Math 114-003 Fall 2013 Midterm 1

Exam B

October 29, 2013

Listed below are some practice T/F questions and answers to test your understanding of
the material. Please note that actual T/F questions, while similar in style, will not necessarily be variants of the problems below. Also, showing work is neither required nor helpful on the actual exam.

1. True False Consider a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
f_{x}>0, f_{y}<0
$$

everywhere. On each level set of f, the y coordinate must increase as the x coordinate increases.

True (On each level set of the form $f(x, y)=c, f_{y} \neq 0$ and hence $\partial y / \partial x=-f_{x} / f_{y}>0$.)
2. True False For a differentiable function of the form

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R},
$$

any point of f neither a local maximum nor a local minimum must be a saddle point.
False (A saddle point must also be a critical point.)
3. True False A critical point $\left(x_{0}, y_{0}\right)$ of a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying

$$
f_{x x}\left(x_{0}, y_{0}\right)=f_{y y}\left(x_{0}, y_{0}\right)=2 f_{x y}\left(x_{0}, y_{0}\right)
$$

is necessarily a local minimum.
False (It is possible for a function to have positive Hessian and positive $f_{x x}$ while still satisfying the above conditions.)
4. True False Fix a differential function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. There exists $C \in \mathbb{R}$ such that

$$
|f(x, y)-L(x, y)|<C
$$

for all x, y satisfying $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \leqslant 7$, where L is the standard linear approximation of f at $\left(x_{0}, y_{0}\right)$.

True (The right side of the error term in the standard linear approximation is a continuous function on the closed and bounded region $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \leqslant 7$ and hence achieves a maximum C.)
5. True False A critical point $\left(x_{0}, y_{0}\right)$ of a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfying

$$
f_{x x}\left(x_{0}, y_{0}\right), f_{y y}\left(x_{0}, y_{0}\right)<0
$$

is necessarily a local maximum.
False (Such a condition is inconclusive if the Hessian is 0)
6. True False The triple integral $\iiint_{D} x^{2} e^{y} z^{4} d V$, where

$$
D=\left\{(x, y, z) \mid z=x^{2}+y^{2}\right\}
$$

is positive.
False (The integral is 0 . Every Reimann sum is 0 because no mesh cube lies inside D.)
7. True False The double integral $\iint_{D} 16 x^{2} e^{y} d A$, where

$$
D=\left\{(x, y) \mid x^{2}+y^{2}=2\right\}
$$

is positive.
False (Similar reason as above.)
8. True False For a differentiable function $f:\left\{(x, y, z) \in \mathbb{R}^{3} \mid y>0\right\} \rightarrow \mathbb{R}$ defined by

$$
f(x, y, z)=e^{x}-\ln y+x^{2} y z^{2}
$$

a unit vector \mathbf{u} maximizing $D_{\mathbf{u}} f$ at $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$ with $y_{0}>0$ is necessarily

$$
\frac{1}{\left|(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)\right|}(\nabla f)\left(x_{0}, y_{0}, z_{0}\right)
$$

True (The gradient ∇f is defined whenever $y_{0}>0$. The desired \mathbf{u} hence exists everywhere and is parallel to ∇f.)
9. True False For differentiable functions $f, g: \mathbb{R}^{3} \rightarrow \mathbb{R}$,

$$
\nabla f g=g \nabla f+f \nabla g
$$

True (Product rule for gradients)
10. True False For a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $f_{x}, f_{y}, f_{x y}, f_{y x}$ defined and continuous everywhere,

$$
f_{x y}=f_{y x}
$$

is necessarily true.
True (Clairaut's Mixed Derivative Theorem)
11. True False For a differential function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, the difference

$$
\left|f\left(x_{0}, y_{0}\right)-L\left(x_{0}, y_{0}\right)\right|
$$

where L is the standard linear approximation of f at $\left(x_{0}, y_{0}\right)$, is not necessarily 0 .
False $\left(L\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right)\right)$
12. True False A continuous function $f: D \rightarrow \mathbb{R}$ must have an absolute minimum if

$$
D=\{(x, y, z)| | x|+|y|+|z| \leqslant 5\} .
$$

True (The domain D is closed and bounded, so f achieves its extremum by the Extreme Value Theorem.)

