SOME NOTES ON STOKES THEOREM

MATH 114-003

1. Flux Integrals

Recall from last class that we introduced integrals of the following form:

$$
\iint_{S} \mathbf{G} \cdot \mathbf{n} d \sigma
$$

where \mathbf{G} is a vector-valued function $S \rightarrow \mathbb{R}^{3}, \mathbf{n}$ denotes the normal vector to the surface S pointing in the direction of the orientation of S (default: outward), and $d \sigma$ denotes the area element for surface integrals (analogous to the $d s$ used in line integrals).

When the surface S is smoothly parametrized by a function $\mathbf{r}:[a, b] \times[c, d] \rightarrow S$, then $\mathbf{G} \cdot \mathbf{n} d \sigma$ simplifies to either $\mathbf{G} \cdot\left(\mathbf{r}_{u} \times \mathbf{r}_{v}\right) d u d v$ or $\mathbf{G} \cdot\left(\mathbf{r}_{v} \times \mathbf{r}_{u}\right) d u d v$, depending on whether $\mathbf{r}_{u} \times \mathbf{r}_{v}$ or $\mathbf{r}_{v} \times \mathbf{r}_{u}$ is pointing in the same direction as the outward normal n.

2. Stokes Theorem

We defined the curl of a vector field $\mathbf{F}=M \mathbf{i}+N \mathbf{j}+P \mathbf{k}$ to be the vector field

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & P
\end{array}\right|=\left(\frac{\partial P}{\partial y}-\frac{\partial N}{\partial z}\right) \mathbf{i}+\left(\frac{\partial M}{\partial z}-\frac{\partial P}{\partial x}\right) \mathbf{j}+\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \mathbf{k}
$$

We briefly introduced Stokes' Theorem at the end of the last lecture:
Theorem 2.1. We have

$$
\int_{C} \mathbf{F} \cdot d r=\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma
$$

for a piecewise smooth oriented surface S having as its boundary a piecewise smooth curve C, a vector field \mathbf{F} having continuous partial derivatives defined on an open region containing S.

This generalizes Green's Theorem for surfaces in \mathbb{R}^{3}. As before, we follow the convention that the boundary C of a surface S is oriented in such a way so that if you are travelling along the orientation of C, S will be on your left and curling your fingers in the direction of C will point the thumb in the orientation of S.

3. Verification of Stokes' Theorem

Let's verify Stokes' Theorem for

$$
\mathbf{F}(x, y, z)=x \mathbf{i}+z \mathbf{j}+2 y \mathbf{k}
$$

over the interior S of the ellipse C defined as the intersection of the plane $z=x$ with the cylinder $x^{2}+y^{2}=1$. (Imagine a right circular cyclinder sliced by a plane tilted at $\pi / 4$ radians.)
3.1. Line integral. A parametrization of the ellipse C is

$$
\mathbf{r}(\theta)=\langle\cos \theta, \sin \theta, \cos \theta\rangle, \quad \theta \in[0,2 \pi)
$$

Hence we calculate

$$
\frac{d}{d t}(\mathbf{r})(\theta)=\langle-\sin \theta, \cos \theta,-\sin \theta\rangle
$$

Hence the line integral

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{d r} & =\int_{0}^{2 \pi} \mathbf{F}(\mathbf{r}(\theta)) \cdot \frac{d}{d t}(\mathbf{r})(\theta) d \theta \\
& =\int-\sin (\theta) \cos (\theta)+1-3 \sin ^{2}(\theta) d \theta \\
& =\left[\frac{\sin ^{2}(\theta)}{2}+\theta-\frac{3 \theta}{2}+\frac{3 \sin 2 \theta}{4}\right]_{0}^{2 \pi} \\
& =-\pi
\end{aligned}
$$

