) = 0. Discuss: Is it possible to determine
values of A so that the problem possesses (a) trivial solu-
tions? (b) nontrivial solutions?

In the study of techniques of integration in calculus,-cer-
tain indefinite integrals of the form [ & f(x) dx could
be evaluated by applying integration by parts twice, re-
covering the original integral on the.right-hand side,
solving for the original integral; and obtaining a con-
stant multiple k [ ¢ f(x) dx on the left-hand side. Then
the value of the integral is found by dividing by k.
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Ay + 9y =15
LY 10y + 25y =30x +3
LY Y -6y = 2x
.%:y"+y'+y—“:x2——2x
y' =8y + 20y = 100x* ~ 26xe”
V' + 3y = 482%™
4y" — 4y’ -3y = cos 2x
—y =3
Y+ =245
. y”—y'+zliyrﬁ3-l-e’“'2
LY =16y = 2e¥
3y + 4y =3sin2x
oy - dy = (x*-3) sin 2x
LYy = 2xsinx
Y -5y =20 A - x+ 6
LY =2y + 5y =¢"cos 2x

36. Y + 8y = 2x — 5 4 86-—2x, y(O) = =5, y'(0)
y(0) = ~4

Tn Problems 3740, solve the given boundary-value problefﬁ

37. V+y=x+1 y0) =5, y1) =

38, Y -2y 4+ 2y =2x-2, YOy =0,y(m) =7

39, y' 43y = 6x, y(O) = 0,y +y' (1} =0

40. y' +3y = 6x, YO +y' () =0, (1) =0
In Problems 41 and 42, solve the given initial-value probletn iy
which the input function g(x) is discontinuous. EHint: Solv

each problem on two intervals, and then find a ylutmn so that
y and y’ are continuous at x = /2 {(Problem™1) and at x

(Problem 42).]
41, ¥+ 4y = g(x), y(Q) = 1, y'(0) = 2, where

, r
SN X, Gﬁxﬁ"z“

glx} =

0 > 2
4 x ~
2

Without solving, match a solution curve of ¥ + y = f(x)
““shown in the figure with one of the following functions:

0 fo=1, (i) fx)=e",
(i) fix)=¢&" (i) f(x)} = sin 2x,
Y, fGx)y = ¢ sinx, (vi) f(x) = sin x.
- Briefly discuss your reasoning.
(@)
¥
AWAWNEN /\

Figure 3.11 Solution curve

(b

VA N
AW

©

Figure 3,13 Soiution curve

(d)

Figure 3.14 Solution curve

Computer Lab Assignments

In Prqb}ems 46 and 47, find a particular solution of the given dif-
ferential equation. Use a CAS as an aid in carrying out differenti-

- ations, simplifications, and algebra.

46. y' — 4y’ + 8y = (26 — 3x)e® cos 2x +
(10x? — x — De® sin 2x

¥ =2y + 2y = eP(cos x — 3 sin x)

42. y' =2y + 10y = g(x), ¥(0) = 0, y'(0) = 0, where Figure 3.12 Solution curve 47, y# 42y +y = 2 cosx~3xsinx

20, 0sx=7
glx) = {

x> ar

.y 42y &y =sinx-+3cos2x
Y+ 2y - 24y = 16 — (x + 2)e*
Ly -6y =3-cosx
29" — 4y’ + 8y = 6xe™

Y -3 43y —y = x4
LY =y -y +dy =5t
Yy y = (- 1Y

¥y = dx + 2xe™

Discussion Problems

43. Consider the differential equation ay” + by’ + ¢y ='¢;
where a, b, ¢, and k are constants. The auxiliary equatm
of the associated homogeneous equation is

3.5 Variation of Parameter.s j

M Introduction The method of variation of parameters used in Section 2.3 to find a
particular solution of a linear first-order differential equation is applicable to linear higher-
order equaﬁons as well, Variation of parameters has a distinct advantage over the method
pf the preceding section in that it always yields a particular solution y, provided the associ-
a‘ted homogeneous equation can be solved. In addition, the method presented in this sec-
tion, unlike undetermined coefficients, is not limited to cases where the input function is a
combination of the four types of functions listed on page 127, nor is it limited to differen-
tial equations with constant coefficients.

