But the charge g(f) on the capacitor is related to the current i(f) by i = dg/dt, and sc
becomes the linear second-order differential equation '

( J s;'_ng the metho.d of undetermined coefficients, we assume a particular solution of the
' form q,(t) = A sin v + B cos . Substituting this expression into the differential equa-

on, simplifying, and equating coefficients gives

d*q dg 1
L= + R— + = q = E(J).
g2 Ry v eaT B E(Ly_ 1)
A =
o C
‘The nomenclature used in the analysis of circuits is similar to that used to describs A= oL 'y1 . B= E.R
spring /mass systems. o _ . . _ -"'y(L2y2 L Rz) —y (Lzy’- 2L + i R )

i E(f) = 0, the electrical vibrations of the circuit are said to be free. Since the auyj ¢ C

iary equation for (34) is Lm? + Rm + 1/C = 0, there will be three forms of the solution wj convenient go express A and B in terms of some new symbols

R # 0, depending on the value of the discriminant R* — 4L/C. We say that the circuit ig

- 1 2L
overdamped if R2-4LIC >0, BX=Ly=(n then X'=Iiy— D 'c_21"7
critically damped if K> 4L/C = 0, . Y
and underdamped if R*-4LIC <. fZ=VX +R, then 7= L%~ =t C"'i -+ R,
Y
In each of these three cases the general solution of (34) contains the factor e and Therefore A = EgX/(—yZ%) and B = EyRI(~yZ%), so the steady-state charge |
. » - is

g(fy ~» 0 as t — oo. In the underdamped case when g(0) = gq, the charge on the capac
tor oscillates as it decays; in other words, the capacitor s charging and discharging
t -3 00, When E() = 0 and R = 0, the circuit is said to be undamped and the elec
vibrations do not approach zero as ¢ increases without bound; the response of the cirgi

is simple harmonic.

EX E,R
gty = —— sinyt — COS VI,

{qu the steady-state current is given by i,(f) = gyt

i(1) = B(R X
s 7 Zsm'yt - —Z"COS’yI . (35) O

Example ¢ Underdamped Series Circuit
Find the charge g(f) on the capacitor in an LRC-series circuit when L = 0.25 henry
R = 10 ohms (Q), C = 0.001 farad (f), E(t) = 0 volts (V), g¢{0) = qo coulombs (C);
0y = 0 amperes (A). :

- The quanti.ties X =Ly~ U(Cy) and Z = VX? + R? defined in Example 10 are
_-caH?d, respectively, the reactance and impedance of the circuit. Both the reactance and
-the impedance are measured in ohms.

Solution Since 1/C = 1000, equation (34) becomes

i“q” +10g' +1000g =0 or ¢"+40g" +4000g = 0.
Solving this homogeneous equation in the usual manner, we find that the circuit i
derdamped and g() = & (¢, cos 60t + ¢, sin 607). Applying the imitial condition

find ¢, = ¢ and ¢, = go/3. Thus g(t) = goe™(cos 601 + 4 sin 60¢). Using (23), wec
write the foregoing solution as

An : to 4 spring whose
-spring constant is 16 1b/ft. What is the period of simple

. : h . . 9 -
qH = 210 &2 sin(60z + 1.249). 5 Aa;mon} ¢ motion ' 6. A force of 400 newtons stretches a spring 2 meters. A
3 O—kﬂog{am mass is a_ttached to a spring. If the fre- mass of 50 kilograms is attached to the end of the
quency of simple harmonic motion is 2/ cycles/s, what spring and is initially released from the equilibrium po-

is the spring constant k? What is the frequency of simple ~ sition with an upward velocity of 10 m/s. Find the equa-
harmonic motion if the original mass is replaced with an tion of motion.
80~k110grarr§ mass? 7. Another spring whose constant is 20 N/m is suspended
- A mass weighing 24 pounds, attached to the end of a from the same rigid suppoit but parallel to the
spring, stretches it 4 inches. Initially, the mass is released spring/mass system in Problem 6. A mass of 20 kilo-
_ frm}}- rest from a point 3 inches above the equilibrium grams is attached to the second spring, and both masses
position. Find the equation of motion. are initially released from the equilibrium position with
' Df:te.mhli‘ne the equation of motion if the mass in Problem an upward velocity of 10 m/s.
:. znlsi r;;:.miagy released frorr‘l the equilibrium position with (a) Which mass exhibits the greater amplitude of motion?
e ia (?wr?ward velocity of 2 fi/s, ‘ (b} Which mass is moving faster at 1 = 7/4 §7 At /2 §?
mass weighing 20 pounds stretches a spring 6 inches. (¢) At what times are the two maésas“iﬁ the same posi-

