_O.f:Airy’s equation in Example 2, you should see that y,(x) and w,(x) are, in tarn, the solu-
tions of the initial-value problems

and so on. Finally, we see that the general solation of the equation is ¥ = cyy;

¢ yo(x), where

YV+xy=0, y0=1, yO)=0,
YVi+xy=0, y0)=0, y(O)=1. (11)

The specified initial conditions “pick out” the solutions y,(x) and y,(x) from y = gy, (x) +
c2{0), since it should be apparent from our basic series assumption y = £%_, ¢, x" that i .
§(0) = co and y'(0) = ¢;. Now if your numerical solver requires a system of equations, the 2 0z 4 6
substitution y’ = u in y" + xy = 0 gives ' = «’ = —xy, and 50 a system of two first-order (a) Plot of y; (x) vs. x
equations equivalent to Airy’s equation is

i P, 1
— o e I e
and yo(x) x+6f+12x -I-uox5

Each series converges for all finite values of x.

s The next example illustrates how to find a power serie
0 of a differential equation when its coefficients
lcation of multiplication of two pows

@ Nonpolynomial Coefficient
solution about the ordinary point xp =
not polynomials. In this example we see an app

series.

W= Xy (12)

Example 5 ODE with Nonpolynomial Coefficients -. Runge-Kutta method with a step size of 4 = 0.1, L L

Solve ¥ + (cos x)y = 0. Pl

Solution We see x = 0 is an ordinary point of the equation because, as we have al Figure 5.1 Solutions of Afry’s equation

seen, ¢os x is analytic at that point. Using the Maclaurin series for cos x given in (2);
with the usual assumption y = 2.q¢,x" and the results in (1), we find .

2 4

& o
< n-2 . _)E_ jEm - fw n
ngzn(n ~ De,x""° + (} 5 + POy + )Zc,,x

i

y" + {cosx)y

a=0

I

8 X
20, + 6cx + 120,68 + 2Weax® + o0+ (1 5 -i—z“! +

1 1
=26, + ¢p + (63 + o )x + (12@1 +ey -2"4:0))52 + (20::5 + ¢y 56;))53 + e

It follows that

i 1
2o, + =0, 6e3+¢=0, 12c4+c2w~5c0=0, 2005+c3——ic}=0,

. . % i 1 L s
and so on. This gives ¢, = = 5 ¢ 3= ~ ¢ €1 €4 =13 €0 €5 =36 Civ -+ By grouping fe

we arrive at the general solution y = ¢y (x) + € vo(x}, where

A 1 1
yl{x)=i‘éf+"§§x4_.-' and yz(x)m"ng”“gﬁxs_m' .
- In'Problems 7 and 8, the given function is analytic at x = 0. Fin
“the first four terms of a power series in x. Perform the long divi-
sion by hand or use 2 CAS, as instructed. Give the open interval of

Since the differential equation has no finite singilar points, both power series €O

forixi<oo,
i < x+ 7 convergence.
n= :
. ; ®© (. 1Y -
# Solution Curves The approximate graph of a power series solution y(-x) = 30 (—1) (x — 5 . o M- 1 7. 1 . 1 x
can be obtained in several ways. We can always resort to graphing the terms in the seqY =10 &l COSX 5 + ;

In Problems 9 and 10, rewrite the given power series so that its
blems 5 and 6, the given function is analytic at x = 0. Find  general term involves x* ‘
st four terms of a pawer series in x. Perform the multiplica- 0 - e &
Nby hand or use a CAS, as instructed. 9. > ne,xtt? 10. > (2n — et

' n=3

r= |

of partial sums of the series; in other words, the graphs of the polynomials Sy(x) = Shio
For large values of N, Sy(x) should give us an indication of the behavior of y(x) near
dinary point x = 0. We can also obtain an approximate solution curve by using 2 num
solver as we did in Section 3.10. For example, if you carefully scrutinize the seres

i
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In Problems 33 and 34, use the procedure in Example 6t
two power series solutions of the given differential equation atg

o 0 the ordinary point x = 0.
“ 1 a1
. E Znc,x" IEGCM 33, 9"+ (sinx)y=0 34, Y +e¥y —y=0

n=

In Problems 11 and 12, rewrite the given expression as a single
power series whose general term involves x*,