2 )
In Problerms 27-36, solve the given initial-value problem. am’+bm + ¢ = 0.

T i T
27. '+ dy =2, y(’s’) R (E) ah

28. 2y + 3y’ —2y = 142 — 4x - 11,

y0) =0,y (0) =
29. 5y 4y = ~6x, y(0) = 0, ¥'(0) = -10
30. Y+ 4y + 4y =3+ x)e ™, y(o)'m 2,y'0)=5
3y 4 4y + 5y = 35¢%, y(0) = -3,y'(0) = 1
32. ¥ —y=coshx y(0)=2y(0) =12

(a) If k is not a root of the auxiliary equation, show: i
we cap find a particular solution’ of the for
= Ae™, where A = 1/(al? + bk + ¢).

(b) If k is a root of the auxiliary equation of multiph i
one, show that we can find a particular solution 0
the form v, = Axe™, where A = 1/(2ak + b). Expial
how we know that k % ~bf(2a).

(¢) If k is a root of the auxiliary equation of muitipli_c._i_
two, show that we can find a particular solution.
the form y = Ax’e", where A = 1/(2a).

. Discuss how the method of this section can be used:;_
find a particular solution of y" +y = sin x cos 2x. Carty
out your idea.

B Some Assumptions To adapt the method of variation of parameters to a linear sec-
ond-order differential equation

Xy + a(x)y’ + aglxy = g(x), ey
we begin as we did in Section 3.2—we put (1) in the standard form |
¥+ P(x)y’ + Q)y = fx) @)

. by dividing through by the lead coefflcmnt a,(x). Equation (2) is the second-order ana- . L
._:_:IOgue of the lmear first-order equation dv/dx + P(x)y = f(x). In (2) we shall assume -
P(x), 3(x), and f(x) are continuous on some common interval I. As we have already seen

33, jdi_ + w'x = Fysin wt, x{(0) =0, x(0y=

dZ

&
34, LE N Fycos y1, x(0) =

7 0,x' (=0

3.5 Variation of Parameters 135
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identificati ' i = = ients. Solve the original equation by solving the new
= 2x%e*, Now with y, = X, ¥, = X and _ tcoefﬁc.:lents ! '
we make the identification f(x) e Vi Va e o Sone e oigial squation by

LY 4 Oxy - 20y =0
. Y~ 9xy’ + 25y = 0)
2xe" , e " 33. &Y+ 100 + 8y = &
we find u{zm-g;;—=—x2e”‘ and u2="—2;3*=e". 5 0, Y -4y + 6y = Tn 2
55, XY —3xy + 13y = 4 + 3x
6. xy" - 3x% + 6xy’ — 6y =3 +1Inx’
roblems 37 and 38, soive the given initial-value problem on
“he interval (—co, 0).
Finally we have y = y, +y, = ¢;x + ¢px° + 2x°¢" — Zxe™. S AR 4y =0, D) = 2, y'(1) = 4

38. Xy —4xy’ + 6y =0, y(-2) = 8,y'(-2) = 0

3 x 0 '
2 Wlm\%gex ;xz:—zx-‘e", Wa=1 Mex’:?fe‘

The integral of the latter function is immediate, but in the case of u; we integrate by
parts twice. The results are u; = -x“e” + 2xe* ~2¢” and u, = e*. Hence

Yy = gy + gy = (x7e® + 2xet - 2e)x + e*x® = 2xe” — 2xe”,

iscussion Problems
39. How would you use the method of this section to solve

G+2H x4+ +y =07

Carry out your ideas. State an interval over which the
solution is defined.

. Can a Cauchy-Euler differential equation of lowest arder
with real coefficients be found if it is known that 2 and 1
— i are two roots of its auxiliary equation? Carry out your
ideas.

41,

42.

