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Classical Hypothesis Testing

* Given two models of a population Hy and H;, which model is best
supported by a sample from the population?

* Want to design atest A: X™ — {Reject Hy, Fail to Reject H,} such
that

A rejects

A fails to reject

* Want to ensure test has atleast 1 — a and then hope
to maximize



Data may be Sensitive!

» Data may contain highly sensitive information, e.g. medical
information.

* Releasing a result of a hypothesis test may leak information about
the individuals in the data.

* Homer et al. 2008 showed that from aggregate statistics on GWAS
data, one can detect whether a particular individual was in the
dataset.

* Can we still do hypothesis testing while preserving the privacy of
the individuals?



Differential Privacy [DMNS '06]
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Differential Privacy [DMNS '06]

* Arandomized algorithm A: X™ — Y is (¢, §)-differentially private if
for any neighboring data sets D, D" € X™ and for any outcome S €
Y we have

P(A(D)eS)<e*P(A(D)ES)+ ¢



Focus of this Work

* Categoricaldata: D = (Dy, ..., Dg)~Multinomial(n, p).

1. Goodness of Fit: Hy: p =p°
* Simple Test - data distribution
completely determined

2. Independence Test: Hy: YD 1 Y(2)

* Composite Test —datadistribution
not completely determined

* Both classical tests use the Chi-Squared Statistic:

(Observed; —Expected;)*
Expected;

V=
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DP Contingency Tables
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* Hardt, Ligett, and McSherry ‘12

Liand Milau ‘12
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Wang, Lee, Kifer ‘16 —independently also consider GOF and Independence DP Tests



Goodness of Fit Test - Classical

* Null Hypothesis: Hy: p =p°
* Form the Chi-squared statlstlc

Z (D T npl
npl

e Under HO Swe have Q 2 B) Xczl o Critical Values for the Distribution of Chi Square (x?)
: Critical values of X* for
* Classical Test: Gearoo of eadon
* If Q%>x -1 1-¢q then reject b

* Else, failto reject.




Private Goodness of Fit — 15t Attempt

* Add noise directly to statistic Q2.
1
£ miin{p?}'

* To preserve €-DP, need to add noise with scale ~

* Noise is too high!



Private Goodness of Fit -2"9 attempt

 Add noise to each cell count

. . 2
* To preserve €-DP, need to add noise with scale ~ ~.

* Form the private chi-squared statistic:

0
O — 2L (DitZ np") whereZl-va(O,aZ)orZi~Lap(§).

npl
g (¢,8) — DP €—DP
« Still have Q3, — y5_, forfixed ¢, 6.
* Just try the classical test



2"d Attempt Results

* We generate 12000 random samples of multinomial data with size n
and probability vector p° for various values.

* Fix 1 — a = 0.95 and privacy parameters (¢,6) = (0.1,107°).

» Proportion of trials that fell below the x7_; ;_, gives significance

(.25,.25,.25,.25) 100
(.25,.25,.25,.25) 1,000
(.25,.25,.25,.25) 10,000
(.25,.25,.25,.25) 100,000
(.1,.4,.2,.3) 10,000

(.1,.4,.2,.3) 100,000

(.05,.25,.1,.6) 10,000

(.05,.25,.1,.6) 100,000

(.01,.29,.1,.6) 100,000




Why does classical test do so poorly?

* Fix data and only consider randomness due to noise.

(Di+Zi—np?)2
np;

>y L (Ef[D; + Z; — np?])? = Q2.

np;

* EZ[QI%P] = ?=1 EZ[

* This will cause us to reject more often, as our simulations showed.



Outline of Rest of Talk

* Private Goodness of Fit Tests:

* MC based test with Laplace or Gaussian noise
* Asymptotic based test with Gaussian noise

* Private Independence Test:

* MC based test with Laplace or Gaussian noise
* Asymptotic based test with Gaussian noise



MC Private Goodness of Fit

* With the data, form the private chi-squared statistic Q3,with
either Laplace or Gaussian noise.

* Since we know the distribution of the noise and the data under H,,
we can sample points from the distribution of the chi-squared
statistic.

» Sample k points i.i.d. from distribution of Q35 and sort them.

* The critical value based on these ksamplesisthe [(k+ 1)(1 — a)]
ranked sample. If Q3, > critical value then reject H,.

* Test is guaranteed significance at least 1 — a.



Asymptotic Approach to GOF

* We want to obtain a better approximation to the distribution of
Qpp
* Define the random vector U = (U, Us, ..., U;) where
D; — np;
Ui — :

/np?