) T * P X .
: hi mass is 1,n1t1ally. feh?ased from rest from a point 6 tion? Where ate the masses at these times? In which
aches below the equilibrium position. directions are they moving? : ‘

When there is an impressed voltage E(z) on the circuit, the electrical vibrations
said to be forced. In the case when R # 0, the complementary function g.(1} of (34
called a transient solution. If E(7) is periodic or a Constant, then the particular solw
g,(1) of (34) is a steady-state solution. :

Example 10 Steady-State Current S
Find the steady-state solution g,{f) and the steady-state currvent in an LRC-series c1r
when the impressed voltage is E(f) = Eg sin 1. C

Solution 'The steady-state solution g,(f) is a particular solution of the differential eq

d*q dq .
+RrY L, =E : {a) Find the positi i = iohi
, 0, /4, 8. Determine the amplitude and period of .motion if the
160 CHAPTER 3 Higher-Order Differential Equations ’ . ] ’
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rmass is initially released from a point 1 foot above the
equilibrium position with an upward velocity of 2 ft/s.
How many complete cycles will the mass have complet-
ed at the end of 4 seconds?

9. A mass weighing 8 pounds is attached to a spring. When
set in motion, the spring/mass systen exhibits simple
harmonpic motion. Determine the equation of motion if
the spring constant is 1 1b/ft and the mass is initially re-
leased from a point 6 inches below the equilibrium posi-
tion with a downward velocity of 2 ftis. Express the
equation of motion in the form given in (6).

10. A mass weighing 10 pounds stretches a spring 1 foot.
This mass is removed and replaced with a mass of 1.6
slugs, which is initially released from a point I foot
above the equilibrium position with a downward velocity
of  ft/s. Express the equation of motion in the form
given in {6). At what times does the mass attain a dis-
placement below the equilibrium position numerically
equal to 3 the amplitude?

11. A mass weighing 64 pounds stretches a spring 0.32
foot. The mass is initially released from a point 8 inches
above the equilibrium position with a downward veloci-
ty of 5 ft/s.

(@) Find the equation of motion.

(b) What are the amplitade and period of motion?

{¢) How many complete cycles will the mass have com-
pleted at the end of 37 seconds?

(d) At what time does the mass pass through the equilib-
rium position heading downward for the second time?

(e) At what time does the mass attain its exireme dis-
placement on either side of the equilibrium position?

(f} What is the position of the mass at f = 3 87
(g) What is the instantaneous velocity atr = 387
(h) What is the acceleration at £ = 3 87

(i) What is the instantaneous velocity at the times when
the mass passes through the equilibrium position?

tached to the center of the plate in the double-spria
arrangement. Determine the effective spring constant
this system. Find the equation of motion if the mass
initially released from the equilibrinm position with
downward velocity of 2 ft/s.

Figure 3.33 Double-spring system in Problem 13

14. A certain mass stretches one spring ! foot and anothe
spring 1 foot. The two springs are attached to a commoi
rigid support in the manner indicated in Problem 13 an
Figure 3.33. The first mass is set aside, a mass weighing

pounds is attached to the double-spring arrangement, and

the system is set in motion, If the period of motion is il
second, determine how much the first mass weighs.

. A model of a spring/mass system is 4¢" + ¢ Mix = 0. B
inspection of the differential equation only, discuss th
behavior of the system over a long period of time.

A model of a spring/mass system is 4x” + fx = 0. By

spection of the differential equation only, discuss the b
havior of the system over a long period of time.