5.2  Solutions about Singular Points ]

In-troduction The two differential equations y' + xy = 0 and xy” + y = 0 are similar
anly in that t_hey are both examples of simple linear second-order DEs with variable coeffi-
nts. That 1s.a1} they have in common. Since x = 0 is an ordinary peint of the first equa-
tion, We saw in the preceding section that there was no problem in finding two disgnct
power series solutions centered at that point. In contrast, because x = 0 is a singular point of
the S?COnd DE, ﬁnding two infinite series solutions—notice we did not say * {)w;' serie

solutions™—of the equation about that point becomes a more difﬁéuit task. ’ S

Discussion Problems .

35. Without actually seolving the differential e
{cos x)y" + ¥ + 5y =0, find a lower bound for the rag
of convergence of power series solutions about

o0 o o
12, > nn — De,x" + 2> n(n — De,x"™% + 3 > ne,x"
=) n==]

n==

In Problems 13 and 14, verify by direct substitution that the given

power series is a particular solution of the indicated differential Aboutx = 1.
How can the method described in this section be \ise

A Definition A singular point x = x, of a linear differential equation

equation. ‘ 36.
= (=1t find a power series solution of the nonhomogene
13. y= > p X, (xHipt Aty =0 equation y* ~ xy = | about the ordinary point x =01 (XN + a, ()Y’ + aylx)y = 0 ()
nel " dxy' -~ 4y = €*? Carry out your ideas b 8 . . i -
oo . v D Y isfurther classified as either regular or irregular. The classification again depends on th
(~1) both DEs. p ) p e
4 v = E Mt gy xy = 0 ‘ ' . g fenctions P and @ in the standard form _
-V Lt (1Y A ¥ Y 37. Is x = 0 an ordinary or a singular point of the differen
equation xy” + (sin x}y = 07 Defend your answer y Y+ POy + Ox)y = 0. @

sound mathematics.
Powver Series Solutions 38, For purposes of this problem, ignore the graphs give - , E—
) . . . : Figure 5.1. If Airy’s DE is written as y = —xy, what Reqular/Irregular
2?1{1;;10 Zirztsi;; ;::; 261’0‘:’1;?%‘§u1?§gh?$$§Sﬂ:; f;\;g;ggi; we say about the shape of a solution curve if x G e
' ’ : 71 x>0 2nd y <07 o  differential-equation (1)
of power series solutions about the ordinary point x = 0. About the y>0?ix>0andy L i R equation )
ordinary point x = 1. Computer Lab Assignments
15. (x* — 250"+ 20" +y=0 39, (a) Find two power series solutions for ¥+ xy Th
: i ; ‘n oL & second se i initi indi ; . .
16. (2 — 2x+ 100 +xy" —dy=0 . and eXpIess the ?011“1033 yi6x) and yo(x) in term ’O = Cx— x )P(;)teal:acde in D;flmtion 52_2 mdlc_ates that if one or both of the. functions
summation notation, _ e o o g(x) = (x ~ x)*O(x) fails to be analytic at x;, then x, is an ireg-
- _ ar singular point.
In Problems 17—28, find two power series sotutions of the given (®) Ese ?ch“zs t;) ‘('3;; al;h ;hell(a)ar;a;l Sf:’z S':’} (xzhi? :?.*-(-’.t .
differential equation about the ordinary point x = 0. se S—( s ; ’ ,( , 8, 10. Repeat using e pd Peiyn\qmlal Coefficients As in Section 5.1, we are mainly interested in linear equa-
' sums Sy(x) for y(x). . ' E tions (1) where the coefficients a,(x), a,(x), and a{x) are pﬂiynomi als with no Commong‘ac-
17. ¥ =~ xy=0 18. y'+ 2%y =0 {¢) Compare Fhe graphs obtamejd in part (b} witht lors. We have already seen that if a,(xy) = 0, then x = x, is a singular point of (1) si
curve obtained using a numerical sofver, Use feast one of the rational functions P(x) = a (x)ay(x) and Q(x) = ay(x)ay(x) in the S;i;;ﬁ

ig. v — 2y +y=0 20. ¥ —xy +2y=0 A e X

o~ 2}@: Y y" r Y ’Elfﬂ-COHdIUOHS y:(0) = 1, y1{®) = 0, and y»(0) form (2) fails to be analytic at that point. But since a,(x) is a polynomial and x, is one of it

21y H XY Ay = 0 22. Y+ 20y +2y=0 ¥ (0) = 1. : zeros, it follows from the Factor Theorem of algebra that x — x, s a factor (gf ::z {x) Tlii:
2 .

