NAME:____

RECITATION: Mon8 Mon9 Wed8 Wed9

1. Find the volume of revolution defined by rotating the region below $y = 1 - x^2$ and above y = 0 around the x-axis.

$$V = \int \pi r^{2} dx$$

$$= \int \pi (1-x^{2})^{2} dx$$

2. Set up (only!) an equation for the volume of revolution defined by rotating the region D around the y-axis, where D is the region below $y = x^2$, below y = 2 - x, and with both $x, y \ge 0$.

WASHERS:

$$V = \pi \int \int_{0}^{2} \int \int_{0}^{2} dy$$

$$= \pi \int \int \left[(2-y)^{2} - y \right] dy$$

OR SHELDS:
$$A$$

$$V = 2\pi \int rh dx + 2\pi \int rh dx$$

$$= 2\pi \int x(x^2) dx + 2\pi^2 \int x(2-x) dx$$