Review Problems
\#1 Let $A=\left(\begin{array}{ccc}7 & 5 & 9 \\ 1 & -1 & 3 \\ 2 & 4 & 0\end{array}\right)$. Does the system of equations $A x=b$ have a solution for any vector b ?
\#2 For what a and b does the matrix $A=\left(\begin{array}{ccc}a & -1 & 0 \\ b & 2 & -2 \\ 3-b & 0 & 4\end{array}\right)$ have an inverse? \#3 Compute the following obnoxious determinant:

$$
\left|\begin{array}{ccccc}
1 & 2 & 0 & -1 & 3 \\
-1 & -2 & 1 & 3 & 2 \\
3 & 6 & 1 & 1 & -1 \\
2 & 1 & -1 & 1 & 2 \\
0 & 1 & -1 & 1 & 3
\end{array}\right|
$$

\#4 For what c is the following matrix diagonalizable?

$$
\left(\begin{array}{cc}
1 & 1+c \\
1-c & 1
\end{array}\right)
$$

$\# 5$ If $A=\left(\begin{array}{ccccc}1 & 3 & 5 & -1 & 0 \\ 1 & 2 & 3 & 1 & 1 \\ 4 & 2 & 1 & -1 & 0\end{array}\right)$. Then the system of equations $A x=0$ has how many parameters?
\#6 Find the general solution to the follow differential equation:

$$
y^{\prime \prime}-2 y^{\prime}+2 y=e^{x}+5
$$

\#7 Find the general solution to the following differential equation:

$$
y^{\prime \prime}+2 y^{\prime}-3 y=2 e^{-3 x}
$$

\#8 Solve the initial value problem:

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}-4 y=0, \quad y(1)=0, y^{\prime}(1)=1
$$

\#9 (F03\#3) Find the surface area of the piece of the paraboloid $z=4-x^{2}-y^{2}$, $z \geq 1$.
\#10 (S08\#8) Let R be the region inside the surface $z^{2}=x^{2}+y^{2}$ from $z=1$ to $z=2$. Compute the flux integral $\iint_{\partial R} F \cdot n d S$ where n is the outward normal and $F=\left(x y^{2}, x^{2} y, \sin x\right)$.
\#11 (F05\#3) Compute $\oint_{C} x d y$ where C is the triangular path traversing the points $(0,0) \mapsto(2,3) \mapsto(1,0) \mapsto(0,0)$ in that order.
\#12 Let S be the portion of the sphere $x^{2}+y^{2}+(z-4)^{2}=25$ with $z \geq 0$. Compute the integral $\iint_{S} \operatorname{curl} F \cdot n d S$ where n is the usual outward pointing normal if we complete S to an entire sphere and $F=\left(y, y-x, z^{2}\right)$.
\#13 Find two linearly independent series solution centered at $x=0$ (say the first 4 nonzero terms of each) of the following differential equation:

$$
\left(x^{2}+1\right) y^{\prime \prime}-6 y=0
$$

\#14 The position of a particle has a velocity vector $v=\left(\frac{d x}{d t}, \frac{d y}{d t}\right)$ which satisfies the following differential equations:

$$
\begin{aligned}
& \frac{d x}{d t}=-7 x+12 y \\
& \frac{d y}{d t}=-4 x+7 y
\end{aligned}
$$

If the particle starts at $\binom{1}{0}$ then where is it at time $t=1$?

