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Routing Game

• A game G is defined by
• A set of n players
• A set of types U =⇒ source destination pair si ∈ U .
• A set of actions A =⇒ routes for each source destination

pair.
• A cost function c : U × An → R

c(si , a) =
∑
e∈ai

`e(ye(a))

• Players may not know each others type.
• n may be HUGE!!
• Types may be sensitive information

• Main Goal : Have players play a pure strategy Nash
equilibrium of the complete information game in settings of
partial information.
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Introduce a Mediator
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• A mediator is an algorithm M : (U ∪ ⊥)n → (A ∪ ⊥)n.



Weak Mediator

• Mediator cannot force people to use it

• Players need not follow its suggested action

• Players may lie to the mechanism if they choose to use it.
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Augmented Game

• Define the augmented game GM (Kearns et al 2014):
• Action Space:

A′ = {(s, f ) : s ∈ U ∪ ⊥, f : (A ∪ ⊥)→ A}

gi = (si , fi ) ∈ A′

• Costs for g′ = ((s ′i , fi ))ni=1:

cM(si , g
′) = Ea∼M(s′) [c(si , f(a))]



Good Behavior

• Player’s should:

• Use the Mediator M
• Report her true type to M
• Follow the suggested action of M =⇒ fi = identity map.
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Joint Differential Privacy

• (Kearns et al 2014) Let M : Dn → On. Then M satisfies
ε-joint differential privacy if for every s ∈ Dn, for every i ∈ [n],
s ′i ∈ D and for every B ⊂ On−1

P[M(s)−i ∈ B] ≤ eεP[M(s ′i , s−i )−i ∈ B]



Billboard Lemma

!

• If a mechanism M : Un → O is (ε, δ)-differentially private and
consider any function φ : U × O → An. Define M ′ : Un → An

to be
M ′(s)i = φ(si ,M(s)).

Then M ′ is (ε, δ)- joint differentially private.
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Motivating Theorem

• Let G be any game with costs in [0,m], and let M be a
mediator such that

• It is ε-joint differentially private
• For any set of reported types s, it outputs an η-approximate

pure strategy Nash Equilibrium.

• Then good behavior g∗ is an η′-approximate ex-post
equilibrium for the incomplete information game GM where

η′ = 2mε+ η
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Main Theorem

• There exists such a mechanism from the motivating theorem
for large congestion games.

• Further, we show that good behavior g∗ is an η′-approximate
ex-post equilibrium for the incomplete information game GM
where

η′ = Õ

((
m5

n

)1/4
)
→ 0 as n→∞



Large Games



Large Games

• We assume that each player cannot significantly change the
cost of another player by changing her route.

|`e(ye)− `e(ye + 1)| ≤ 1

n
for ye ∈ [n] and e ∈ E .

• The costs then satisfy for j 6= i and a′j 6= a′j ∈ A

|c(si , (aj , a−j))− c(si , (a
′
j , a−j))| ≤ m

n
.



How to Construct Such a Mechanism?

• Simulate Best Response Dynamics

• Compute Best Responses privately

• Limit the number of times a single player can change routes.
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Best Responses

• In congestion games, allowing each player to best respond
given the other players routes will converge to an approximate
Nash Equilibrium.

• We will have an algorithm that will have each player move if
she can improve her cost by more than α: α-Best Response

• There can be no more than T = mn
α best responses.

• We need to only maintain a count of the number of people on
every edge to compute α-Best Responses for each player
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Binary Mechanism

• Chan et al 2011 and Dwork et al 2010 give a way to obtain an
online count of a sensitivity 1 stream ω ∈ {0, 1}T such that
the output ŷ t for any t = 1, 2, · · · ,T is

• ε differentially private
• Has high accuracy to the exact count y t for every t = 1, · · · ,T

|ŷ t − y t | ≤ Õ
(

1

ε

)

!

0! 1! 1! 0! 1! 1! 0! 0! ! ! 1! 0! 1!47!

0! &1! 1! &1! 0! 0! 1! 1! !!!!!!!21! ! !1! 0! &1!

1! 0! 0! 1! 0! &1! &1! 1! !!!!!!16! ! !1! 1! 0
! ! !

0! 0! 0! 0! 1! &1! 1! 1! !!!!!!37! ! !1! &1! &1!

0! 1! 1! 1! 0! 0! 0! &1! !!!!!!!8! ! !1! 1! 1!



Generalized Binary Mechanism
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• Each of the m streams are k-sensitive, so we get
• ε differentially private counters
• With high probability

|ŷ t
e − y t

e | ≤ Õ
(
km

ε

)
∀e ∈ E , t = 1, · · · ,T
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The Gap

• After a player i has made an α-private best response, how
many times must other players move before i can move
again? We will call this the gap γ.

• Due to the largeness condition, each time a player does not
move, her cost can increase by at most m

n and can only move
once her cost has increased by α

γ = Ω̃
(αn
m

)

• All the players can only make T = Õ
(
mn
α

)
(with high

probability).

• A player only changes routes k times

k = O
(
m2

α2

)
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Equilibrium Analysis of our Algorithm

• With high probability, after T = Õ
(
mn
α

)
moves by all players,

no player will be able to improve her private cost by more
than α. If we set

α = Θ̃

((
m4

nε

)1/3
)

then we know no player will be able to improve her actual cost
by more than

η ≤ α + Error from BM = Õ

((
m4

nε

)1/3
)



Equilibrium Analysis of our Algorithm

• Is it Joint Differentially Private?

• Recall our motivating theorem that says good behavior is an
η′-approximate ex-post equilibrium for GM and we can set ε
(which is a parameter we control) to satisfy the following

η′ = Õ

((
m5

n

)1/4
)
→ 0 as n→∞
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Open Questions

• Can Nash Equilibria of the complete information game be
implemented as exact ex-post or Bayes Nash Equilibria of the
incomplete information game?

• Does there exist a jointly differentially private algorithm for
computing approximate Nash Equilibria for general large
games?


