Rules of Differentiation |

e differentiable vector functions and-u(7) a differentiable scalar fun

Note of caution.

Since the cross product of two vectors is not commutative, the order in which v

appear in part (iv) of Theorem 9.4 must be strictly observed.

B Integrals of Vector Functions If £, g, and / are integrable, then the indefin
definite integrals of a vector function r{f) = FO1 + g(B)j + hBK are defined, respec

by

The indefinite integral of r is another vector function R + ¢ such that R'(f} = _r(;

’Jr{r} dt

Jbr(t) di

fl

i

&

ol [fns] s}

Hbf(f) dt] i Hbg(t) dr}j + {rh(r) dt]k

a

Example 8 Integral of a Vector Function

I r(r) = 6621 + de™§ + 8 cos drk

then

B Length of a Space Curve If r(s) = f(i + g(0j + Wk is a smooth funcno_

jr(r) dt = Uétz dr}i + Uée“z‘ drilj + [chosdfr dt:]k

=28 + i+ =27 + ¢y} j + 2sindt + 5]k

wherec =t o j + ok

=251 — 2¢7¥j + 2sindrk + ¢,

can be shown that the length of the smooth curve traced by r is given by

- (VTG EOr T = [ KO

a

B Arc Length As a Parameter A curve in the plane or in space can be pararneftiz
terms of the arc length 5. :

Example 9 Example 1 Revisited

Consider the helix of Example 1. Since [[¢'(Df = \/E, it follows from (3) that: the.

of the curve from r(0) to an arbitrary point r(y) is

CHAPTER 9 Vector Calculus

- J’\/gdumx/gz,

vector equation of the helix as a function of arc length:

r(s) = 2cos —=

1~i~28m——
\f VoA

parametric equations of the helix are then

f(s) = 2 cos

r(f) = cosh #i + 3 sinh ¢§

r(t} = (\/ésmt\/—smt 2co8ty; O=r=m2

(R =ik )+ ek

___r(t) =¢'costi + ¢ sintj + &'k

10.1(5) = {tcos ¢, tsin s, t%

:o'blems 11--14, find the vector function that describes the

urve C of intersection between the given surfaces. Sketch the
e C. Use the indicated parameter.

=xt ) y=x x=1t

- BTN S e Ve e
XEy =1 y=22px=1
¥+ =9 7=9—x x=3cost
=g 4% z=1; x=sint
sin2t |

Given that r(s) = i+ (t~ 2% + ¢ 1n tk, find

- Given that lim,.,, ¥,(2) = i — 2§ + k and lim,_,, 1,(¢) =
21 + 5j + 7k, find:

@ }im [—4r, () + 3ry(0)]
() lim xy () r5(®)

roblems 17 =20, find r'(¢) and " (2} for the given vector func-

) =Inti+j >0
Y(f) = {tcost — sint, ¢ + cos £

S

“%, g(s) = 2sin “-f\/m_s_, his) =

In Problems 21 - 24,’gr'aph'the curve C that is described by r and

e we have used u as a dummy variable of integration. Using ¢ = s/ \/g, we obtain a

(4)

or to the curve traced by r. However, if the curve is parametrized in terms of arc
gth s, then v'(s) is a unit tangent vector. To see this, let a curve be described by r{s),

graph ¢’ at the indicated value of £.
21 r(f) =2 costi -+ 6 sintj; t = w6
22, ¥y = £i -+ 12, 1= —1

4 *
+7£
24, r(fy = 3costi+ 3sintj+ Uk, t= w4

Q3 r(p =2i+ 1 +

In Problems 25 and 26, find parametric equations of the tangent
line to the given curve at the indicated value of «.

GE T L,z 1
@§y-x—t,y~§r,z 1% =2

26, x=1¢'—¢ y= 2=+ 1% =1

11
r+ 1
In Problems 27--32, find the indicated derivative. Assume that
all vector functions are differentiable,

27. 4 r(n Xr']

d
~ 28. = [r(®) - ()]

d d
ég\) - @O - '@ X '@ 30, o I X (1)) X x5(0)]

31. —5;[1‘;(21} + rg(%“)] 32. %[ﬁ"(fz}}

In Problems 33—36, evaluate the given integral.
— 2

@/J (#1 + 362 + 4:°k) dr
—1

g+

4 e
f (V2 + 11 — Vi + sin wik) de
(4]

f (te'i — " %j + e K) dt

9.1 Vector Functions ' 457



n = cos(x -+ af) + sin(x — af)
Example 7 Using Tree Diagrams _ ol fon Cx 1) of  licuid

= 2wt =42y =5t— 8, w= ¢+ find de/dr. - ._-The molecular concentration C{x, 1) of 4 liquid is given
Itz =viwiandu =,y =3 " by C(x, ) = 172 ™/ Verify that this function satis-
Solution In this case the tree diagram indicates that fies the diffusion equation:

. : X
dz azdu+§££\i+_@5mgi_¥_v_ : kacmﬁg
dr oudt  dvd ow dt » : 4 ax* ot

= 2uPwi(2n) + 3AWA(S) + AutPwi (3% + n. o ' - The pressure P exerted by an enclosed ideal gas is given

o by P = KT/V), where k is a constant, 7 is temperature,
Alternative Solution Differentiate z = £*(5t — 8)’(¢* + 1’ by the Product Ruje, and V is volume. Find:

i {a) the rate of change of P with respect to V,
b) the rate of change of V with respect to 7, and

¢) the rate of change of T with respect to P.

oblems 39—48, use the Chain Rule to find the indicated par-
iFderivatives,

dz 0z
g By oyl
Z ¥y P ay

dz @
r=lcosdv; =R v=at oy = X
dx’ dy

gz @
Hoz=4x = 5% x=u'— 8% y= (u— v} 5L
u’ dv
A N S j@_ az
T Y : x4y v o v
3 f(x ) = ' z = cos? 5x + sin® 5y . R aw ow
4, fx y) = V36 — 4 — 9y . : w= (i + V0= e sin 8, v = 27 cos 6, 30
AR a B = g™ = in .
. f('x.v )‘) - . ] ;
= - ow
5 fx,y)=e¢ B . 0w = tan~"Vav: u = I rzsz;_“_’,_‘j’m
Xy .
6. fix,y) = tan"Hy — %) Cfluy) = - 2 ' ar  ds
. x+ 2y
In Problems 710, describe the level surfaces but do not graph. 3 i e e s ve““i, . euzvz; -Zﬁ, ?ﬁ
7. Fx y, 2= 355 b2 . 8w, v) = In(d + 5V)) u' v
. E 4 : .. x x
z w T e =5 -1z
8 F{xyz)ﬁx2+y2+22 .w=2\/;y—yey" : : In(pgr); p = t*sin"'x, g 5 7=
. r Fr ) . .4 ._ aQ BQ
9. F(x,y,2) ="+ 3y + 67 PG v, x ) = utw? — w -+ vw cos(ut?) + (2x71) P Orw
10 Fx, v, 2y =4y — 2z + 1 32, G _ . -
. : . G(p,q. 1, 8) ={P°q") _ _ 5
11. Graph some of the level surfaces associated with w= VA ¥y xo=In(rs + ),
Fl,y, ) =x"+y ~ Zforc=0,¢>0,and ¢ <0. In Problems 33 and 34, verify that the given function satisfies . ow ow aw
12. Given that ‘ Laplace’s equation: L _ y = coshrs; o o
2 2 {92 82Z -
F(x’y’Z)m%+%+%’ 5é+5520 Ss=p'+ g~ +4np = de¥, g = cos(¢p + 6),
. s ds '
find the x-, y-, and z-intercepts of the level surface that f% 2= In(? + ) r= ¢th, t = 2 + 88, 3 qB ™
passes through (74,2, 7). . 34. 7= ¢ cos 2xy ' Prbbiems 49—52, use (8) to find the indicated derivative.
In Problems 13-32, find the first partial derivatives of the given
fanction. In Problems 35 and 36 venfy that the given funcuon satl G b= 12y = 2 dz
lr?b i=xt -t 4y 14, z= —x° + 6x%° + 5 wave equation: ' - ’ C
13. 2
15, z = 5¢'y® — xS + 6x° — 4y 9_2____% _ : 3 4 ~51 z
aaxz ot _ L=ty vt e e ,vmseCSI;;;;
3,2
16 2 = tan(xy) 35. u = cos gt sinx
CHAPTER 9 Vector Calculus

Kl modw
51, w=cos(Bu + 4v);u = 2 + — v = ~f ~ -
w (3u VY i 2v el .
dw
52. w=eVix = Ly =30+ 5
vEeRE Ty Y dr e

5:3. Ifu=flx, vyand x = rcos 6, y = r sin 6, show that
Laplace’s equation 8%u/6x® + 3%u/6y* = 0 becomes
Pulow  1du_
ar  rar P e

54. Van der Waals’ equation of state for the real gas COQ, is

_ 0087 36
V-00427 V2

If d7/dt and dV/dt are rates at which the temperature and
volume change, respectively, use the Chain RuEe to find
dPldr.

55. The equation of state for a thermodynamic system is
FP, V, Ty = 0, where P, V, and T are pressure, volume,
and temperature, respectively. If the equation defines V
as a funetion of P and 7, and also defines T as a function
of Vand P, show that

oF

v _ T _ |

T oF T
v av

56. The voltage across a conductor is increasing at a rate
of 2 volts/min and the resistance is decreasing at a rate of
I ohm/min. Use 7 = E/R and the Chain Rule to find the
rate at which the current passing through the conductor is
changing when R = 50 ohms and E = 60 volts.

