
Midterm 2
NAME:

RULES:
• You will be given the entire period (1PM-3:10PM) to complete the test.
• You can use one 3x5 notecard for formulas. There are no calculators nor those
fancy cellular phones nor groupwork allowed. Each problem is worth 10 points,
and partial credit is awarded outside of the true/false questions.
• Show all of your work. Correct answers without sufficient work will be worth
nearly nothing. Also the more work you show, the easier it is for me to find
your mistakes and possibly give you more points.
• Be clear what it is that you want graded - if there a multiple solutions I will
grade the first one.
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#1. Find two values of r such that there exist solutions of the form
∑
cnx

n+r

centered at the singular point x = 0 of the following differential equation:

2xy′′ − y′ + 2y = 0

For each r find the recurrence relation for the coefficients of the corresponding
solution.
Since we need to find the recurrence relation we use the long way to find the
r’s. We make the following substitutions:

y =
∑
n≥0

cnx
n+r y′ =

∑
n≥0

(n+r)cnx
n+r−1 y′′ =

∑
n≥0

(n+r−1)(n+r)cnx
n+r−2

Plugging this into the equation we get:∑
n≥0

2(n+ r − 1)(n+ r)cnx
n+r−1 −

∑
n≥0

(n+ r)cnx
n+r−1 +

∑
n≥0

2cnx
n+r = 0


∑
n≥0

2(n+ r − 1)(n+ r)cnx
n−1

︸ ︷︷ ︸
let k = n - 1

−
∑
n≥0

(n+ r)cnx
n−1

︸ ︷︷ ︸
let k = n - 1

+
∑
n≥0

2cnx
n

︸ ︷︷ ︸
let k = n

xr = 0

Now we omit the xr and continue:∑
k≥−1

2(k + r)(k + r + 1)ck+1x
k −

∑
k≥−1

(k + r + 1)ck+1x
k +

∑
k≥0

2ckx
k = 0

Now we pull out the first term out of the first two sums and combine:

[2(r − 1)r − r]c0x−1 +
∑
k≥0

[(k + r + 1)(2k + 2r − 1)ck+1 + 2ck]xk = 0

We find the r’s by setting the coefficient of the first term equal to zero:

2(r − 1)r − r = 2r2 − 3r = r(2r − 3) = 0

So r1 = 0 and r2 = 3
2 . We obtain the recurrence relations by setting the

coefficient of the k-th power term equal to zero:

ck+1 =
−2ck

(k + r + 1)(2k + 2r − 1)

So our two recurrence relations are:

r1 : ck+1 =
−2ck

(k + 1)(2k − 1)
| r2 : ck+1 =

−2ck

(k + 5
2 )(2k + 2)

=
−2ck

(2k + 5)(k + 1)

2



#2 Find the singular points of the following differential equation:

2(x− 1)2x2(x+ 3)3y′′ + xy′ + 2x2y = 0

Classify each as regular or irregular. For each regular singular point x0, find the
numbers r such that we can find series solutions of the form

∑
cn(x− x0)n+r.

We put the equation in standard form:

y′′ +
y′

2(x− 1)2(x+ 3)3x
+

y

(x− 1)2(x+ 3)3
= 0

Thus we have x = 1,−3 being irregular singular points and x = 0 being regular.
We find the r’s using the formula:

r(r − 1) + a0r + b0 = 0

So we have:

P̃ = xP =
1

2(x− 1)2(x+ 3)3
a0 = P̃ (0) =

1

54

Q̃ = x2Q =
x2

(x− 1)2(x+ 3)3
b0 = Q̃(0) = 0

So we plug these in:

r(r − 1) +
1

54
r = r(r − 53

54
) = 0

Thus r = 0 or r = 53
54 .
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#3 Find the general solution to the following system of differential equations:

X ′ =

 1 2 −2
−2 1 3
0 0 2

X

First we find the eigenvalues (expanding along the bottom row):

1− λ 2 −2
−2 1− λ 3
0 0 2− λ

= (2− λ)
1− λ 2
−2 1− λ = (2− λ)[(1− λ)2 + 4] = 0

This should get us λ1 = 2, λ2 = 1 + 2i, λ3 = 1− 2i. We now find eigenvectors:

(A− 2I)v1 = 0 −1 2 −2 0
−2 −1 3 0
0 0 0 0

R2 7→ R2 − 2R1

 −1 2 −2 0
0 −5 7 0
0 0 0 0


So looking at the second equation 5y = 7z so choose z = 5 so that y = 7. Then
the first equation yields x = 4. Thus we have:

v1 =

 4
7
5


Now we find one of the complex eigenvectors:

