
SOME NOTES ON STOKES THEOREM

MATH 114-003

1. Flux Integrals

Recall from last class that we introduced integrals of the following form:∫ ∫
S

G · n dσ,

where G is a vector-valued function S → R3, n denotes the normal vector to the
surface S pointing in the direction of the orientation of S (default: outward), and
dσ denotes the area element for surface integrals (analogous to the ds used in line
integrals).

When the surface S is smoothly parametrized by a function r : [a, b]× [c, d]→ S,
then G ·n dσ simplifies to either G ·(ru×rv) du dv or G ·(rv×ru) du dv, depending
on whether ru×rv or rv×ru is pointing in the same direction as the outward normal
n.

2. Stokes Theorem

We defined the curl of a vector field F = M i +N j + Pk to be the vector field
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We briefly introduced Stokes’ Theorem at the end of the last lecture:

Theorem 2.1. We have∫
C

F · dr =

∫ ∫
S

(∇× F) · n dσ,

for a piecewise smooth oriented surface S having as its boundary a piecewise smooth
curve C, a vector field F having continuous partial derivatives defined on an open
region containing S.

This generalizes Green’s Theorem for surfaces in R3. As before, we follow the
convention that the boundary C of a surface S is oriented in such a way so that
if you are travelling along the orientation of C, S will be on your left and curling
your fingers in the direction of C will point the thumb in the orientation of S.
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3. Verification of Stokes’ Theorem

Let’s verify Stokes’ Theorem for

F(x, y, z) = xi + zj + 2yk

over the interior S of the ellipse C defined as the intersection of the plane z = x
with the cylinder x2 + y2 = 1. (Imagine a right circular cyclinder sliced by a plane
tilted at π/4 radians.)

3.1. Line integral. A parametrization of the ellipse C is

r(θ) = 〈cos θ, sin θ, cos θ〉, θ ∈ [0, 2π)

Hence we calculate

d

dt
(r)(θ) = 〈− sin θ, cos θ,− sin θ〉.

Hence the line integral∫
C

F · dr =

∫ 2π

0

F(r(θ)) · d
dt

(r)(θ) dθ

=

∫
− sin(θ) cos(θ) + 1− 3 sin2(θ) dθ

=

[
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+ θ − 3θ
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+

3 sin 2θ

4

]2π
0

= −π.

3.2. Surface Integral. A parametrization of the surface S is

r(u, v) = 〈u, v, u〉, u2 + v2 6 1.

Hence we calculate

(∇× F) = ... = i, ru × rv = k− i.

Hence the surface integral∫ ∫
S

(∇× F) · n dσ =

∫ ∫
u2+v261

−1 du dv = −π.

4. Verification on an Implicitly Defined Surface

Let’s verify Stokes’ Theorem for

F(x, y, z) = x2i + 2xj + z2k

over the surface S = {(x, y, z) | x2 +y2/4+z2/a2, z > 0} oriented upwards. First
of all, what does S look like? What does the boundary C look like? Notice that S
depends on a but C does not depend on a.



SOME NOTES ON STOKES THEOREM 3

4.1. Surface Integral. Let’s say we didn’t want to parametrize the surface S. The
surface S is a level set of the functionG defined byG(x, y, z) = x2+y2/4+z2/a2 = 1.
Therefore the outward normal n to the surface is one of the two choices

∇G
|∇G|

=
〈2x, y/2, 2z/a2〉

|∇G|
, − ∇G

|∇G|
= −〈2x, y/2, 2z/a

2〉
|∇G|

.

Since S is oriented upwards, n is the first choice. The curl

∇× F = 2k.

Therefore
∇× F · n = 4z/a2.

Also note that Gz 6= 0 for z > 0, hence we can regard S as the graph of a
function of x, y, hence

dσ =
|∇G|
|G · k|

dx dy

and hence the integrant simplifies to

(∇× F) · n dσ = ... = 2.

Therefore the surface integral∫ ∫
S

(∇× F) · n dσ =

∫ ∫
{x2+2y261}

2 = 4π.

4.2. Line integral. The boundary C of S is the ellipse x2 + y2/4 = 1 oriented
counterclockwise, hence a parametrization of C is given by the path

r(θ) = 〈cos θ, 2 sin θ〉, θ ∈ [0, 2π)

and the line integral becomes∫
C

F · dr =

∫ 2π

0

... = 4π

5. The theorem as a Computational Shortcut

5.1. Simplifying Surfaces. One consequence of Stokes’ Theorem is that the sur-
face integral of the form

∫ ∫
S

(∇ × F) · n only depends on the boundary of S. So
if we don’t like S, we can change it. In the previous example, the surface was
S = {(x, y, z) | x2 + y2/4 + z2/a2 = 1, z > 0}. We could have replaced S with
the surface T = {(x, y, 0) | x2 + y2 6 1} and gotten the same answer....

5.2. Changing a Line Integral to a Surface Integral. Let C be the triangle
with vertices (1, 0, 0), (0, 1, 0), (0, 0, 1) oriented counter-clockwise. Then S is a filled
in triangle whose orientation contains all positive components. To calculate∫

C

F · dr,

you need to break up C into three lines and compute three integrals. To calculate∫ ∫
S

(∇× F) · c dσ,

you just need to compute a single double integral after a suitable parametrization.
For a concrete example: let F = 〈z2, y2, x〉. The integrals compute to −1/6...