57. The length of the side labeled x of the triangle in Figure
9.25 increases at a rate of 0.3 cm/s, the side labeled y in-
creases at a rate of 0.5 cm/s, and the included angle € in-
creases at a rate of 0.1 rad/s. Use thé Chain Rule to find
the rate at which the area of the triangle is changing at
the instant x = 10 cm, y = & cm, and 8 = /6.

¥
Figure 9.25 Triangle in Problem 57

58. A particle moves in 3-space so that its coordinates at any
time are x = 4 cost, y = 4sint, z = 5¢, + = 0. Use the
Chain Rule to find the rate at which its distance

w = Vi £y e

from the origin is changing at 1 = 52/2 seconds.

9.4 Partial Derivatives 473



¥y
fon ivati ¥y =rtan"" = (2, ~2), i ~ 3j
Example 6 Max/Min of Directional Derivative f P »
In Example 5 the maximum value of the directional derivative at F at (1, £ = xy 0 —1), 6+ 8
IWVF(1, —1, 2) = V 133. The minimum value of D,F(1, —1, 2) is then —V 13 x+y )

5. (6 ¥y = (xy + 1% (3, 2), in the direction of (5, 3)

and (11) state:

The gradient vector Vf points in the direction in which f increases most rapidi;
whereas —Vf points in the direction of the most rapid decrease of f.

a I o\ . . . )
flx y) =x"tany, (E’ —3—) in the direction of the negative
x-axis

7. Flx,y, 2) = 232z + D% (1, =1, 1), {0,3,3)
2=

F(x, y 2) = 2x — v? + 2% (4, —4, 2), in the direction of

0 = z = 4, shown in Figure 9.28(a) is a mathematical model of the hill. The grad
' the origin

Figure 9.28 Model of a hill in fis
Example 7 : 3 2/3

2 x -y } _
i = i+ il= r,
ey 31:\/x2 +y Vit Va2 o+
where r = —xi — yj is a vector pointing to the center of the circui.ar t‘>asel.
Thus the steepest ascent up the hill is a straight road whose projection in the

is a radius of the circular base. Since Dy f = comp,V, a bicycist will zigzag,
direction u other than Vf, in order to reduce this component. :

Problems 21 and 22, consider the plane through the points P
0 that is perpendicular to the xy-plane. Find the slope of the
gent at the indicated point to the curve of intersection of this
ane and the graph of the given function in the direction of Q.

1. fle y) = (e — 3% P(4,2), 00, 1); 4,2,4)
Cfe ) = = Sxy+ % PALD, O(=1,6) (1,1, -3)

toblems 23-26, find a vector that gives the direction in which
given function increases most rapidly at the indicated point.
d the maximum rate.

Cf(x vy = e¥siny; (0, w/d)

L f(x y) = xye™; (5, 5)

Flx, y,2) = x* + 4xz + 2vz% (1,2, —1)
5. Fx, y, 2) = xyz; (3,1, —5)

Example 8 Direction to Cool Off Fastest
The temperature in a rectangular box is approximated by

Ty o) =aye(l — 0@ = NG -2, 0=x=1 0=y=2 0=z=%

If a mosquito is located at (%, 1, 1), in which direction should it fly to cool off as rapi
as possible?

Solution The gradient of T'is

VTG 5 2 = 32 — Y3 = (1 ~ 208+ xz(l = DG - D2 = 29 + 1 = DQ — NG Problems 27-30, find a vector that gives the direction in which

ven function decreases most rapidly at the indicated point.
d the minimum rate.

J £ y) = tan(x® + 3% (Var/6, Var/6)
8 flx,y) =x* % (2, -2)
Flx y, 2) = Vaze’; (16,0, 9)

2, (1 1 }_)
2763

. F £ ] = 1 T
L Flx,y,2) = In ;

Find the directional derivative(s) of f(x, y) = x + y* at
(3, 4) in the direction of a tangent vector to the"graph of
27 4+ vy = 9ar (2, 1) '

If f(x, y) = x* + xy + y* — x, find all points where
D, f(x, y) in the direction of u = (1/\V/2)( + j) is zero.

. Suppose Vf(a, b} = 4i + 3j. Find a unit vector u so that:
@ Dyfta b) =0,
() D, f(a, b) is a maximum, and

Therefore, VT(3, 1, 1) = 1k, To cool off most rapidly, the mosquito should fly inzt
rection of —3k; that s, it should dive for the floor of the box, where the temperd

T(x, 5 0y =10

, use. 95 to find I
" hat w rakes the indicated angle with the-positive x-axis.
a. f(x; y) =x2 4y, 0=30°
10. flx, y) =3x ~ y, 6=45°

In Problems 11-20, find the directional derivative of the
function at the given point in the indicated direction.

