Private Pareto Optimal Exchange

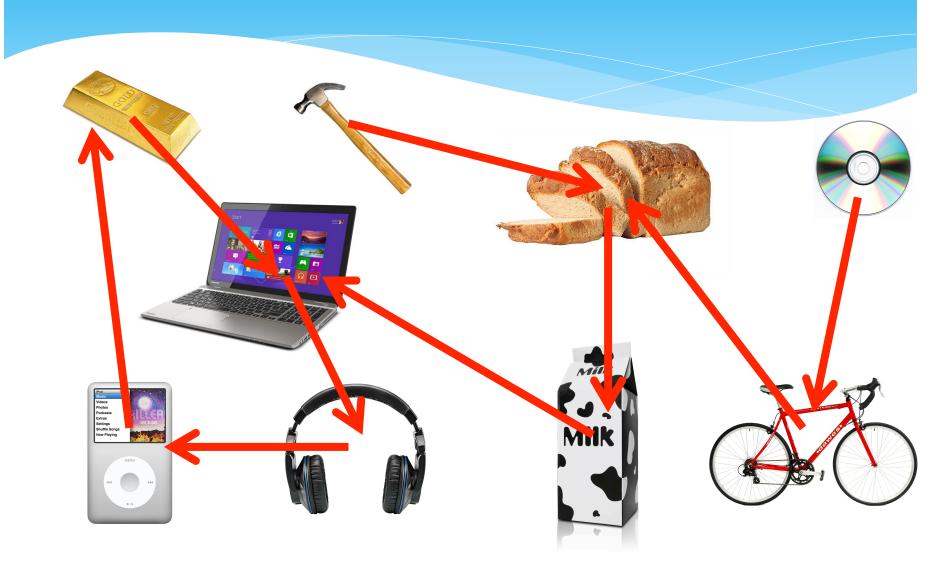
By: Sampath Kannan, Jamie Morgenstern, Ryan Rogers, Aaron Roth