Spring/Mass Systems: Free
Damped Motion

In Problems 17-20, the given figure represents the graph of
equation of motion for a damped spring/mass syster. Use:the

Figure 3.35 Graph for Problem 18

e B

\

\NPZal

Figure 3.36 Graph for Problem 19

Figure 3.37 Graph for Problem 20

21. A mass weighing 4 pounds is attached to a spring whose

23. A 1-kilogram mass is attached to a spring whose con-
§tant i§ 16 Nfm, and the entire system is then submerged
in a.hquid that imparts a damping force numericall
equal to 10 times the instantaneous velocity. Determini
the equations of motion if

(a) the mass is initially released from rest from a point 1
meter below the equilibrium position, and then

) ;he:g mass is initially released from a point 1 meter
eiow the equilibrium position with an
a u ;
locity of 12 m/s. prad ve

24. In parts (a) and (b) of Problem 23, determine whether the
mass passes through the equilibrium position. In each
case find the time at which the mass attains its extreme
dlsglacement from the equilibrium position. What is the
position of the mass at this instant? \

25. A _f‘orce of 2 pounds stretches a spring I foot. A mass
weighif}g 3.2 pounds is attached to the spring, and the
system is then immersed in a2 medium that offers a damp-
ing force numerically equal to 0.4 times the instanta-‘
neous velocity.

(a) Find the equation of motion if the mass is initially
relela‘sec‘i from rest from a point 1 foot above the
equilibrium position.

(b) g)%ress the equation of motion in the form given in

{¢} Find thfa -ﬁrst time at which the mass passes through
the equilibrium position heading upward.

26, Aft.er a mass weighing 10 pounds is attached to a 5-foot
spring, the spring measures 7 feet. This mass is removed
anq replaced with another mass that weighs 8§ pounds. The
entire system is placed in a medium that offers a damping
force numerically equal to the instantaneous velocity.

(a) Find the equation of motion if the mass is initially
1'e1§a§ed fI:Om a point 5 foot below the equilibrium
position with 2 downward velocity of 1 fi/s.

araph to determine constant is 2 1b/ft. The medium offer

| . g W b . C . .
that is nur%ae{ically equal to the instantania:)t? I\Iflﬁi(fccz’;t{;e v g};i;'mss e aen ofmoton e fom ghen
The mass is initially released from a point 1 foot above
the equilibrium position with a downward velocity of 8
ft/s. Determine the time at which the mass passes through
the f:quilibrium position. Find the time at which the mass
a‘tt.azns its extreme displacement from the equilibrium po-
sition. What is the position of the mass at this instant?

)] At what times is the mass 5 inches below the equilib-
rium position? \

(k) At what times is the mass 5 inches below the equilib-
rium position heading in the upward direction?

12. A mass of | slug is suspended from a spring whose spring
constant is 9 1b/ft. The mass is initially released from &
point 1 foot above the equilibrium position with an upward
velocity of \/3 ft/s. Find the times for which the mass is
heading downward at a velocity of 3 ft/s.

13. Under some circumstances when two parallel springs,
with constants k; and k,, support a single mass, the
effective spring constant of the system is given by
k = 4k ko (k; + ky). A mass weighing 20 pounds stretches
one spring 6 inches and another spring 2 inches. The
springs are attached to a common rigid support and then
to a metal plate. As shown in Figure 3.33, the mass is at-

(a) whether the initial displacement is above or below thi
equilibrium position and ‘
{c} Find the times at which the mass passes through the

s is initially released fr st, headin I "
(b) whether the mass is initially release from re ing equilibrium position heading downward.

downward, or heading upward.
(d) Graph the equation of motion.

27, A mass weighing 10 pounds stretches a spring 2 feet. The
mass is attached to a dashpaot damping device that offe.rs a
fiampmg force numerically equal to 8 (8 > 0) times the
mstar‘ttaneous velocity. Determine the values of the
damping constant 8 so that the subsequent motion is (a)
overdamped, (b) critically damped, and (c) underdamped,