4 F(}c; v, y=xycosyz -

Tn Problems 5-8, find the gradient of the given function at the in-
dicated point.

5. fln yy =x* — 4% (2, 4)

6. flx, y) = Vxy — v (3,2)

7. Flx,v,2) = x*¢ sin dy; (=2, 73, 1)

r]D flx, y) = 5% (-1, 1), 6= 76 (¢} D, f(a. b)is a minimum.
\

12. f(x, y) = dx + xp* — Sy; (3, —1), 6= 74

CHAPTER 9 Vector Calculus

34,

36.

Example 7 Direction of Steepest Ascent — .:..kn Py, 2) = = Cod oD 1= 25+ K .
Each year in Los Angeles there is a bicycle race up 1o the .top of a hill by a road kn

to be the steepest i; the city. To understand why a bicyclist with a rimdic'u Flx, v, 2) = m - (~2,2, 1), in the direction of .
sanity will zigzag up the road, let us suppose the graph of f(x, y) = 4 —§ the negative z-axis ]

39.

40Q.

42,

9.5 Directional Derivative

Suppose D, f(a, b) = 6. What is the value of D_, f(a,‘b)?

(&) If f(x, ) = x* ~ 3x%? + y*, find the directional
derivative of f at a point (x, y) in the direction of
= (N I10) 31 + )

{b) If F(x, y) = Dy f(x, y) of part (a), find D F(x, v).

Consider the gravitational potential

—(Fm

X* y2
where & and m are constants. Show that I/ increases or
decreases most rapidly along a line through the origin.

Iff(x, y) = £ — 12x + y* — 10y, find all points at which

VAl = 0.

Ulxyy =

3

Suppose
' D.fla, by =1, D,fla b)=23
u:«-gmi——l—%j’vm—s—iﬁmi%j.
137 13 135 13

Find Vf{a, b).

Consider the rectanguiar plate shown in Figure 9.29. The
temperature at a point {x, ¥} on the plate is given by
T(x, ) = 5 + 2x% + y% Determine the direction an in-
sect should take, starting at (4, 2), in order to cool off as
rapidly as possible.

T o
o

P Lot

Figure 9.29 Insect in Problem 39

In Problem 39, observe that (0, 0) is the coolest point of
the plate. Find the path the cold-seeking insect, starting
at {4, 2), will take to the origin. If (x(2), y(2)) is the vector
equation of the path, then use the fact that ~V7(x, v) =
'), y'(1)). Why is this? [Hint: Remember separation of
variables?]

. The temperature at a point (x, y) on a rectangular metal

plate is given by T{x, ) = 100 — 2x* — y* Find the path
a heat-séeking particle will take, starting at (3, 4), as it
moves in the direction in which the temperature increas-
es most rapidly.

The temperature T at a point (x, ¥, 2) in space is inversely
proportional o the square of the distance from (x, v, 2) to
the origin. It is known that 7(0, 0, 1} = 500. Find the rate
of change of T a1 (2,3, 3)in the direction of (3, 1, 1). In
which direction from (2, 3, 3} does the teraperature T in-
crease most rapidly? At (2, 3, 3) what is the maximum
rate of change of T?

479



It follows from (5} that an equation of the tangent plane is : s=xt Ay di+j+ik
M~ — 8y~ D+8z—4)=0 o x—2y+2z=8 :_3+y2+z:15; 278+ 8j + k

B8 Surfaces Given by z = f(x, y) For a surface given explicitly by a diffe blems 15—24, find an equation of the tangent plane to the
function z = f{x, ¥), we define F(x, y, 2) = flx, y) — zor F(x % 7=z~ flx Y): Th of the given equation at the indicated point.
point (xy. Yo, Zo) i§ on the graph of z = f(x, y)_xf and oniz if 1:t= 1; also on the ley Y20 (=22 1)
F(x, v, z) = 0. This follows from Flxy, yp, Z0) = f¥e, ¥o) — 20 = 0. :
57—y 4l =8 (2,4, 1)

Fxample 4 Equation of Tangent Plane - =y - 32 =3 (6,2,3)
Find an equation of the tangent plane to the graph of z = 3x° + by wHyt =T (1, -3, -5
(1, -1, 5. : 7=125 —x% = y4 (3, —4,0)
Solution Define F(x, v, 2) = 427 + 13 — z + 4 50 that the level surface of £ =6, (2,0,3)
through the given point is F(x, y, 2) = F(I, =1, 5) or Flx, y, 2) = 0. Now, F, ._ . |
and F, = —1, so that 7= cos(2x + y); (E’ T ———\/—;)
VF(x, v, 2y=xi+yj—k and VF(l, ~1,5)=i-j—~k 2+ 6z =10, 2,1, 1)