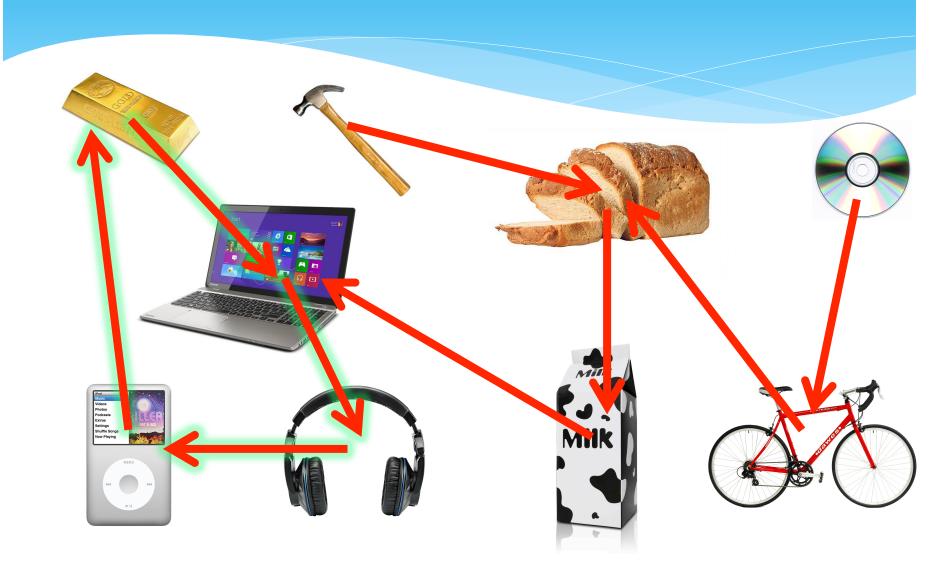
Exchange Market

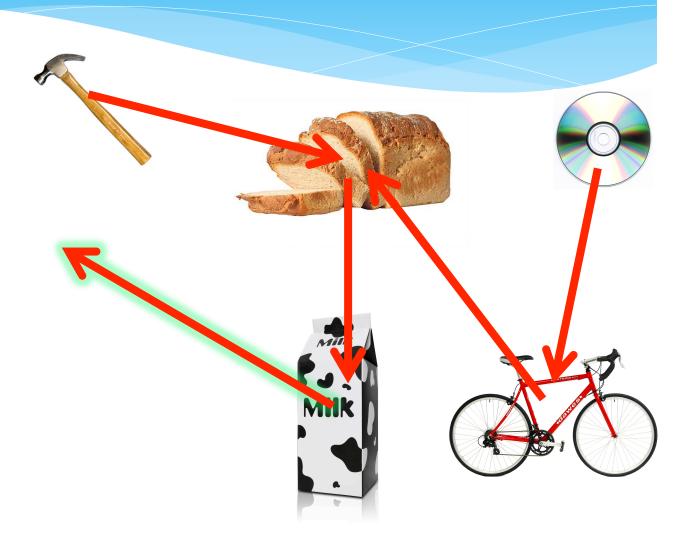
Exchange Market

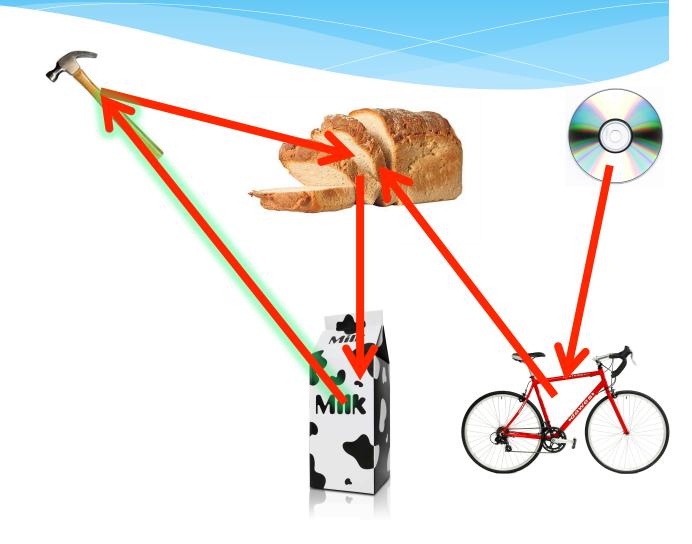
Exchange Market

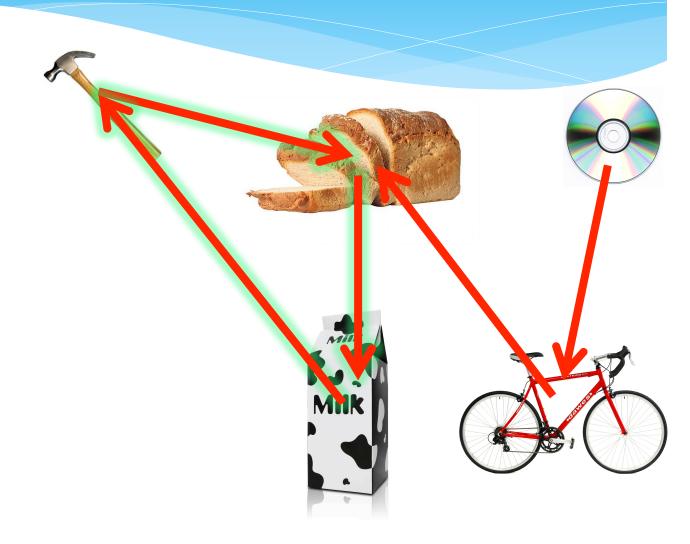
- \diamond Instance: We have n players that each bring a good from a set G and each player i has preferences \succ_i
 - \diamond i.e. player i prefers good a to b iff $a \succ_i b$
- ♦ Goal: We want to compute an allocation of the goods to players that is
 - ♦ Individually Rational players get a good no worse than what they start with
 - ◆Pareto Optimal if a player gets a more preferred good, then some player must be worse off.