28. A mass weighifig 24 pounds stréiches a spring 4 feet.
The subsequent motion takes place in a.medium that of-
fers a damping force numerically equal to 8 (8 > 0)
times the instantaneous velocity, If the mass is initially
released from the equilibrium position with an pward

vt

. A 4-foot spring measures 8 feet long after a mass weigh-
ing 8 pounds is attached to it. The medium through
which the mass moves offers damping force numerically
equal' to V2 times the instantaneous velocity. Find the
equation of motion if the mass is initially released from
the equilibrium position with a downward velocity of
5 'ft/s. Find the time at which the mass attains its extreme
dlspigcement from the equilibrivm position. What is the
position of the mass at this instant?

v

Figure 3.34 Graph for Problem 17

CHAPTER 3 Higher-Order Differential Equations . .
: 3.8 Linear Models: Initial-Value Problems 163




velocity of 2 ft/s, show that when > 32 the equation
of motion is

-3
1) = = P ginh \/,82-—18;:
() f-——mwﬁ =

Spring/Mass Systems: Driven Motzon

. A mass weighing 16 pounds stretches a spring § feet.
The mass is initially released from rest from a point 2
feet below the equilibrivm position, and the subsequent
motion takes place in a med:um that offers a damping
force numesically equal to 3 ! the instantaneous velocity.
Find the equation of motion if the mass is driven by an
external force equal to f() = 10 cos 3¢

. A mass of 1 slug is attached to a spring whose constant
is 5 Ib/ft. Initially the mass is released 1 foot below the
equilibrium position with a downward velocity of 5 ft/s,
and the subsequent motion takes place in a medium that
offers a damping force numerically equal to 2 times the
instantaneous velocity.

(2) Find the equation of motion if the mass is driven by
an external force equal to f(1) = 12 cos 2¢ + 3 sin 2t

(b) Graph the transient and steady-state solutions on the
same coordinate axes.

(¢) Graph the equation of motion.

. A mass of 1 slug, when attached to a spring, stretches it
2 feet and then comes to rest in the equilibrium position.
Starting at t = 0, an external force equal to f(f) =
$ sin 4t is applied to the system. Find the equation of mo-
tion if the surrounding medium offers a damping force nu-
mericaily equal to 8 times the instantaneous velocity.

. In Problem 31 determine the equation of motion if the
external force is f(f) = ¢ sin 4¢. Analyze the displace-
ments for t — oo,

. When a mass of 2 kilograms is attached to a spring
whose constant is 32 N/m, it comes to rest in the equilib-
rium position. Starting at t = 0, a force equal to fi =
68¢ cos 4t is applied to the system. Find the equation
of motion in the absence of damping.

. In Problem 33 write the equation of motion in the form
x(f) = A sin(wr + ¢) + Be™ sin(4z + 6). What is the am-
plitude of vibrations after a very long time?

. A mass m is attached to the end of a spring whose con-
stant is k. After the mass reaches equilibrium, its support
begins to oscillate vertically about a horizontal line L ac-
cording to a formula A(r). The value of h represents the
distance in feet measured from L. See Figure 3.38.

(a} Determine the differential equation of motion if the
entire system moves through a medium offesing a
damping force numerically equal to B(dx/dz).

36.

(b} Solve the differential equation in part (a) if th

spring is stretched 4 feet by a weight of £6 poungd
and B =2, h() = Scos t, x(0) = x =

""""""""" | suppori

Figure 3.38 Oscillating suppost in Problem 35

A mass of 100 grams is attached to a spring whose ¢o
stant is 1600 dynes/cm. After the mass reaches equili
um, its support oscillates according to the for

- h{f) = sin 8¢, where h represents displacement from_':’

original position. See Problem 35 and Figure 3.38.

(2) In the absence of damping, determine the equatlen
motion if the mass starts from rest from the ethb
um position.

(b) At what times does the mass pass through the eq'
tibrium position? '

{¢) At what times does the mass attain its extreme'd
placements? :

(d) What are the maximum and minimum displacemen

(e) Graph the equation of motion.

In Problems 37 and 38, solve the given initial-value problem. -

37.

38.

39,

o
dr*
2 .
%}g +9x = Ssin 3¢, x(0) =

+Ax = 8 gin 2+ 3 cos 2, x(0) = -1, ¥"(0) =

2, x'( =

(a) Show that the solution of the initial-vaiue problex_ﬁ

2
%mz-+ w'x = Fycos v, x(0) =0, x'(0) =

5 (cosyt — poé wt).

s A =
1 x(t) =

F .
(b) Evaluate lim 2 7 {cos vt — cos wh).