(1,-1,0 A\ Thus, from (5) the desired equation is

x (le)m(y:'l)—(szS}mO o —x+ytz=T,

I
|
VE(L,-1,5) |
iE
i
|

. : . ?T
Figure 9.35 Tangent plane in See Figure 9.35. . 7= 8e™% gin dux; (EE’ 0, 4)
Example 4 B Normal Line Let P(x;, ¥, 2) be a point on the graph of F(x, y, ) = ¢, where ¥

0. The line containing P(x;, Yo, 2o) that is parallel to VF(xy, ¥, zo) is called the n roblems 25 and 26, find the points on the given surface at

to the surface at P. The normal line is perpendicular to the tangent plane to the surfac the tangent plane is paralle] to the indicated plane.
. Y+ =T Ay + 6= 1

Example 5 Normal Line to a Surface .' -2 32 =33 St dy + 6= S

Find parametric equations for the normal line to the surface in Example 4 at (1,

Find points on the surface x? +4x + y? + 22 — 27 = 11

Solution A direction vector for the normal line at (1, —1, 5)is VF(1, —1,5) : at which the tangent plane is horizontal.

It follows that parametric equations for the normal line are x = 1 + £ y = Find points on the surface x? + 3y* + 478 — 2xy = 16 at
z2=5—1¢ A _ which the tangent plane is parallel to (a) the xz-plane
' {b} the yz-plane, and (c) the xy-plane.

Tems 29 and 30, show that the second equation is an equa-

contours : ' the tangent plane to the graph of the first equation at
of a hill ;

Figure 9.36 Stream is perpendicular
to contolirs

= ¥y 7 XX Wo | %
29. ;“.54‘—5-{-23“1;“;’:{4'“53_“‘?“1
ﬁ‘\_{i_f_ gi 1_”0__}% Lo
30, & B 2 LTy e o2 1
31. Show that every tangent plane to the graph of 7> = »? +

v* passes through the origin.

32. Show that the-sum of the x-, y-, and z-intercepts of every
tangent piane to the graph of Vi + \/)—; + V= \/c;,
a > (0, is the number a.

In Problems 33 and 34, find parametric equations,for the normal
line at the indicated point. In Problems 35 and 36, find symmetric
equations for the normal line.

33 x2 2+ 2 =4y (1, -1, 1)
34, 7= 2 — 4y (3, -2,2)

35. z=4x2+ 9% + 1; 4,4, 3)
36 x+ v -2 =0; (3,4,5

37. Show that every normal line to the graph x? + y* + 22 =
a* passes through the origin.

38. Two surfaces are said to be orthogonal at a point P of
intersection if their normal lines at P are orthogonal.
Prove that the surfaces given by F(x, v, z) = 0 and
G(x, y, 2y = O are orthogonal at P if and only if
FG. + FG, + FG, =0

In Problems 39 and 40, use the result of Problem 38 to show that
the given surfaces are orthogonal at a point of intersection.
30, x* Y+ 2 =25 ~xP Y+ =0

40. x? — y* + 2 =4; 7= l/?

Divergence and Curl

)

e = 6 |

o Fly =y 4z G 1,1 _
3, fean=y—x% Q5 4 fay)=x>+y;(-1,3) 10, Foy o =x*+y —z (1,1,3) Fix, v) = Plx, )i+ O »j

Vector Fields Vector functions of two and three variables,

5. flx, ) =

6. flx, vy =

>

4
b
X

CHAPTER 9 Vector Calculus

ntroduction In Section 9.1 we intreduced the concept of vector function of one vari-
ble. In this section we examine vector functions of two and three variables.

A 1. Floy 2) = "Va? + 5 +25(3,4,0) - FGoy, 2) = Pl y, 1 + O 3, ) + R(x 3, 9k
¥ _

12 F v ) =x2— ¥ +z (0, -1, 1) : é_ also called vector fields. For example, the motion of a wind or a fluid can be de-
In Problems 13 and 14, find the points on the given Sut tibed by means of a velocity field because a vector can be assigned at each point repre-
which the gradient is Pa‘; allel to the indicated vector. - hting the velocity of a particle at the point. See Figures 9.37(a) and 9.37(b). The

9.7 Divergence and Curl 483



Figure 9.41 Paddle device

" The divergence of a vec

tational, which means that it is free of vortices or whirlpools that would cause the pad-

By dividing the last expression by Ax Ay Az, we get the outward flux of F per u _
- ¢ to rotate.* In Figure 9.42 the axis w of the paddle points straight out of the page.

ume:

o 00 R
ox dy az - ,A_D /DB
A A rA
It is this combination of partial derivatives that is given a special name. X Xz XB - memx
-~ - =
(&) Irrotational flow {b} Rotational flow

¢ 9.42 Irrotational flow in (a); Rotationat ftow in (b)

I the motivational discussion leading to Definition 9.8 we saw that the divergence of
velocity field F near a point P(x, y, z) is the flux per unit volume. If div F(P) > 0, then

is said to be a source for F, since there is a net outward flow of fluid near P; if div
P) < 0, then P is said to be a sink for F, since there is a net inward flow of fluid near
if div F(P) = 0, there are no sources or sinks near P. See Figure 9.43.