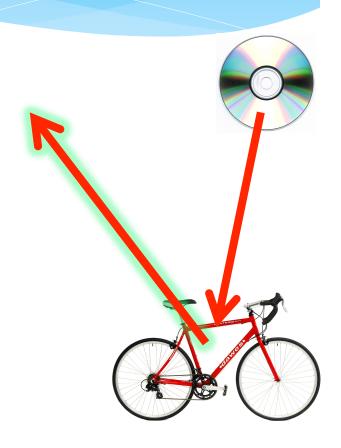


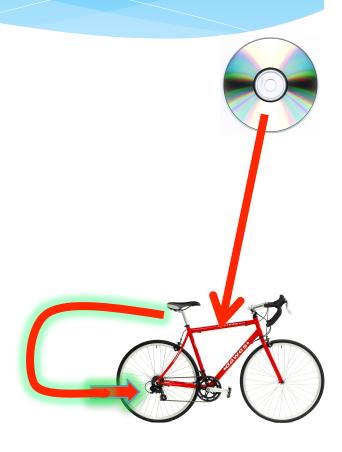


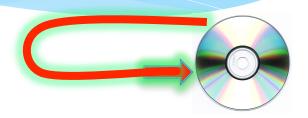






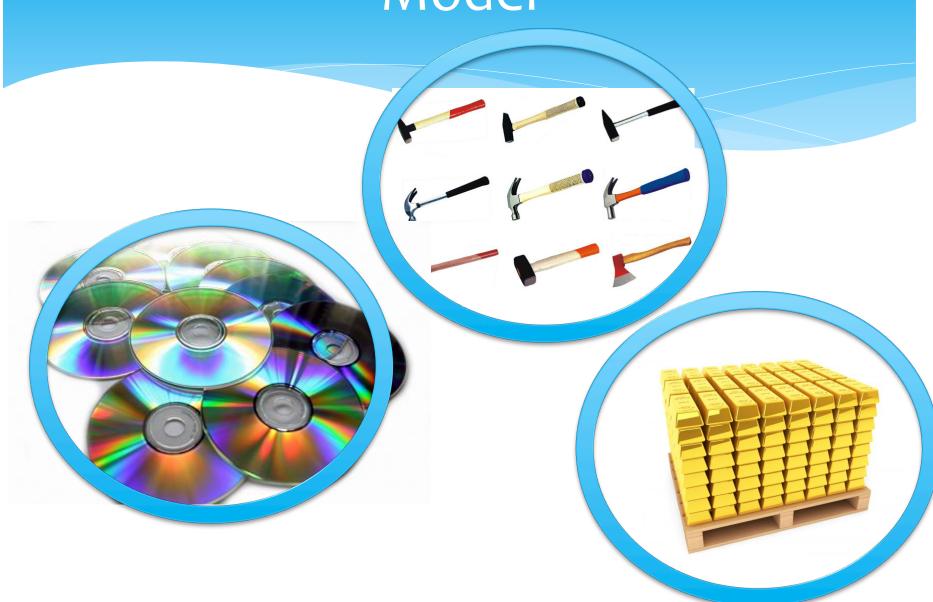






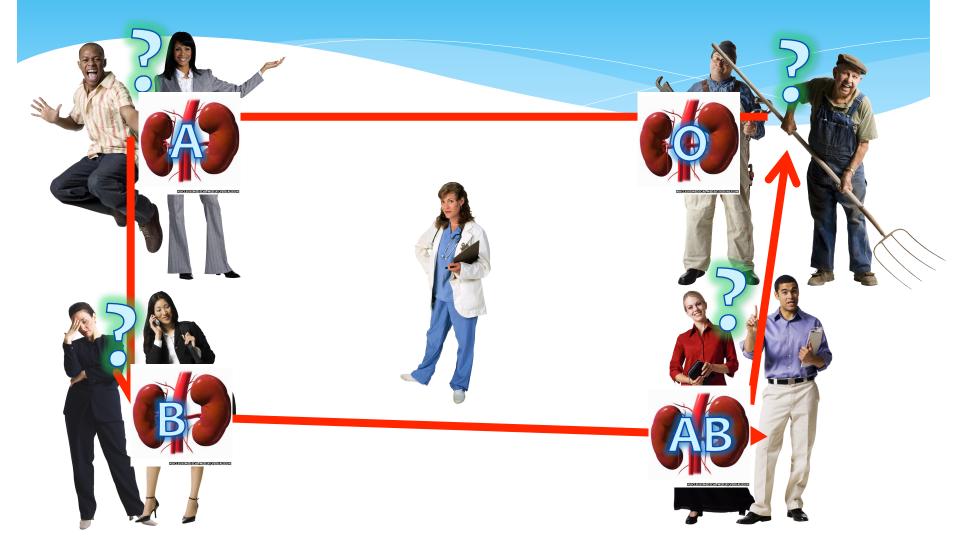
Model

- ightharpoonupInstance: each player is endowed with a good that comes from a set of k types of goods and preferences are over the k types, which is sensitive information.
- ♦ New Goal: Obtain an "Approximately" PO Allocation that is also IR in a "private" way.
 - \diamond Definition: An allocation is α Approximate PO if at most an α fraction of players can strictly improve without forcing another player to get a worse type of good.