. Compare the result obtained in part (b) of Problem3
with the solution obtained using variation of parame
when the external force is Fyy cos wt.

41. (a) Show that x(?) given in part (a) of Problem 39 can b
written in the form

—2F, .1 1,
x1) = o sin 2(y - w)tsm—z-(y + w)t

CHAPTER 3 Higher-Order Differential Equations

(b) If we define & = 4(y — w), show that when & is
small, an approximate solution-is

x(f) = % sinet sinyz,

When & is small the frequency y/27 of the im-
pressed force is close to the frequency w/2ar of
.free vibrations. When this occurs, the motion is as
indicated in Figure 3.39, Osciliations of this kind
are called beats and are due to the fact that the fre-
quency of sin ef is quite small in comparison to the
frequency of sin . The dashed curves, or enve-
lope of the graph of x(2), are obtained from the
gr.aphs of £(Fy/2ey) sin &t. Use a graphing utility
with various values of F;, &, and y to verify the
graph in Figure 3.39,

2. Can there be beats when a damping force is added to the

mf)del in part {(a) of Problem 397 Defend your position
with graphs obtained either from the explicit solution of
the problem

d*x

el + 2)»“@wx“"F0cos'yt x(0) =

d 0, ¥®=20

or from solution curves obtained using a numerical solver.

- (a) Show that the general solution of

2
%;“ " 2/\%’6— + @t = Fysin vt
is
x{t) = Ae™ sin(mt + ¢)
+ Fy
\/(wz - yz)z + 4Aly

=sin (yr -+ 0),

where A = V¢l + ¢ and the phase angles ¢ and

6 are, respectively, defined by sin ¢ = ¢//A, cos ¢ =
co/A and

sinf = —20y .
| \/(wz _ 72)2 + A%y
W — ¥
cosf =

V(w® — 2P + ax%y*

(b) The solution in part (a) has the form x() = x () +
x,(t). Inspection shows that x{t) is transient, and
henge for large values of time, the solution is ap-
proximated by x,(f) = g() sin(v¢ + 8), where
Fq
\/(cu2 - v+ 4/\2’}/2.
Although the amplitude g(y) of x,(2) is bounded as
t — 00, show that the maximum oscillations will
oceur at the value y, = Ve’ ~ 202, What is the

maximum value of g7 The number Vw? — 2A%/24

1s said to be the resonance frequency of the system.
(c) When Fy = 2,m = 1, and k = 4, g hecomes

2

Vid =y + gy
Construct a table of the values of v, and g(y,) corre-
spond31ng to the dampmg coefficients B =2, 8 =1,
B = B=13and B = i- Use a graphing utility to
f)btam tl}f.: graphs of g corresponding to these damp-
ing S:Gefflments. Use the same coordinate axes. This
family of graphs is called the resonance carve or
frequency response curve of the system. What is Yi

approaching as 8 — 0? What is happening to the
tesonance curve as 3«3 (07

g(y) =

gly) =

44. Consider a driven undamped spring/mass sysiem de-

scribed by the initial-value problem
a5 ,
P + whx = Fy sin” w, x(0) = 0, x'(0y = Q.
(a) Forn = 2, .fiiscuss why there is a single frequency
/2 at which the systemn is in pure resonance,

(b) For n = 3, discuss why there are two frequencies

/27 and 1y,/27 at which the system is in pure res-
onance.

(¢) Suppose @ = 1 and Fyy = 1. Use a numerical solver
to obtain the graph of the solution of the initial-value
problem for n = 2 and v = v, in part (a). Obtain the
graph of the solution of the initial-value problem for
n = 3 corresponding, in turn, to y = v, and y = v,
in part (b).

Series Circuit Analogue

45. Find the charge on the capacitor in an LRC-series cir-

46,

cuit at 1 = 0.01 s when L = 005 h, R = 2 ,
C = O.Qi LED =0V,g(0) = 5C, and i(0) = 0 A,
Determine the first time at which the charge on the ca-
pacitor is equal to zero.