D
* By the CLT we know that U — N (0, Z) where
7
2=1—p°yp°

* Note that Q% = UTU



Asymptotic Approach to Private GOF

* We then define the random vector W = (U, V), where U is the
same as before and V' is the vector of rescaled noise terms

Zi
Vi —_—
o
* Note that we can rewrite: QDP = WTAW where
A= [ ]whereA Dia ( )
g =0

* Independently of our work Wang, Lee, and Kifer '16 g|ve this
2
asymptotic distribution when Z; ~ Lap (E) and e = ( )

* However, the resulting distributionis NASTY - quadraticform of Normal-
Laplace random variables.

* May have to rely on MC methods to find critical values for this distribution.



Gaussian Noise

D D
* Recall U->N(0,¥)andV ~ N(0,I;) thusW = (U,V)—>N(0,%")

where
B o
2= o 1,
* Now we have Q5, = W'A Wis a quadratic form of normals
o
If\/—ﬁ— — constant then
D
Qpp _’2 AiXi

l
* Where {1;} are the eigenvalues of B"A B where BBT =Y'.



Private Goodness of Fit - Gaussian

* New Test:
* Given (¢,8) and Hy: p = p° find* the critical value ¥ where

Z Aixt >t&
:

« IfQ5p > 12 then reject H.
* Else, fail to reject.

P =«

* * We used a numerical solver (CompQuadForm in R) to find the
critical values.



GOF Significance Results

* We fixed the privacy parameters (¢,8) = (0.1,107%)and 1 — a =
0.95.

 Sampled 10,000 trials from Hy:p = p°.
* Counted the proportion of trials that our test did not reject H,,.



GOF Significance Results

Empirical Significance for Goodness of Fit Tests with p0 = (0.25,0.25,0.25,0.25)

. PrivGOF GOF - Lap Noise =~ Em GOF - Gauss Noise 95%

100000

0.5

Empirical Significance




GOF Significance Results

Empirical Significance for Goodness of Fit Tests with p0 =(0.1,0.4,0.2,0.3)

. PrivGOF GOF - Lap Noise W GOF - Gauss Noise 95%

100000

0.5
Empirical Significance




GOF Significance Results

Empirical Significance for Goodness of Fit Tests
with p0 = (0.05,0.25,0.1,0.6)

. PrivGOF GOF - Lap Noise =~ W GOF - Gauss Noise

100000

0.5
Empirical Significance




GOF Resultswithd = 100.

0.0524




GOF Critical Values - PrivGOF

95% Critical Values for PrivGOF and
Classical GOF Test

—e—p0 = (0.25,0.25,0.25,0.25)
p0 = (0.1,0.4,0.2,0.3)
p0 =(0.05,0.25,0.1,0.6)
=&—0Id Threshold = 7.81
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Power of MCGOF and PrivGOF

* Considerthe alternate H;:p =p* +A-(1,-1,1,—-1,...,1,—1).

 Datais actually generated according to H; but our test assumes
H,.

* We want our tests to be able to correctly reject Hy, more often as
n — oo,

* We fix the following parameters in our results in 1,000 trials:

a = 0.05,(e, 8) = (0.1,1076),A = 0.01 0—(1111)
o . ) ) v 4 ) . . ;p ey 4)4)4;4
and k = 5o.



Power Results

Empirical Power for Goodness of Fit Tests:
(epsilon,delta) = (0.1,10%(-6))

GOF

MCGOF Lap
PrivGOF
MCGOF_Gauss




Independence Testing: 2 x 2 tables

e LetYW ~ Bern(n!) and Y(® ~ Bern(m?) and we want to test
Hy: YOO 1 Y@,

* Null hypothesis does not completely determine the data
generation model - ©! and m# are unknown.

» Form a contingency table after n joint outcomes of Y1, Y(2)
D ~ Multinomial(n,p)

Under Hy, we have
p= (a3 -72),1 - Y%A -a)(A - 1?))




Pearson Chi-Squared Test

S
j—nDij)

~ D;
* Form the statisticQ? = ), [( l

* Using the MLE
o N U, S
n -’ n

p = p(n?,n?)

* Compute df = (rows—1)(columns—1)
* If Q% > x§r 1_q, then reject
* Else, fail to reject.




Private MLE

* How do we compute an MLE when we are given private counts?

* Two step procedure to find MLE [inspired by the work of Karwa and
Slavkovic ‘16 ]

1. Find most likely true contingency table given the noisytableD +Z = w

argmin |[|lw — x ||
X

Sk t.inj =N

Lj
xij = 0

2.  With this table, compute the MLE for the probability vector as before.



Private MLE

* How do we compute an MLE when we are given private counts?

* Two step procedure to find MLE [inspired by the work of Karwa and
Slavkovic ‘16 ]
1. Find most likely true contingency table given the noisytableD +Z = w
argmin (1= p)llw —x ||z + yllw —xl|,

S. t_z T = 1) y = 1 if Gaussian Noise
g ¥y < 1if Laplace noise

XUZO

2. With this table, compute the MLE for the probability vector as before.



MC Independence Test

* From the noisy contingency table D + Z with Gaussian or Laplace noise,
find the private MLE p.

