CHAPTER 13.2 PROBLEM 37

SANJEEVI KRISHNAN

We will separate the variables r and t in the following problem. Separation of variables extends to more general sorts of differential equations, but we spell out a simple application of the technique here.

$$
\S 13.2 \# 37
$$

First define x, y so that $\mathbf{r}=x \mathbf{i}+y \mathbf{j}$. The differential equation then becomes:

$$
x^{\prime \prime}=-k x^{\prime}, y^{\prime \prime}=-g-k y^{\prime}
$$

Integrating both sides of both equations, we get

$$
x^{\prime}=-k x+C_{1}, y^{\prime}=-g t-k y+C_{2}
$$

for some constants C_{1}, C_{2}. Now letting

$$
v_{x}=-k x+C_{1}, \quad v_{y}=-g t-k y+C_{2}
$$

we see $d x / d t=v_{x}, d y / d t=v_{y}$ and hence rearranging we get

$$
d x / v_{x}=d t, d y / v_{y}=d t
$$

Integrating both sides of both equations, we get

$$
\int d x / v_{x}=\int d t, \int d y / v_{y}=\int d t
$$

The x-coordinate. Expanding the left and right sides of the first equation,

$$
\int d x / v_{x}=-k^{-1} \int d x / x=-k^{-1} \ln \left(x-C_{1} k^{-1}\right)+D_{1}, \quad \int d t=t+C
$$

for constants D_{1}, C. Solving for x we get

$$
x(t)=E_{1} e^{-k t}+F_{1}
$$

for constants $E_{1}, F_{1}\left(E_{1}=e^{C-D_{1}}, F_{1}=C_{1} k^{-1}\right)$. From our initial conditions,

$$
E_{1}+F_{1}=x(0)=0,-k E_{1}=-k E_{1} e^{-k 0}=x^{\prime}(0)=v_{0} \cos \alpha
$$

hence $E_{1}=-k^{-1} v_{0} \cos \alpha$ and $F_{1}=k^{-1} v_{0} \cos \alpha$, and hence

$$
x(t)=-k^{-1} v_{0} \cos \alpha e^{-k t}+k^{-1} v_{0} \cos \alpha
$$

The y-coordinate. Similarly as before, we can deduce that

$$
y(t)=E_{2} e^{-k t}+F_{2} t^{-1}+G_{2}
$$

for constants E_{2}, F_{2}, G_{2}, use the initial conditions to conclude

$$
E_{2}=-k^{-1} v_{0} \sin \alpha-k^{-2} g, F_{2}=-g k^{-1}, G_{2}=k^{-1} v_{0} \sin \alpha+k^{-2} g
$$

plug in those values to get an explicit form for $y(t)$ in terms of t and simplifying. You should spell this step out on your own for practice with the technique.