Find the charge on the capa<:1tor_ in an LRC-series circait
when L =1 h, R = 200,"C~ 30(;f EH =0V, g0 =

4 C, and i(() = 0 A. Is the charge on the capacitor ever
equal 1o zero? :
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ent solutions of (6) on (—oo, co). Hence X, and X, form a fundamental set of soly
on the interval. The general solution of the system on the interval is then

1 3
X=X +cX,= ci(wi)e“z' + c2(5>66'.

Example 6 General Solution of System (8}
The vectors

on the interval {—o¢, c0). (Verify this.) The complementary function of (11) on the same

1 3
5 3)X, was seen in (10) of Example 5

ipterval, or the generai solution of X' = (

X=X, +X, =

1 —
cl(wl)ewz’ + 62@)66’ + (_i; . i)

the general solution of {11) on (~o0, c0). 0

cos it sin f

~Lcost + gsint |,

—Lsint ~ fcost
—sint + cost

XZ:

X =

—¢ost— sin?

are solutions of the system (8) in Example 3 (see Problem 16 in Exercises 10.1). No 158 solution of the.

cost 0 sin ¢ :
. : 1 - . \
WX, X, X5) = —$cos ¢ + %?mt 4 —%s%nr —~ scos =& = { 4x + 8y dy - Sy d
~cost— sint O  —sinf+ cos? 4t 4 )
dx =4y =Ty, X = =5
for all real values of r. We conclude that X,, X, and X, form a fundamental s o = —3x -+ 4y - 9z 4, dx =x—y dt Y (2>e
tions on (~—co, o). Thus the general solution of the system on the interval is the Ii ' d dx
combination X = ¢X, + ¢,X, + ¢;X;, that is, d 12, ~= = =2y +
1 I 28 383 _M_m()x__y :%:x+2:5 7 x + Sy
cos ¢ it sinz : d
“dz dz ay Scos ¢t
= ¢l ~3 jsint | - b oeg| —psint — 3 — = [0x + 4y + L = —0x+ 4y, X= '
X = ¢, —3cost+ 2.smt Feod 1 ie 4 ¢ zs%nt 5C08 ¢ » x + 4y + 3z o x+z dt ¥ 3cos f — sint e
—cost -~ sint 0 —§n{ + cost I , .
=x=y+tz+r—1 13. X’:( )X X = ( l)g~3z,'2
# Nonhomogeneous Systems For nonhomogeneous systems, a particular solut 2
on an interval I is any vector, free of arbitrary parameters, whose entries are fur_ac =2ty g — 3 14 X' = 2 X = 1 AN
satisfy the system (4). ‘ -1 0 3 L i
=xty+z+ti-r+2 1 1
15. X' = -1 0]X; X= 6
= 3x + dy + 7' sin 2t —-1 -13
dv sin ¢
= S+ 92+ 4eT cos 21 16. X =[ 1 I O X; X=| —3sint —icost
-2 0 -1 —sint + ¢os ¢
+ — - . R
yrbz-e In Problems 17-20, the given vectors are solutions of a system

X' = AX, Determine whether the vectors form a fundamental set
on (—co, oo).

AU 1
_ (_4 2)X +< l)e’ 17. X, = (I)e 2:) X, = (W[)e—ér

18, Xl = (Mi)e", X2 ==

7 {0 8
4 20~ | 0 e
0 1 3 1 i
Example 7 General Solution—Nonhomogeneous System x 1 =1 2\ /x I 3 19. X, = | =2 | +4 2
The vector X,, = ( 3 4) is a particular solution of the nonhomogeneous $y8 Y 34 Ly +l2)e =) 1 4 2 .
‘ -5t + 6 - 2/ \—2 5 6 2 1 3 ) .
o)
4

' 2
X - 3 -7 X 4 . t— 4 & XB =
(y> (1 | (y) " (8) sttt (2r + 1)6

10.1 Preliminary Theory

1 3 12r = 11
! = m{“
X (5 B)X ( -3 )
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‘The foregoing process can be generalized. Let K, be an eigenvector of the ¢oe
matrix A (with real entries) corresponding to the complex eigenvalue A,
Then the two solution vectors in Theorem 10.8 can be written as

KM = K,ee® = K e"(cos Bt + isin Bt)

Kle’_‘“ = K% # = K,e*{cos Bt — isin ).