3.2. Surface Integral. A parametrization of the surface S is

$$
\mathbf{r}(u, v)=\langle u, v, u\rangle, \quad u^{2}+v^{2} \leqslant 1 .
$$

Hence we calculate

$$
(\nabla \times \mathbf{F})=\ldots=\mathbf{i}, \quad \mathbf{r}_{u} \times \mathbf{r}_{v}=\mathbf{k}-\mathbf{i}
$$

Hence the surface integral

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{u^{2}+v^{2} \leqslant 1}-1 d u d v=-\pi
$$

4. Verification on an Implicitly Defined Surface

Let's verify Stokes' Theorem for

$$
\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+2 x \mathbf{j}+z^{2} \mathbf{k}
$$

over the surface $S=\left\{(x, y, z) \mid x^{2}+y^{2} / 4+z^{2} / a^{2}, \quad z \geqslant 0\right\}$ oriented upwards. First of all, what does S look like? What does the boundary C look like? Notice that S depends on a but C does not depend on a.
4.1. Surface Integral. Let's say we didn't want to parametrize the surface S. The surface S is a level set of the function G defined by $G(x, y, z)=x^{2}+y^{2} / 4+z^{2} / a^{2}=1$. Therefore the outward normal \mathbf{n} to the surface is one of the two choices

$$
\frac{\nabla G}{|\nabla G|}=\frac{\left\langle 2 x, y / 2,2 z / a^{2}\right\rangle}{|\nabla G|}, \quad-\frac{\nabla G}{|\nabla G|}=-\frac{\left\langle 2 x, y / 2,2 z / a^{2}\right\rangle}{|\nabla G|} .
$$

Since S is oriented upwards, \mathbf{n} is the first choice. The curl

$$
\nabla \times \mathbf{F}=2 \mathbf{k}
$$

Therefore

$$
\nabla \times \mathbf{F} \cdot \mathbf{n}=4 z / a^{2}
$$

Also note that $G_{z} \neq 0$ for $z>0$, hence we can regard S as the graph of a function of x, y, hence

$$
d \sigma=\frac{|\nabla G|}{|G \cdot \mathbf{k}|} d x d y
$$

and hence the integrant simplifies to

$$
(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\ldots=2
$$

Therefore the surface integral

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma=\iint_{\left\{x^{2}+2 y^{2} \leqslant 1\right\}} 2=4 \pi
$$

4.2. Line integral. The boundary C of S is the ellipse $x^{2}+y^{2} / 4=1$ oriented counterclockwise, hence a parametrization of C is given by the path

$$
\mathbf{r}(\theta)=\langle\cos \theta, 2 \sin \theta\rangle, \quad \theta \in[0,2 \pi)
$$

and the line integral becomes

$$
\int_{C} \mathbf{F} \cdot \mathbf{d r}=\int_{0}^{2 \pi} \ldots=4 \pi
$$

5. The theorem as a Computational Shortcut

5.1. Simplifying Surfaces. One consequence of Stokes' Theorem is that the surface integral of the form $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n}$ only depends on the boundary of S. So if we don't like S, we can change it. In the previous example, the surface was $S=\left\{(x, y, z) \mid x^{2}+y^{2} / 4+z^{2} / a^{2}=1, \quad z \geqslant 0\right\}$. We could have replaced S with the surface $T=\left\{(x, y, 0) \mid x^{2}+y^{2} \leqslant 1\right\}$ and gotten the same answer....
5.2. Changing a Line Integral to a Surface Integral. Let C be the triangle with vertices $(1,0,0),(0,1,0),(0,0,1)$ oriented counter-clockwise. Then S is a filled in triangle whose orientation contains all positive components. To calculate

$$
\int_{C} \mathbf{F} \cdot \mathbf{d r}
$$

you need to break up C into three lines and compute three integrals. To calculate

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{c} d \sigma,
$$

you just need to compute a single double integral after a suitable parametrization. For a concrete example: let $\mathbf{F}=\left\langle z^{2}, y^{2}, x\right\rangle$. The integrals compute to $-1 / 6 \ldots$

