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e Immorlica and Mahdian 2005, Kojima and Pathak 2009,
Kojima et al 2010
e Bodoh-Creed 2013
e Azevedo and Budish 2011

¢ Incorporating a Mediator
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Routing Game

e A game G is defined by

o A set of n players

o A set of types { = source destination pair s; € U.

e A set of actions A — routes for each source destination
pair.
A cost function ¢ : U x A" - R

c(si,a) = Z Ce(ye(a))

eca;
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Routing Game

e A game G is defined by

o A set of n players

o A set of types { = source destination pair s; € U.

e A set of actions A — routes for each source destination
pair.
A cost function ¢ : U x A" - R

c(si,a) = Z Ce(ye(a))

eca;

e Players may not know each others type.
e n may be HUGE!!
e Types may be sensitive information
e Main Goal : Have players play a pure strategy Nash
equilibrium of the complete information game in settings of
partial information.
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Introduce a Mediator

G M

Incomplgte 5 Mediator 3 CompleFe
Information Information
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¢ A mediator is an algorithm M : (/U L)" — (AU L)".
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Weak Mediator

e Mediator cannot force people to use it
o Players need not follow its suggested action

e Players may lie to the mechanism if they choose to use it.



Augmented Game

e Define the augmented game Gy (Kearns et al 2014):
e Action Space:

A ={(s,f):seUUL,f:(AUL)— A}
8 = (S,‘, fl) € A
e Costs for g’ = ((s/, f;))"_;:

CM(Si) g/) = IEa~M(s’) [C(5i7 f(a))]
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e Player’s should:
e Use the Mediator M
e Report her true type to M
e Follow the suggested action of M = f; = identity map.



Joint Differential Privacy

e (Kearns et al 2014) Let M : D" — O". Then M satisfies
e-joint differential privacy if for every s € D", for every i € [n],
s/ € D and for every B C O"!

P[M(s)_; € B] < eEIP)[I\/I(s,{,s,,-),,- € B]
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Billboard Lemma

T 1T

e If a mechanism M : U™ — O is (e, ¢)-differentially private and
consider any function ¢ : U x O — A". Define M’ : YY" — A"

to be

M'(s)i = ¢(si, M(s))-
Then M’ is (e, 6)- joint differentially private.
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Motiwating Theorem

e Let G be any game with costs in [0, m], and let M be a
mediator such that

e |t is e-joint differentially private
e For any set of reported types s, it outputs an 7-approximate
pure strategy Nash Equilibrium.
e Then good behavior g* is an 7/-approximate ex-post
equilibrium for the incomplete information game Gy, where

n =2me+n



Main Theorem

e There exists such a mechanism from the motivating theorem
for large congestion games.

*

e Further, we show that good behavior g* is an r’-approximate
ex-post equilibrium for the incomplete information game Gy

where
. m5\ /4
U’=O<<n> >—>Oasn—>oo
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Large Games

e We assume that each player cannot significantly change the
cost of another player by changing her route.

1
[le(ye) — Le(ye +1)| < - for ye € [n] and e € E.

e The costs then satisfy for j # i and a; # a} € A

33

|c(si, (aj, a_j)) — c(si, (a}a a—j))| <
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How to Construct Such a Mechanism?

e Simulate Best Response Dynamics
e Compute Best Responses privately

e Limit the number of times a single player can change routes.
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Best Responses

In congestion games, allowing each player to best respond
given the other players routes will converge to an approximate
Nash Equilibrium.

We will have an algorithm that will have each player move if
she can improve her cost by more than a: a-Best Response
There can be no more than T = 7 best responses.

We need to only maintain a count of the number of people on
every edge to compute a-Best Responses for each player



Binary Mechanism

e Chan et al 2011 and Dwork et al 2010 give a way to obtain an
online count of a sensitivity 1 stream w € {0,1}7 such that

the output yf forany t =1,2,---, T is
o ¢ differentially private
e Has high accuracy to the exact count y* forevery t =1,---, T

. . /1
9F =y <O <€>

INROERDDI IDDE




Generalized Binary Mechanism

IEREODEn INOE




Generalized Binary Mechanism

IEREODEn INOE
IREREEED [ERD




Generalized Binary Mechanism

IEREDRnEnl BDE
IRDRDEEDI IDRD

e Each of the m streams are k-sensitive, so we get
o ¢ differentially private counters
o With high probability

|9t ye|<(9( )VeeEt—l T
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The Gap

After a player i has made an a-private best response, how
many times must other players move before i can move
again? We will call this the gap ~.

Due to the largeness condition, each time a player does not
move, her cost can increase by at most 7! and can only move
once her cost has increased by «

-2

All the players can only make T = O () (with high
probability).

A player only changes routes k times

m2
kz@(@)



Equilibrium Analysis of our Algorithm

With high probability, after T = O (%) moves by all players,
no player will be able to improve her private cost by more

than a. If we set
. 4N 1/3
a:@(<m> >
ne

then we know no player will be able to improve her actual cost
by more than

4N\ 1/3
n < a+ Error from BM :(’)((m) )
ne
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Equilibrium Analysis of our Algorithm

e Is it Joint Differentially Private?

e Recall our motivating theorem that says good behavior is an
1'-approximate ex-post equilibrium for Gy, and we can set €
(which is a parameter we control) to satisfy the following

. m5\ /4
n =0 (n) —+0 as n—oo



Open Questions

e Can Nash Equilibria of the complete information game be
implemented as exact ex-post or Bayes Nash Equilibria of the
incomplete information game?

e Does there exist a jointly differentially private algorithm for
computing approximate Nash Equilibria for general large
games?



