NAME:
For your own benefit show all of your work, keep it neat, and if you write more than one solution make clear which is your answer or I will just grade whichever one is closest to the top of the paper.

1. (10pts) Find the general solution to the system of equations:

$$
X^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-4 & 4
\end{array}\right) X
$$

First we find the eigenvalues:

$$
\left|\begin{array}{cc}
-\lambda & 1 \\
-4 & 4-\lambda
\end{array}\right|=-\lambda(4-\lambda)+4=(\lambda-2)^{2}=0
$$

Thus we have $\lambda_{1}=\lambda_{2}=2$. Now we find the eigenvectors:

$$
(A-2 I) v=0 \mapsto\left(\begin{array}{cc|c}
-2 & 1 & 0 \\
-4 & 2 & 0
\end{array}\right) \mapsto\left(\begin{array}{cc|c}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Thus our only condition is $-2 x+y=0$ so $y=2 x$ and we can let $v=\binom{1}{2}$. Since this is our only linearly independent eigenvector (we only have 1 parameter) we need to find the generalized eigenvector P :

$$
(A-2 I) P=v \mapsto\left(\begin{array}{cc|c}
-2 & 1 & 1 \\
-4 & 2 & 2
\end{array}\right) \mapsto\left(\begin{array}{cc|c}
-2 & 1 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

So our only condition is that $-2 x+y=1$, so let $x=1$ and get $P=\binom{1}{3}$. Thus our general solution is:

$$
X=c_{1} e^{2 t}\binom{1}{2}+c_{2}\left[t e^{2 t}\binom{1}{2}+e^{2 t}\binom{1}{3}\right]
$$

Note that you may have picked different v 's and P 's, but will still have the correct general solution. Now the initial conditions will get us:

$$
c_{1}\binom{1}{2}+c_{2}\binom{1}{3}=\binom{1}{1}
$$

Solving this system should get us $c_{1}=2$ and $c_{2}=-1$. So our final answer is:

$$
X=e^{2 t}\binom{2}{4}-\left[t e^{2 t}\binom{1}{2}+e^{2 t}\binom{1}{3}\right]=e^{2 t}\binom{1}{1}-t e^{t}\binom{1}{2}
$$

2. (10pts) Find the recurrence relation corresponding to a series solution to the following differential equation (centered at 0):

$$
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}+3 y=0
$$

We recognize that $x=0$ is not a singular point of our equation and thus we can find two power series solutions. So we will plug in the following into the above equation:

$$
y=\sum_{n \geq 0} c_{n} x^{n} \quad y^{\prime}=\sum_{n \geq 1} n c_{n} x^{n-1} \quad y^{\prime \prime}=\sum_{n \geq 2} n(n-1) c_{n} x^{n-2}
$$

So we get:

$$
\begin{gathered}
\left(x^{2}+1\right) \sum_{n \geq 2} n(n-1) c_{n} x^{n-2}+x \sum_{n \geq 1} n c_{n} x^{n-1}+3 \sum_{n \geq 0}^{\sum_{n \geq 1} c_{n} x^{n}=0} \\
\underbrace{\sum_{n \geq 2} n(n-1) c_{n} x^{n}}_{\text {let } \mathrm{k}=\mathrm{n}}+\underbrace{\sum_{n \geq 2} n(n-1) c_{n} x^{n-2}}_{\text {let } \mathrm{k}=\mathrm{n}-2}+\underbrace{\sum_{n \geq 1} n c_{n} x^{n}}_{\text {let } \mathrm{k}=\mathrm{n}}+\underbrace{\sum_{n \geq 0} 3 c_{n} x^{n}}_{\text {let } \mathrm{k}=\mathrm{n}}=0 \\
\sum_{k \geq 2} k(k-1) c_{k} x^{k}+\underbrace{\sum_{k \geq 0}(k+2)(k+1) c_{k+2} x^{k}}_{\begin{array}{c}
\text { pull out } \\
\mathrm{k}=0,1 \text { terms }
\end{array}}+\underbrace{\sum_{k \geq 1} k c_{k} x^{k}}_{\begin{array}{c}
\text { pull out } \\
\text { k=1 } \\
\text { term }
\end{array}}+\underbrace{\sum_{k \geq 0} 3 c_{k} x^{k}}_{\begin{array}{c}
\text { pull out } \\
\text { k=0,1} \\
\text { terms }
\end{array}}=0 \\
\left(2 c_{2}+3 c_{0}\right)+\left(6 c_{3}+c_{1}+3 c_{1}\right) x+\sum_{k \geq 2}\left[k(k-1) c_{k}+(k+2)(k+1) c_{k+2}+k c_{k}+3 c_{k}\right] x^{k}=0
\end{gathered}
$$

So our recurrence relation comes from setting the bracketed term equal to zero:

$$
\begin{gathered}
{[k(k-1)+k+3] c_{k}+(k+2)(k+1) c_{k+2}=0} \\
{\left[k^{2}+3\right] c_{k}+(k+2)(k+1) c_{k+2}=0} \\
c_{k+2}=\frac{-\left[k^{2}+3\right] c_{k}}{(k+1)(k+2)}
\end{gathered}
$$

This recurrence holds for $k \geq 2$, (actually it holds for $k \geq 0$ if we check.)

Formulas

Complex solutions:
$\lambda=\alpha+i \beta, v=B_{1}+i B_{2}$
$X=c_{1} e^{\alpha t}\left[B_{1} \cos \beta t-B_{2} \sin \beta t\right]+c_{2} e^{\alpha t}\left[B_{1} \sin \beta t+B_{2} \cos \beta t\right]$
Repeated eigenvalues:
$X=c_{1} e^{\lambda t} v+c_{2}\left[t e^{\lambda t} v+e^{\lambda t} P\right]$

