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Our motivation is to deduce the diameter of the semimajor axis of an ellipse non-
aligned with the coordinate axes using Lagrange Multipliers. Therefore consider
the ellipse given as the intersection of the following ellipsoid and plane:
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Note that the center of the ellipsoid is (0, 0, 0) and hence the center of the elliptical
intersection of the ellipsoid and plane is also (0, 0, 0). The semimajor axis has half
of its diameter given by the maximum distance between (0, 0, 0) and a point on the
ellipse. Therefore we wish to maximize the function

f(x, y, z) = x2 + y2 + z2

on the above ellipse. Let
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, h(x, y, z) = x+ y + z.

We wish to solve for x, y, z, λ1, λ2 satisfying the system

g(x, y, z) = 1

h(x, y, z) = 0

∇f = λ1∇g + λ2∇h
Noting that ∇f = 〈2x, 2y, 2z〉, ∇g = 〈x, y/2, 2z/25〉, ∇h = 〈1, 1, 1〉,

2x = λ1x+ λ2

2y = λ1y + λ2

2z = 2λ1z/25 + λ2

Rearranging, we obtain

x(2− λ1) = y(2− λ1) = z(2− 2λ1/25) = λ2

In the case λ1 6= 2, y = x, z = −2x by h = 0, x = ±
√
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In the case λ1 = 2, λ2 = 0, hence 2z = 4z/25, hence z = 0, hence x = −y by
h = 0, hence x = ±1 hence

(x, y, z) = (1, 1, 0), (−1,−1, 0).
Checking all four points, we observe that f attains a maximum value of 9/2.

Hence the full diameter of the semimajor axis is 9.
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