23, (x~ 1)y’ +y' =0 24, x+2)y +xy —y=0 (d) Reexamine the solution y,(x) in part (a). Express this | means that after ¢,(x)/a,(x) and ay(x}a(x) are reduced to lowest terms, the factor x ~ x
o . . ) S . ’ 9

25. '~ (x+ 1)y’ —y=0 26 G2+ 1)y — Gy=0 sSem?s as an elémentary fﬂnCth?- Then us mu:t re_:_mam., to some pOSItI‘VE integer power, in one or both denominators. Now suppose
ection 3.2 to find a second solution of the equ x = Xp is a singular point of (1) but that both the functions defined by the products

Verify that this second solution is the same & o) = (r — xp)P(x} and g(x) = (x %) O(x) are analytic at x,. We are led to the coi;clusion
power series solution yp(x). o that multiplying P(x) by x — x, and Q(x) by (x — x,)* has the effect (through cancellation)

27. (P + 2y +3xy —y=0

28, (X — 1y +xy’ —y=0 i :
40. (a) Find one more nonzero term for each of the solutio reatf —bxﬂ 1o longer appears in either denominator. We can now determine whether x, is
. ; : ular ick vi i .
In Problems 29--32, use the power series method to solve the y‘_(X} and % Ax) in E:xample 6. L . m%.he dﬁgﬂiﬁﬁ:‘il;v;lﬁxc)he? of denominators: If x — x, appears at 7most to the first power
given initial-value problem. , (b) Find a series solution y(x) of the initial-vaiue LA and at most 1o the second power in the denominator of Q(x), then
lem y” + (cos Xy = 0, %0 = 1,y'(®) = L. - ois a regular singular point. Moreover, observe that if x = x, is a regular singular point
and we multiply (2) by (x — x,)%, then the original DE can be put into the form

29, (x— Ly’ —xy' +y=0, y0)= -2, Yy =6 (¢) Use a CAS to graph the partial sums Sy {(x) for the
lution y{x) in part (b). Use N =2, 3,4,5,6,7

(x = )™ + (x — xp(X)y +3()y = 0, C@)

30, + 1y~ 2 -2y +y=0, ¥O)y=2, y'(0) = ~1
51 v — 2xy’ + 8y =0, w0 =3, ¥'(©0) =0 (d) Compare the graphs obtained in part (c) )

Y y” d , 0 Y (’) curve obtained using a numerical solver for't ere p and g are analytic at x = Xx,.
32. (P4 DY + 2 =0, 0)=0, y(O)y =1 tial-value problem in part (b).

fi_iamp]e T Classification of Singular Points
Itshould be clear that x = 2 and x = —2 are singular points of o

(o — %"+ 3(x — 2y’ + 5y = 0.
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quotient can be carried out by hand. But all these operations can be done with reIa P'roblems 1?f and 14,. x = (} i3 a regular singular poinF of t{he
ease with the help of a CAS. We give the results: en differential equgtmn. U§e the general form of tthe mdxf:lal
_ quation in (14) to find the indicial roots of the singularity.
- J‘O.:Lr dx _ without solving, discuss the number of series solutions you
# Here is a good place nx) = nlx )J[ (x )] = il )J[ 1 N Mlmxg _ —w}wx“ " r uld expect to find using the method of Frobenius,
{ to use a computer

T Tt 144
algebra system.
+ ] {1 Problems 15—24, x = (is a regular singular point of the given
jfferential equation. Show that the indicial roots of the singulari-
. } dx & after long division o gydo not differ by an integer. Use the method of Frobenius to ob-
' two linearly independent series solutions about x = 0. Form
the general solution on (0, o).