"The divergence of a vector field can also be interpreted as a measure of the rate of
énge of the density of the fluid at a point. In other words, div F is a measure of the
wid's compressibility. If V - F = 0, the fluid is said to be incompressible. In electro- Figure 9.43 P a source in {a); P a sink

Observe that div F can also be written in terms of the del operator as:

a 3 8
v =V F =— P - + — R(x, v, ).
divF =V F—-éxP(x,y,z)+ayQ(x,y,z} e (x, v, 2)

(b) div F(P) < 0; P a sink

Example 2 Curl and Divergence agnetic theory, if V - F = 0, the vector field F is said to be solenoidal. in (b)
xample ; .

FF = (x5 — i+ 4x%y%z j — y*2°k, find curl F and div F.

;i science texts the word rotation is sometimes used instead of curl. The symbol curl F is then
placed by rot F.

Solution From (1),

i J k - _ _
: d d d . :
curl F=V X F = = -é; EE _ .
2 -2 Aty -y ,

= (—dy’ — )1 - 42 + (2002 - 3k

280 Ve f(rr)a) =

2. F(x y)=—xi+yj" L
Fx 3) = yi + xj ‘4. F(x, y) = xi + 2
Fix, y) = vji 6. F(x, v) = xj

oblems 7—16, find the cur] and the divérgencé of the given
i-field.

From (4), 2-(.{_._3): i E

In Problems 2532, verify the given identity. Assume continuity
of ali partial derivatives.

25 V- F+G)=V-F+V-G

26 VXF+G)=VXF+VXG

F(o y, 2) = xzi + yz + vk _ ~
Fix,y, 2) = 10pzi + 2x%2 ] + 65k 27, V- (fE)=f(V - F)+F-Vf

Fx, v, 2) = dayi + (2x2 + 2y9)f + (322 + )k 28. VX (JF) =f(VXE)+ (V) XF

Flx. v, 2) = (x — ¥°1i + ¢ 7%j + xye®k 29. curl(grad f) = 0

B, 3, ) = 3xyi + 22l + 'k 30. div(curl F) = 0

Blx y2) = 571+ (Y~ xy)j ~ (Fyz — xa)k 31 div(E X G) = G - curl F ~ F - curl G
 F(x, ¥, 2) = xe"%0 + dyz*j + 3ye~*k 32 curl{curl F + grad ) = curl{curl )

F(x, y, 2) = yzlnxi + (2x — 3y2)j + o'’k Qﬁ) Show that -

F(x y, 2) = xyei — Fpzef + 0Pk ' By By
Flx, v, 2) = x?sin yzi + zcos xz°j + ye™k ot oy o,

H 1__‘1 2.3 4 _8__452 "f‘“‘?"““““426)
d-1vF=V-}.<wax(xy z)+ay(xyz) 6}:( ¥

= 0xy? + 8xdyz — 6y*7

We ask you to prove the following two important properties. If fis a scalar fu
with continuous second partial derivatives, then :

curl(grad ) = V X Vf = 0.

Also, if F is a vector field having continuous second partial derivatives, then

diviewri ;) = V- (VX F) = 0.

See Problems 29 and 30 in Exercises 9.7.

B Physical Interpretations The word curl was introduced by Maxweil* ir} his st
of electromagnetic fields. However, the curl is easily understood‘m-connect.l i

flow of fluids. If a paddle device, such as shown in Figure 041, is msm:ted inal
fluid, then the curl of the velocity field F is a measure of the tendency o-t t.he ﬂti
the device about its vertical axis w. If curl F = 0, then the flow of the fluid is saidH

blems 1724, let abe a constant vector and r = xi + yj +

o
: etat This is known as the Laplacian and is also written V?f
erify the given idéntity. .

_ 34. Show that V - (fVf) = fVf + ||VFI*, where V*fis the
.(iiv r=3 18. curlr =@ Laplacian defined in Problem 33. {Hint: See Problem
aXV)Xr=—2a 20. VX{aXr)=2a 27.] . S

#[ames Clerk Maxwell (1831 —1879), a Scoitish physicist.
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5. Find curl(curl F) for the vector field F = xyi + 4yz2*j + In Problems 41 and 42, assume that f and g have COntiﬁao&g
%K. ond partial derivatives. Show that the given vector fiel,

noidal. [Hint: See Problem 31.]