The initial conditions y(0) = y,, ¥'(0) = v, apply to each
of the following differential equations:

27 =0,
Xy - 2xy' + 2y =0,

2y —dxy' + 6y = 0.
For what values of y; and y, does each initial-value prob-
lem have a solation?
What are the x-intercepts of the solution curve shown in

Figure 3.157 How many x-intercepts are there in the in-
terval 0 <x < 4?

Computer Lab Assignments

In Problems 4346, solve the given differential equation by using
a CAS to find the (approximate) roots of the auxiliary equation,

43,
44.
45,
46.
47.

27" — 10.98x%" + 8.5xy" + 1.3y = 0

Y+ 4P + Sxy' -9y =0

x4+ 6x%y" + 350~ Bxy + 4y = 0

x — 627y + 33x% — 105xy" + 169y = ()

Solve £*y” — x%y" - 2xy’ + 6y = 2% by variation of param-
eters. Use a CAS as an aid in computing roots of the aux-

iliary equation and the determinants given in (10) of
Section 3.5,

3.7  Nonlinear Equations

‘methods that yield analytic solutions are examined next.

VIR . Y+ 5xy +3y =0 In Problems 25-30, solve the given initial-value problem. Us
A By -2y =0 L XY+ 3y =4y =0 graphing utility to graph the solution curve. . -
L 256%y + 250 +y =0 Ay + dxy' -y =0 '
LY+ 5y 44y =0 Y+ 8xy' + 6y =0
V3 by 4y =0 14, Xy = Txy' +4ly =0

Exercises 3.7.

B Introduction The difficulties that surround higher-order nonlinear DEs and the few

‘B Some Differences There are several significant differences between linear and
‘nonlinear differential equations. We saw in Section 3.1 that homogeneous linear
quations of order two or higher have the property that a linear combination of solu-
tions is also a solution (Theorem 3.2). Nonlinear equations do not possess this prop-
'_jt_erty of superposability. For example, on the interval (~co, o), y, = &, y, = &~
ys = cos x, and y, = sin x are four linearly independent solutions of the nonlinear
‘second-order differential equation (") — y* = 0. But linear combinations such as
Y= e 030088, Y = e H ey sinx, y = C1€° 4+ ™ + ¢4 COS X + ¢4 sin x are not
solutions of the equation for arbitrary nonzero constants ¢, See Problem 1 in

k3

- In Chapter 2 we saw that we could solve a few nonlinear first-order differential
25. &y + 3’ =0, y1) =0,y (1) =4 ; Lquations by recognjzing them as separable, exact, homogeneous‘, or perhaps
26, v Sxy’ + 8y = 0, y2) = 32, y'(2) = 0 _. Bernoulli equations. Even though the solutions of these equations were in the form of
P XY ORY yEn Y ’ 4 one-parameter fam'fy, this family did not, as a rule, represent the general solution

By 6y =0 16, Xy" +xy —y =0 27. By +ay 4y =0, p(1) = 1,y(1) =2 : f the differential egliation. On the other hand, by paying attention to certain continu-
- @y 6y = 0 28, Xy -3xy" +dy =0, y)=35y({1)=3 ity conditions, we obtained general solutions of linear first-order equations, Stated
’ xf @ g S O 4 ey 4 0 29w +y =x y(1)=Ly1)= -4 _ nother way, nonlinear first-order differential equations can possess singular solu-
F XYTHOXYT A+ DXy + OXy Y = : ' ’

:__tions whereas linear equations cannot. But the major difference between linear and

Ul 1 e 6 ,L - ! —l- = T g . . . . . sy . Al
In Problems 19-24, solve the given differential equation by vania- 30. ¥y~ Sxy’ + 8y = 8, ¥(3) = 0,Y(5) = 0 g Nonlinear equations of order two or higher lies in the realm of solvability. Given a cw

tion of parameters. A " In Problems 3136, use the substitution x = &' to transform ﬂi ;_}inear equation ?hgre is a_chance that we can find some form of a soluti'og that we can
19. 0 ~dy' =1 20, 25 + 55y 4y = a0 —x given Cauchy-Euler equation to a differential equation with con look at, an explicit solution or perhaps a solution in the form of an infinite series. On
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