The eigenvalues are A; = 2iand A, = A, = ~2i. For A, the system

@~ 20k, + 8k, = 0

es ky = —(2 + 2i)k,. By choosing k, = —1 we get

029+ )

B, = Re(K)) m (_T) and B, =Im(K,) = @)

By the superposition principle, Theorem 10.2, the following vectors are also solutig

= Gy L o i N
X, = -;—(Kle’“’ + Ket) = —2—{K1 + K,)e*cos Bt — “2“(“K1 + Ky)e*sin B

Now from (24) we form

i = 3 i

X, = E {—K;e’\” + KleA") = “2“
1 - i .

For any complex number z = a + ib, both —2-(z +z) = aand -2-( —z+z) =

e = 0, it follows from (23) that the general solution of the system is

(D Q] el v (o]

(2cos It — 2sin Zt) (2005 2t + 2sin 2!)
fl + C?_ A

are real numbers. By defining X

1 —
Bl = E(Kl + Kl) and B2 =

[

(26)

we are led to the following theorem. —cos 2t —sin 2¢

Some graphs of the curves or trajectories defined by. the solution (26) of the system are

Justrated in the phase portrait in Figure 10.4. Now the initial condition X(0) = (_ 1),
requivalently x(0) = 2, and y(0) = —1, yields the algebraic system 2¢| + 2¢, = 2,
—¢; = —1 whose solution is ¢; = 1, ¢, = 0. Thus the solution to the problem is

2cos 2t — 2sin 2¢ o . . . .
08 2t . The specific trajectory defined parametrically by the particu-
solution x = 2 cos 27 ~ 2 sin 24, y = — cos 2t is the black curve in Figure 10.4. Note  Figure 10.4 A phase portrait of the
hat this curve passes through (2, —1). id  systemin (26)

The matrices B, and B, in (22) are often denoted by
B, =Re(K,) and B, = Im(K))

since these vectors are, respectively, the real and imaginary parts of the eigenve
For example, (21) follows from (23) with

0 -( 1) () (2)

B, = Re(K,} = G) and Bz_m Im{K,) = (MED

%=4x+3y %=x+3y %“y"z f{—ijy%«zz
o 0w it o amey Gy sx-[ 12 t)xwx=lo1o]x
v=(2 Hx xo- (2) R TR Doy :: 34—; ) E o
Solution First we obtain the eigenvalues from X' = (12 :;)X 6. X' = (ig ?)X s i "i _3% * :