9.8  Line Integrals )

© 36. (a) Assuming continuity of all partial derivatives, show
that curl(cur] F) = —V*F + grad(div F), where 41, F = Vf x Vg 42. F = Vf X (fVg)

] Introduction  The notion of the definite integral f2 f(x) dx, that is, integration of a
function defined over an interval, can be generalized 1o integration of a function defined
ong a curve. To this end we need to introduce some terminology about curves.

i — ) + s o D gy 3 N 2
VI = VX(Pi + Q] + Rk) = V'Pi+ VIQj + V'RK 43, The velocity vector field for the two-dimensional

identity in ps to obtain the result an ideal fluid around a cylinder is given b e . .
(b) ;Jrs:blts; g Sen ity in part {a) to obtain the result in Y g Y [ Terminology .Suppose Cis a curve parameterized by x = f(&), y = g(f),a = t = b, and B
: v =l =y , 2y Aand B are the points (f(a), g(a)) and ( f(b), g(b)), respectively. We say that: o NG B

37. A lar functi h V2 Ossmdtob har- XY= e o VT N s o g ' !

ml(?;lif aver;;,liﬁj: J{(io;;}wh)tc (x{ + 9 ' 4 A fs har- _ (=" + ) (e* + 5 (i) Cis a smooth curve if /' and g’ are continuous on the closed interval [, 5] and &

P s . s . . not simultaneously ze i - A
monic except at the origin. V3f = 0 is called Laplace’s for some positive constant A. See Figure 9.45.. . . Y 20 on’ thé open interval (¢, b). A
equation. C is piecewise smooth if it consists of a finite number of smooth curves (2) Smooth (b Piecewise-
(a) Show that when the point (x, y) is far from the ori C\, Cy, ..., C, joined end to end—that is, C = C, U C, U --- U C,. curve smooth curve
38. Verify that F(x, y) == Al C is a closed curve if A = B. A=B
Fx y) = arctan( . 22 ) Ayl (p) Show that F is irrotational. i) C is a simple closed curve if A = B and the curve does not cross itself,
] x — 1 ? :; 3 n age . s . . .
Y (¢) Show that T is incompressible. » IfC iis not a'ciosed-curve, then the positive direction on ( is the direction core- AwB
satisfies Laplace’s equation in two variables sponding to increasing values of 2
o 32 & Figure 9.46 illustrates each type of curve defined in (D)~ (iv). © ij?ithi @ fii;?é)clie
Vif= “é“)”c““ ’é}‘ =0 This same terminology carries over in a natural manner to curves in spaée. For exam- simple curve
ple, a curve C defined by x = f(£), y = g(t), z = h(),a < 1 < b, is smooth if f', g’, and  Figure 9.46 Vari
QQ Letr = xi + yj + zk be the position vector of a mass F are continuous on {a, b] and not simultaneously zero on (a, b). T8 ’ ' arios cives
' m, and let the mass m, be located at the origin. If the x -
B Definite Integral Before defining integration along a curve, let us review the five

force of gravitational attraction is
steps leading to the definition of the definite integral.

¥ = Gm]m2
[P |
verify that curl F = Qand divF = 0,1 # 6. Figure 9.45 Vector field in Problem 43

40, Suppose a body rotates with a constant angular velocity @
about an axis. If r is the posiﬁo.n vector of a Point Pon t.he 44, FE = E(y v, 2 Hand H = H(x, y, 2 ) rcpresen e
body measured .frm‘n the origin, then t}?e linear velocity and magnetic fields in empty space, then Maxwell
vector v of rotation is v = o X r. See Figure 944, If r = equations are
xi+ yj+zkand o = @i+ o, ] + w;k, show that
o =} curl v. ) .1 oH

divE=0 culE=—-——
¢ ot

divH =0, curlH = wlma—B—:
¢ ot

where ¢ is the speed of light. Use the identity in Proble
36(a) to show that E and H satisfy '

#H

ar

-1 &K
Y

1
VIE = V*H = —
c

The definite integral of a function of a single variable is given by the limit of a sum:

)

45. Consider the vector field F = x*yzi — xy’zj + (2 +
Explain why F is not the curl of another vector field G.

Figure 9.44 Rotating body in Problem 40

Jf(x}dx = ”i]ifm Ef (x0)Ax.

! Line Integrals in the Plane The following analogous five steps lead to the defini-
fions of three line integrals™® in the plane.

kS
s st

% i .
An unfortunate choice of names. Curve integrals would be more appropriate.
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. C consists of the line segments from (0, 0) to (1, 0) and
from (1, O) to (1, 1D,

The units of work depend on the units of ||F|| and on the units of distance.