* Compute the private chi-squared statistic
G2, — z (Dyj + Zij = npiy)”
DP = 4 Py,
* With p, generate k new contingency tables and add fresh noise to each.

* From the k new noisy contingency tables, generate k new private chi-squared
statistics

« Setthe[(k + 1)(1 — )| — ranked value as the critical value 72.
* If Q3p > t& then reject

* Else, fail to reject.




Asymptotic Approach

* Note thatin the Pearson Chi-squared test we have

s e S P Di::—nDq; )
Q* = U" U where U;; = — “2U where U - N(0,%;,,)
/nﬁij
* Now X;,; depends on the unknown probabilities
* (not the same as X from before).

* Tina=1 —Byp —T@TD)r7T




Asymptotic Approach

* We will follow the same procedure as in the GOF testing, except we
will use the private MLE p whenever we would have used the actual
probability vector.

W=(0,v), 02 =W AW
* Where with Guassian noise we have,

e . / 2 0
W = N(O,Zind); Zind . [ l(T)ld I]

* We will use 7,4 which just replaces the unknown probability
vectorin X/ 4 with our private MLE p.



Privind

» We approximate the distribution of Q2 , with

z /Ti)(lz;
i

where {4;} are the eigenvalues of BT AB and BBT = £, .

 New Test - Privind:

* Compute the private MLE p based on noisy counts
« Compute the statistic Q3p and critical value 7¢ where,

P Zii;(12>rg —
i

« If Q3p > TZ, reject.
* Else, fail toreject.




Independence Significance Results

* We fixed the privacy parameters (¢,8) = (0.1,107%)and 1 — a =
0.95.

» Sampled 1,000 trials of independent data Y ~ Bern(n') and
Y (2) ~ Bern(m?) forvarious values of 71, 2.

* Counted the proportion of trials that our test did not reject H,,.



Independence Significance Results

Empirical Significance of Independence Tests
for (Tl ,m2) = (0.5,0.5)

I Privindep HmEE MCindep_Gauss MCindep_Lap Ind - Non Private Il |nd - Lap Noise HEEEE Ind -Gauss Noise = ==95%

100000

0.5

Empirical Significance




Independence Significance Results

Empirical Significance of Independence Tests
for (ml ,m2) = (0.7,0.5)

I Privindep HmEE MCindep_Gauss MCindep_Lap Ind - Non Private Il |nd - Lap Noise HEEEE Ind -Gauss Noise = ==95%
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Independence Significance Results

Empirical Significance of Independence Tests
for (w1 ,m2) = (0.7,0.2)

I Privindep B MCindep_Gauss MCindep_Lap Ind - Non Private HElE |nd - Lap Noise Hlll |nd -Gauss Noise = ==95%

100000

0.5

Empirical Significance




Critical Values of Privind

Average 95% Critical Values for Privindep and Pearson Chi-Squared Test

=8=(pil,pi2) = (0.5,0.5) (pi1,pi2) = (0.7,0.5)

(pil1,pi2)=(0.7,0.2) =8=0|d Threshold = 3.84
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Critical Values of MCindep_Gauss

Average 95% Critical Values for MCindep_Gauss and Pearson Chi-Squared Test
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Critical Values of MClindep_Lap

Average 95% Critical Values for MCIndep_Lap and Pearson Chi-Squared Test
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(pi1,pi2)=(0.7,0.2) =®=0Id Threshold =3.84

w
@
=
©
>
©
2
=
=
o
)
>
<

100000




Testing Power

« Consider the alternate hypothesis H;: Cov(YD,Y(2)) = A.
* The table of counts then come from the following distribution:

D ~ Multinomial(n,p + A(1,—1,1,—1)
Wherep = (n'n?,n'(1 —72),(1 — D)2, (1 - 1) (1 — n?))

* We then use the parameters:

1
a = 005’ (E’ 5) = (0'1’10_6)1 A = OO]—; (77:1; T[Z) E (E’E)



Power Results

Empirical Power for Independence Tests:
(epsilon,delta) = (0.1,107(-6))

Indep

MCIND Lap
PriviIND
MCIND_Gauss

15000




Conclusion

* Developed four DP tests with at least 1 — a empirical significance:
* GOF Testing

1. MCGOF - Gaussian or Laplace noise with guaranteed significance atleast1 — «
2. PrivGOF —Only works with Gaussian noise, based on asymptotic approach

* Independence Testing
1. MCInd—Gaussian or Laplace Noise
2. Privind—Only works with Gaussian noise, based on asymptotic approach

* Tests based on Laplace noise have better power, due to the smaller
variance of the noise being added to the counts.

* Laplace noise tests rely on MC methods.
* PrivGOF and Privind resemble the classical tests.



Thanks