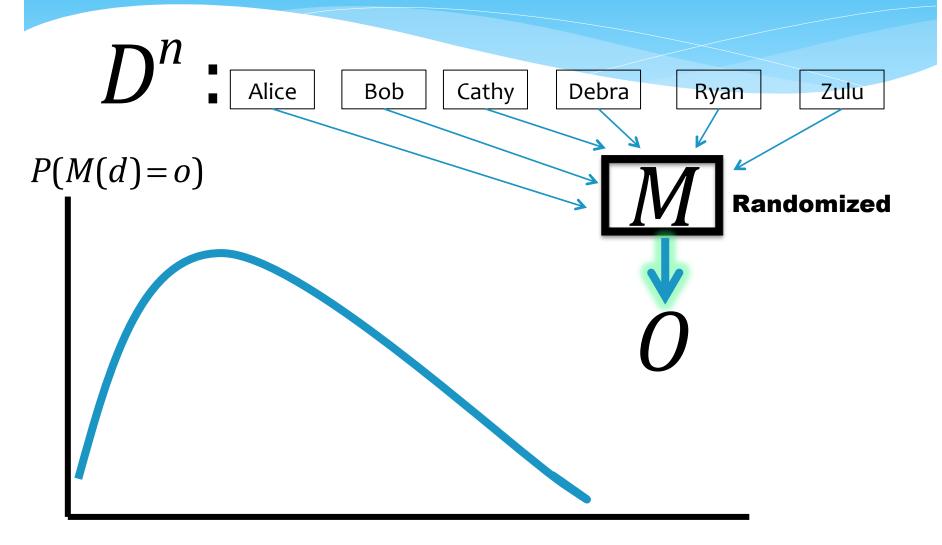


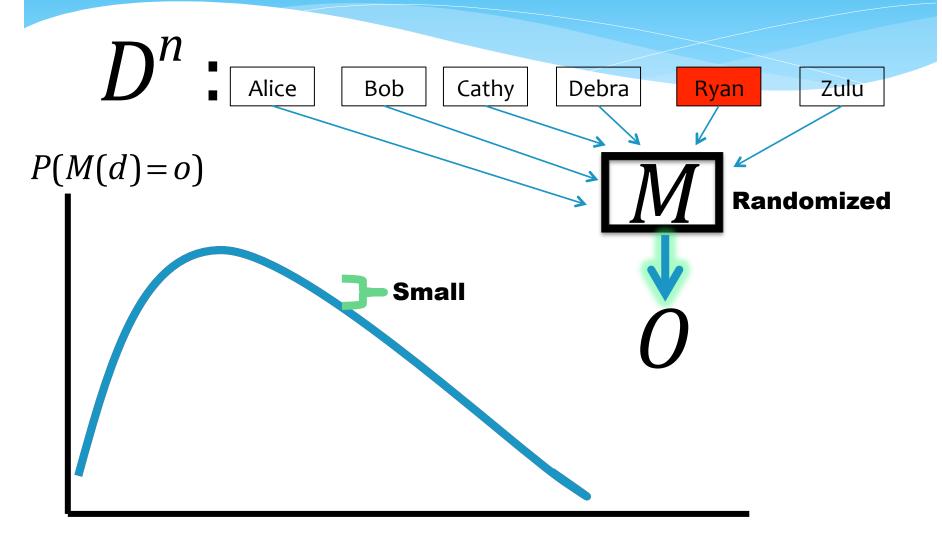
Motivation – Kidney Exchanges

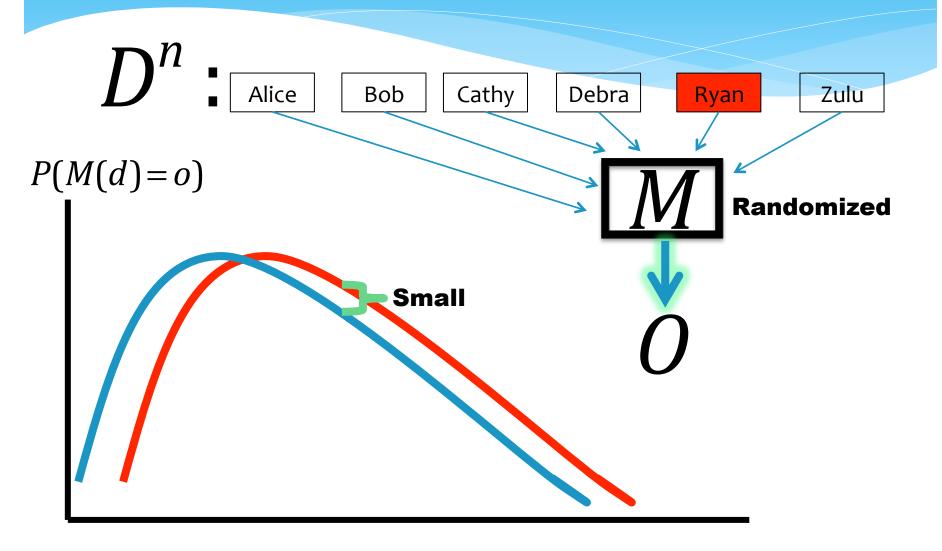
Motivation – Kidney Exchanges



Motivation – Kidney Exchanges







 \diamond A randomized algorithm $M:D^n \to O$ is \mathcal{E} -DP if for any d_i , d_i $\in D$ and any $S \subseteq O$ we have

$$(1+\varepsilon)$$

$$P(M(d_i,d_{-i}) \in S) \leq e^{\varepsilon} P(M(d_i',d_{-i}) \in S)$$

 \diamond A randomized algorithm $M:D^n \to A^n$ is \mathcal{E} -DP if for any d_i , d_i $\in D$ and any $S \subseteq A^n$ we have

$$P(M(d_i,d_{-i}) \in S) \leq e^{\varepsilon} P(M(d_i',d_{-i}) \in S)$$

Joint Differential Privacy

 ${}^{\diamond}$ A randomized algorithm $M:D^n {\to} A^n$ is ${\mathcal E}$ -JDP if for any d_i , $d_i {}^{\prime} \in D$ and any $S \subseteq A^{n-1}$ we have

$$P(M(d_{i},d_{-i})_{-i} \in S) \leq e^{\varepsilon} P(M(d_{i}',d_{-i})_{-i} \in S)$$

Everybody except player *i*

Is JDP Useful Here?

Claim: Any \mathcal{E} -JDP mechanism $M:D^n \to A^n$ that guarantees an α - PO allocation that is IR has

$$\alpha \ge 1 - \frac{e^{\varepsilon}}{1 + e^{\varepsilon}}$$

Other Definitions of Privacy

 \diamond A randomized algorithm $M:D^n \to A^n$ is \mathcal{E} -JDP if for any d_i , d_i \in D and any $S \subseteq A^{n-1}$ we have

$$P(M(d_i, d_{-i})_{-i} \in S) \le e^{\varepsilon} P(M(d_i', d_{-i})_{-i} \in S)$$

Marginal Differential Privacy

 \diamond A randomized algorithm $M:D^n \to A^n$ is \mathcal{E} -MDP if for any d_i , d_i $\in D$, any $S \subseteq A$, and we have $i \neq j$