3 A HG xRy —iy=0
4; xy' +y 4+ 10y =0

¢ after squaring

-+ Inx + "l“x + =X+ ] « after integrating

. L e " ’ -
12 144 L2y =y 2y =0 16. 200" + 5y +xy =0

Ay Ay +y =10

LY =y + (P Dy =0
3+ @)y —y=0

0. Xy = (= 5y =0
D2y =G+ vy =0

2 Y xRy =0
9y + 9y’ + 2y = 0

4 205 + 3y + (2x ~ Dy = 0

yo(x) = y(x) In x + y:(x) {"‘“

On the interval (0, o), the general solution is y = C;y;(x) + Cyyylx).

roblems 2530, x = Ois a regular singular point of the given
atial equation. Show that the indicial roots of the singulari-
Lffer by an integer. Use the method of Frobenius to obtain at
ne seties solution about x = 0. Use (21) where necessary
aCAS, if instructed, to find a second solution, Form the gen-
solunon on (0, oo).

. xy 42y — xy =0

XY txy (= Dy =0
“A:y”~xy’-§-y=0

" 3 ' —
Yoy =0

L (L= ~y=0
XAy 4y =0

toblems 31 and 32, x = Ois a regular singular point of the
1 differential equation. Show that the indicial roots of the sin-
anty differ by an integer. Use the recurrence relation found by
method of Frobenius first with the largest root r,. How. many
fions did you find? Next use the recurrence relation with the
ler root ¥z, How many solutions did you find?

) x3(x2 25)(x ~ 2) y 30 - 2y ¥ 7(x+ 5)y: _
' ' 10, (% = 22+ 307 +x(x — 3 )2'-—(x~§-1)y-—
| X(x+ 3)2 e ) by differential equatio X+ (x— 6)y ~ 3y =0
4 = 12, put the given differen V' 4 (x ~ 6)y — 3y =
LY a3y +2y=0 In Problems 11 and .
( I e 1 ' form (3) for each regular singular point of the equation: Id e 1y a3y~ 2y =0
4.0

4= x7 r+ (x — 1y y=90 the functions p(x) and ¢(x) (8) The differentjal equation x*y" + Ay = 0 has an irregu-

5. (8 + 40y — 2y’ + 6y =0 1. (@@= Ly + 56+ 1y + (2 —x)y =0 ' lar singular point at x = (. Show that the substitution

34,

cﬁ 2 dy
dz H dr

which now has a regular singular point at ¢ = 0.

+ Ay = 0,

(b} Use the method of this section to find two series solu-
tions of the second equation in part (a) about the sin-
gular point ¢ = 0.

(c) Express each series solution of the original equation
in terms of elementary functions.

Buckling of a Tapered Column In Example 3 of Section
3.9, we saw that when a constant vertical compressive
force or load P was applied to a thin column of uniform
cross-section, the deflection v(x) satisfaed the boundary-
value problem

2

EI%+P}) =0, HO=0, W=

The assumption here is that the column is hinged at both
ends. The column will buckle or deflect only when the
compressive force is a critical load P,.

{a} In this problem let us assume that the column is of
length L, is hinged at both ends, has circular cross-
sections, and is tapered as shown in Figure 5.2(a). If
the coluran, a truncated cone, has a linear taper y =
cx as shown in cross section in Figure 5.2(b), the mo-~
ment of inertia of a cross section with respect to an
axis perpendicular to the xy-plane is J = } m*, where
r=yandy = cx. Heme we can write J(x) = Io(x/b)“’
where Iy = I(b) = } w(ch)*. Substituting I(x) into the
differential equation in (24), we see that the deflec-
tion in this case is determined from the BVP

2

d
x43x21 +hy=0, @) =0, yb) =

where A = PbHYEl,, Use the results of Problem 33 to
find the critical loads P, for the tapered column. Use
an appropriate identity to express the buckling modes
¥,(x) as a single function.

(b) Use a CAS to plot the graph of the first buckling
mode y,(x} corresponding to the Euler load P, when
b=1landa=1.

Figure 5.2 Tapered column in Problem 34 '

12, 0 + G+ 3y + Ty =0 . t = 1/x yields the differential equation
6. X(x — S +4xy + (P~ 25)y =0 v
2 ..--M—f/
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