(A− (1 + 2i)I)v2 = 0 −2i 2 −2 0
−2 −2i 3 0
0 0 1− 2i 0


The last equation implies z = 0 and we should find that:

λ2 = 1︸︷︷︸
α

+ 2︸︷︷︸
β

i v2 =

 1
i
0

 =

 1
0
0


︸ ︷︷ ︸

B1

+i

 0
1
0


︸ ︷︷ ︸

B2

Thus we can plug these in to our general solution with the following substitu-
tions:

α = 1 β = 2 B1 =

 1
0
0

 , B2 =

 0
1
0


This will get our real general solution to be:

X = c1e
2t

 4
7
5

+c2e
t

 1
0
0

 cos 2t−

 0
1
0

 sin 2t

+c3e
t

 1
0
0

 sin 2t+

 0
1
0

 cos 2t


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#4 Consider the system of differential equations:

X ′ =

(
−4 −3
2 3

)
X

Find an initial condition X(0) so that the solution goes to the origin as t→∞
and another initial condition so that the solution diverges as t→∞. By diverge
I mean one of the x or y components of our solution approaches ∞.
Hint: Start with the general solution.
First we find the eigenvalues:

−4− λ −3
2 3− λ = (−4− λ)(3− λ) + 6 = (λ+ 3)(λ− 2) = 0

Thus we have that λ1 = 2 and λ2 = −3. We find the eigenvectors:

(A− 2I)v1 = 0(
−6 −3 0
2 1 0

)
R2 7→ R2 +

1

3
R1

(
−6 −3 0
0 0 0

)
So our equation is −6x− 3y = 0 so let x = 1 and then y = −2, so v1 =

(
1
−2
)
.

(A+ 3I)v2 = 0(
−1 −3 0
2 6 0

)
R2 7→ R2 + 2R1

(
−1 −3 0
0 0 0

)
So we can let v2 =

(−3
1

)
. Thus our general solution is:

X = c1e
2t

(
1

−2

)
+ c2e

−3t
(
−3

1

)
Now recall that the initial condition X(0) determine the constants c1 and c2
and vice-versa. So let’s choose c1 and c2 so that we have a solution that goes
to the origin (c1 = 0, c2 = 1). Then our solution is:

X = e−3t
(
−3

1

)
So in this case we start at X(0) =

(−3
1

)
, which is the first answer. Now to find

a solution with a divergent x or y coordinate, we need only have c1 6= 0 since
then we will have exponential growth in both x and y. So choose c1 = 1, c2 = 0
and get:

X = e2t
(

1

−2

)
In this case our we start at X(0) =

(
1
−2
)
. These two initial conditions will

work for this question (there are MANY you can choose). If you recall how
we pictured our solutions in a problem very similar to this in class (see lecture
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8 notes page 104) we had our solution paths along the lines containing the
eigenvectors being stuck on those lines. If the eigenvalue was < 0 the paths
converged to the origin, and if the eigenvalue was > 0 the paths went out to
infinity. So if you remembered this picture you would immediately know that if
we start at these eigenvectors we get the desired properties.
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#5 Compute the following line integral:∫
C

sin 2y − 2y

4
+ x2dx+ x cos2 ydy

Where C is the curve around the circle radius one centered at the origin from
(1,0) to (-1,0) traversed counterclockwise.
Here we initially notice that direct computation will be too difficult. Then we
check for a potential function but find that the vector field

F = (P,Q) = (
sin 2y − 2y

4
+ x2, x cos2 y)

is not equal to the gradient of some function. This can be seen by checking
that ∂Q

∂x 6=
∂P
∂y . So our only option is to try to use Green’s theorem. For this

we complete our semicircle arc to a loop around a half-circle with the path
r(t) = (t, 0) from t =-1 to 1. Let’s call this path C̃, the resulting closed area R,
and F will be as above. Then Green’s theorem reads:∫

C

F · dr +

∫
C̃

F · dr =

∫ ∫
R

∂Q

∂x
− ∂P

∂y
dxdy

So we compute the other two terms in the above equation. First on C̃ we use
r(t) = (t, 0) so r′(t) = (1, 0):∫