B Circulation A line integral of a vector field F around a simple closed carve ¢
to be the circulation of F around C; that is,

circulation = jtg F-dr= % F-Tds.
C c

In particular, if F is the velocity field of a fluid, then the circulation is a measure o
amount by which the finid tends to turn the curve C by rotating, or circulating, ar

For example, if F is perpendicular to T for every {x, ¥) on C, then [ F - T ds

the curve does not move at all. On the othar hand, [ ¥ - T ds>0and [-F c

. Bvaluate [ (6x* + 2y%) dx + 4xy dy, where C is given
byx=V5y=t4=r=9,

Evaluate fi. = y* dx + xy dy, where C is given by x = 21,

fow of y=£0=1=2

fluid
. Bvaluate J, 2x%y dx + (3x + y) dy, where C is given by
Cox=yifrom (1, —1) to (1, 1)

3, Evaluate fi- 4x dx + 2y dy, where Cis givenby x = y° + 1
from (0, —1) to (9, 2). ) ,

Figure 9.54 Does the velocity fleld
turn the curve £7

roblems 19 and 20, evaluate §, (x> + y%) dx ~ 2xy dy on the
Gl v ven closed curve C.
4 ‘ 20,
as{ Ny y
2 =4
{a) Vertical rectangle X2ty

Z
: ; f t t X } X

Figure 9.58 Closed curve
¢ for Problem 19

Figure 9.59 {losed curve
C for Problem 20

{b} “Fence” or “curtain™ of varying
height G(x, y) with base ,
oblems 21 and 22, evaluate ¢, x*y’ dx ~ xy” dy on the given

Figure 9.55 A geometric interpreta- ased curve O

tion of a line integral
‘ 22.

1 2,4

1, 1) 1,1

(-1, -1} {1, -1 oot x

sing0sr=md
Figure 9.60 Closed curve
¢ for Problem 21

Figure 9.61 Closed curve

NG =t 2 2 x =2y =105t s 1
Q & LAY y ( for Problem 22

23, G(x,y)ﬂ3x2+6y2;y:2x+1,~i£x$0

) Gx, y) = 2% 2y = 3, 1 =x =8 =y
) : : Evaluate §. (x* — y*) ds, where C is given by
In Problems 3 and 6, evaluate [ G(x, ¥, 2) dx, Jo Glx, y, 2) dy, Figure 9.56 Curve ( for Figure 9.57 Curve C _
Je G(x, y, 2) dz, and J- G(x, y, 7) ds on the indicated curve C. Problem 9 Problem 10 x=5coss, y=35sing, O=t= 2’”

2. Bvaluate [y dx — x dy, where C is given b
C 5 Glny D) == costy=singz=10%< uate [_cy x dy, where C is given }’
: O=t=x

x=72cos8t, y=3siny,

In Problems 11 — 4, evatuate [ v dx + x dy on the given cur¥
between (0, 0) and (1, 1).

6. Glx, v, 2) = dxyz; m%1‘3,ymr?‘,z 2, 0=r=1

Problems 25-28, evaluate [ y dx + z dy + x dz on the given
In Probleras 7—10, evaluate [ (2x + y) dx + xy dy on the given 1.y = 2 ive C between (0, 0, 0) and (6, 8, 5).

curve C between (—1, 2) and (2, 5). - Y

13. C consists of the line segments from (0, 0) to (O, 1) and

from (G, D to (1, 1.

25. C consists of the line segments from (0, 0, 0) to (2, 3, 4)

(Zy=x+3 8 y=x2+1 and from (2, 3, 4) to (6, 8, 5).
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26, x =3t y=p,z=3 D=1=2
27.
Z
6,0,5
©23 (6.5,
o 0 0) ettt ¥
~ 60,0
Figure 9.62 Closed curve € for Problem 27
y

x

Figure 9.63 Clesed curve  for Problem 28

in Problems 29 and 30, evalvate f- F - dr.

29.

30.

3L

32.

3 33,

34,

35.

9.8 Line Integrals

F(x, y) = y’1 — x%jr(f) = e~ Hi+ i, 0<;<1n2

Flx,y o=
0=r=1

1+ xe¥j + xye Pk, r() = i + 12§ + 13k,

Find the work done by the force Fix, v} = yi + xj acting
along y = ln x from (1, 0) to (e, 1).

Find the work done by the force F(x, ¥) = 2xyi + 4y*§
acting along the piecewise smooth curve consisting of
the line segments from (-2, 2) to (0, 0) and from (0, &)
to (2, 3).

Find the work done by the force F(x, ¥) = (x + 2»)i +
(6y — 2x)j acting counterclockwise once around the
triangle with vertices (1, 1), (3, 1), and (3, 2).

Find the work done by the force Fix, y, 2) = vzi + xzj +
xyk acting along the curve given by r(s) = £3i + 1% +
tkfromz=1tor=3.

Find the work done by a constant fprce Flx, v) = al + bj
actm ¢ counterclockwise oncé around the circle
x>+ ¥y =9,
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