$$P(M(d_{i},d_{-i})_{j} \in S) \leq e^{\varepsilon} P(M(d_{i}',d_{-i})_{j} \in S)$$

Main Theorem

 \diamond Theorem: There exists an $\ensuremath{\mathcal{E}}$ -MDP mechanism that gives an allocation that is IR and lpha-PO for

$$\alpha = \tilde{O}\left(\frac{k^{4.5}}{\varepsilon n}\right)$$

 \diamond Note that $\alpha \to 0$ as $n \to \infty$

Private-TTC

$$\Rightarrow \text{Input: } X = \left(g_i, \succ_i\right)_{i=1}^n$$

 \diamond Output: An allocation π

Private-TTC

- 1. Let $Z_e \sim Laplace(\sigma)$ and assign each edge weight $\hat{w}_e \leftarrow w_e + Z_e 2E$ to each edge, where E is a high probability error bound.
- 2. Choose a positive weight cycle C w.r.t. \hat{W}_e
- 3. Select uniformly at random $\min_{e \in \mathcal{C}} \{\hat{w}_e\}$ from the w_e that wanted to trade
- 4. Allocate to those selected the good they wanted Return to 2.

Private-TTC

- 5. If there is no cycle, then there must be some node V with no outgoing edges, so delete V.
- 6. Have everyone that was pointing to ν repoint to the good they most prefer of those that are left Return to 1
- 7. When all nodes are deleted, all people not allocated a good gets the good they started with.

Observations

- ♦ The output allocation is always IR
- ♦ With high probability, we have

$$E \le w_e - \hat{w}_e \le 3E$$

♦ When a node gets deleted, there may be at most

$$D = O(kE)$$

goods left at that node

Open Problems

♦ We considered:

$$\varepsilon - MDP \leq \varepsilon - JDP$$

♦ What if we allow players to lie about their preferences?
Can we create a Mechanism that is also **Truthful**?

Questions?