C̃

F · dr =

∫
C̃

F · r′(t)dt =

∫ 1

−1
(t2, t) · (1, 0)dt =

∫ 1

−1
t2dt =

2

3

Next we compute the double integral:∫ ∫
R

∂Q

∂x
− ∂P

∂y
dxdy =

∫ ∫
R

cos2 y − 1

4
(2 cos 2y − 2)dxdy

=

∫ ∫
R

1

2
(1 + cos 2y)− 1

2
(cos 2y − 1)dxdy

=

∫ ∫
R

dxdy

= Half the area of the unit circle

=
π

2

Thus our answer is the difference of these two:∫
C

F · dr =
π

2
− 2

3
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#6 Compute the work integral
∫
C
F · dr if the path C is given by

r(t) = (cos t, t, t2) from t = 0 to t = π

with the vector field F = (z + ey, xey, x).
Here we find that F = ∇φ for some φ:

φ =

∫
z + eydx = xz + xey + C1(y, z)

φ =

∫
xeydy = xey + C2(x, z)

φ =

∫
xdz = xz + C3(x, y)

We see that φ = xz + xey satisfies ∇φ = F . Thus our integral only depends on
the endpoints r(π) = (−1, π, π2) and r(0) = (1, 0, 0):∫

C

F · dr = φ(r(π))− φ(r(0)) = −π2 − eπ − 1
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#7 Compute the flux integral
∫ ∫

F · ndS along the part of the paraboloid

z = 9− x2 − y2 with z ≥ 0

Let F = (x− y, x+ y, xy). Use the unit normal with positive z-coordinate.
We begin with parametrizing the surface and finding the normal vector:

σ = (x, y, 9− x2 − y2)

σx = (1, 0,−2x)

σy = (0, 1,−2y)

σx × σy = (2x, 2y, 1)

This normal vector has a positive z-coordinate and thus will give us the correct
unit normal n =

σx×σy

||σx×σy|| . Then we substitute this and dS = ||σx × σy||dxdy
into our integral:∫ ∫

F · ndS =

∫ ∫
F · σx × σy

�����||σx × σy||�
����||σx × σy||dxdy

=

∫ ∫
(x− y, x+ y, xy) · (2x, 2y, 1)dxdy

=

∫ ∫
2x2 −��2xy +��2xy + 2y2 + xydxdy

=

∫ ∫
2(x2 + y2) + xydxdy convert to polar

=

∫ 2π

0

∫ 3

0

r3[2 + cos θ sin θ]drdθ

=

∫ 2π

0

1

4
r4|30[2 + cos θ sin θ]dθ

=
81

4
[2θ +

1

2
sin2 θ]2π0

=
81

4
(4π)

= 81π

We knew to integrate over the circle radius 3 centered at the origin since that is
where our downward-opening paraboloid intersects the xy-plane (just set z = 0).
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#8 Compute the circulation integral
∮
C
F ·dr along the curve C given by r(t) =

(4 cos t, 2 sin t, 16) with vector field F = (3y, 2x, 2y2+ 1
2x

2) using Stokes’ theorem
as follows. Consider C as the boundary of the paraboloid z = x2 + 4y2 with
z ≤ 16. Now compute the circulation using a surface integral.

Hint: The area of the ellipse with equation x2

a2 + y2

b2 = 1 is πab.
We start by computing curlF :

curlF =

i j k
∂
∂x

∂
∂y

∂
∂z

3y 2x 2y2 + 1
2x

2

= (4y,−x,−1)

Now we parametrize the surface:

σ = (x, y, x2 + 4y2)

σx = (1, 0, 2x)

σy = (0, 1, 8y)

σx × σy = (−2x,−8y, 1)

Since we’re traversing the boundary curve in a counterclockwise direction look-
ing down from the positive z-axis, using the righthand rule know we want to
use the unit normal with positive z-coordinate. So we have the correct sign and
n =

σx×σy

||σx×σy|| . Thus our integral becomes:∮
C

F · dr =

∫ ∫
curlF · ndS

=

∫ ∫
curlF · σx × σy

�����||σx × σy||�
����||σx × σy||dxdy

=

∫ ∫
(4y,−x,−1) · (−2x,−8y, 1)dxdy

= −
∫ ∫

dxdy

= −Area of the ellipse with equation
x2

42
+
y2

22
= 1

= −π(2)(4)

= −8π

We found our integration domain to be that ellipse since it is when z = 16 in
our upward-opening paraboloid. So we get this cross section is given by the
equation 16 = x2 + 4y2 which is precisely that ellipse.
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