2-A

det(A ~ AY) =
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1 -1 2 4 0 1 51. Examine your phase portraits in Problem 47. Under what
=] -1 101X 42 X' = 06 01X conditions will the phase portrait of a 2 X 2 homoge-
-1 01 —4 0 4 neous linear system with complex eigenvalues consist of
5 s g a family of closed curves? Consist of a {family of spirals?
Tn Problems 13 and 14, solve the given initial-value problem. 0 9 | 2 a Under what conditions is the origin (0, 0) a repeller? An
} . X ; 27 —~11iX 78 X =f -5 -6 4|X 44 X' =] ~1 ~2 01X attractor?
r ]2 = - -
13. X' = (1 B %)X, X( = (5) 1 0 : 0 02 o 10 -2 52. The system of linear second-order differential equations
L1 | El:oblems 45 and 46, solve the given initial-value problem. ml = —kx, + ke — x)
, _ _ : 1 —-12 -~14 4 " 27
14 X (1) f ? % X0 g : (j ;‘)x, X(0) = ( é) )  X'=(1 2 -3|X XO0=| 6 s = el = x) =
_ 1 1 -9 -7 describes the motion of two coupled spring/mass sys-
. g 0 1 1 . tems (see Figure 3.59). We have already solved ial
onments . 6 -1 _ ' g S9. ready solved a specia
ComPUter Lab Ass 8 . . 30, X' 0 1 01X, XO=|[2 SN (5 4)}(’ X0 = ( 8) case of this system in Sections 3.11 and 4.6. In this prob-
in P'r((i)t')le;ﬂsd'l 5 al;ild 16, US(‘; a ?fzks ijitieaflal‘egei’;;z;twam as 1 0 0 5 lem we describe yet another method for solving the sys-
an aid in finding the general solution of the given . . o,
° 31. Show that the 5 X 5 matrix _mPUter Lab ASSIgnmentS o
09 21 32 7. Find phase portraits for the systems in Problems 36, 37, (a) Show that (27) can be written as the matrix equation
15. X'=107 65 42 |X and 38. X" = AX, where
1.1 17 34 Solve each of the following linear systems. ' ky + ky k;
' , 11 X "y MI’JM'IT
0 -1 ' ay X =(1 i)X Xm<x) and A =
: 2 ky ks
=3 0 ' - my my
: 1 1 m )
0 -31 4 has an eigenvalue A, of multiplicity 5. Show th: ) X' = (-1 wl)x. . ’ 5
-28 0 15 1 linearly independent eigenvectors corresponding ¢ (b) If a soiutaon 18 a.SSHmed of the form X = Ke*, show
. ? ‘ can be found. SR Find a phase portrait of each system. What is the geo- that X" = AX yields
Use computer software to obtain the phase portrait of : : metric significance of the line y = ~x in each portrait? (A— ADK =0 where A= o
the system in Problem 5. If possible, include the ar- C ter Lab Assignments : . -
rowheads as in Figure 10.2. Also, include four half- omputer La s g - scussion Problems (cy Show that if m, = 1, m, = 1, k, = 3, and &, = 2, a
{ines in your phase portrait, 32. Find phase portraits for the systems in Problem_s'.z_{} . L . solution of the systern is
‘ . . . 21. For each system, find any half-line trajector : Consider the’5m>< 3 ma‘tnx given I.H Problerfa 31. Solve
(b) Obtain the Cartesian equations of each of the four : S . : the systemn X' = AX without the aid of matrix methods 1y, Iy =2\ /i =2 2
e | include these lines in your phase portrait. . . . . ’ X = . e” ¢ L e Vi
half-lines in part (a). : but write the general solution using the matrix notation. \2 A2 N1 1 '
Use the general solution as a basis for a discussion on

{c) Draw the eigenvectors on your phase portrait of the
system.
18. Find phase portraits for the systerns in Problems 2 and 4.
For each system, find any half-line trajectories and in-
clude these lines in your phase portrait.

Complex Elgenvaiues how the system can be solved using the matrix methods (d) Show that the solution in part (c) can be writtén as

In Problems 33-44, find the general solution of the g of this section. Carry out your ideas. X =p (1) b (1) ,

system. : ) Obtain a Cartesian equation of the curve defined para- o o8t T 2 2 s

dx dx ' metrically by the solution of the linear system in ) -7

33. — = 6x — ¥ : - Bxample 6. Identify the curve passing through (2, —1) in + 193( JCOS Ve + b4< l)sin 61.
- Figure 10.4. [Hint: Compute 1°, ¥, and xy.]

Repeated Eigenvalues &,
In Problems 19-28, find the general solution of the given system. dt Y

, -d-*:——sx+y _ d’; | 10.3  Solution by Diagonalization )

W Introduction In this section we are going to consider an alternative method for solv-
ng a homogeneous system of linear first-order differential equations. This method is appli-
able to such a system X' = AX whenever the coefficient matrix A is diagonalizable.

B Coupled Systems A homogeneous linear system X' = AX,

dx dx
e 3x+ 2y + 4z . - x| an G vt a4y xi
' x| _|an an 0 Gy X2 o
dy dy RN S I P ey RN
”;1”““' = 2x + 2z =1 . } . . ﬂ-' -
f ! :
xrrx Gy Qo Tt dyy Xy
dz . . -
ez Ay o 2y o+ 37 : . which each x; is expressed as a linear combination of x,, x5, ..., x, is said to be cou-

dt iy e .
led. If the coefficient matrix A is diagonalizable, then the systemn can be uncoupled in

1t each x{ can bg expressed solely in terms of x, T

t
Fl
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