Math 501 - Differential Geometry Professor Gluck January 12, 2012

## **1. CURVES**

**Definition.** A map

$$F(x_1, ..., x_m) = (f_1(x_1, ..., x_m), ..., f_n(x_1, ..., x_m))$$

from an open set in one Euclidean space into another Euclidean space is said to be *smooth* (or of class  $C^{\infty}$ ) if it has continuous partial derivatives of all orders.

In this chapter, we will be dealing with *smooth curves* 

$$\alpha: \mathbf{I} \rightarrow \mathbf{R}^3,$$

where I = (a, b) is an open interval in the real line  $R^3$ , allowing a =  $-\infty$  or b =  $+\infty$ .

Do Carmo calls these *"parametrized differentiable curves"*, to emphasize that the specific function  $\alpha$  is part of the definition. Thus

 $\alpha(t) = (\cos t, \sin t)$  and  $\beta(t) = (\cos 2t, \sin 2t)$ 

are considered to be different curves in the plane, even though their *images* are the same circle.

## **Examples.**

(1) The helix  $\alpha(t) = (a \cos t, a \sin t, bt)$ ,  $t \in R$ 

(2) 
$$\alpha(t) = (t^3, t^2)$$
.

**Problem 1.** Let  $\alpha(t)$  be a smooth curve which does not pass through the origin. If  $\alpha(t_0)$  is the point of its image which is closest to the origin (assuming such a point exists), and if  $\alpha'(t_0) \neq 0$ , show that the position vector  $\alpha(t_0)$  is orthogonal to the velocity vector  $\alpha'(t_0)$ . **Problem 2.** Let  $\alpha: I \rightarrow R^3$  be a smooth curve and let  $V \in R^3$  be a fixed vector. Assume that  $\alpha'(t)$  is orthogonal to V for all  $t \in I$  and also that  $\alpha(t_0)$  is orthogonal to V for some  $t_0 \in I$ . Prove that  $\alpha(t)$  is orthogonal to V for all  $t \in I$ .

**Problem 3.** Let  $\alpha: I \rightarrow R^3$  be a smooth curve. Show that  $|\alpha(t)|$  is constant if and only if  $\alpha(t)$  is orthogonal to  $\alpha'(t)$  for all  $t \in I$ . **Definition.** A smooth curve  $\alpha: I \rightarrow R^3$  is said to be *regular* if  $\alpha'(t) \neq 0$  for all  $t \in I$ . Equivalently, we say that  $\alpha$  is an *immersion* of I into  $R^3$ .

The curve  $\alpha(t) = (t^3, t^2)$  in the plane fails to be regular when t = 0.

A regular smooth curve has a well-defined tangent line at each point, and the map  $\alpha$  is one-to-one on a small neighborhood of each point t  $\epsilon$  I.

**Convention.** For simplicity, we'll begin omitting the word *"smooth"*. So for example, we'll just say *"regular curve"*, but mean *"regular smooth curve"*.

**Problem 4.** If  $\alpha$ : [a, b]  $\rightarrow \mathbb{R}^3$  is just continuous, and we attempt to define the *arc length* of the image  $\alpha$ [a, b] to be the LUB of the lengths of all inscribed polygonal paths, show that this LUB may be infinite.

By contrast, show that if  $\alpha$  is of class C<sup>1</sup> (meaning that it has a first derivative  $\alpha'(t)$  which is continuous), then this LUB is finite and equals  $\int_a^b |\alpha'(t)| dt$ .

Let  $\alpha: I \rightarrow R^3$  be a regular (smooth) curve. Then the arc length along  $\alpha$ , starting from some point  $\alpha(t_0)$ , is given by

$$s(t) = \int_{to}^{t} |\alpha'(t)| dt$$

Note that  $s'(t) = |\alpha'(t)| \neq 0$ , so we can invert this function to obtain t = t(s).

Then  $\beta(s) = \alpha(t(s))$  is a reparametrization of our curve, and  $|\beta'(s)| = 1$ .

We will say that  $\beta$  is *parametrized by arc length*.

In what follows, we will generally parametrize our regular curves by arc length.

If  $\alpha: I \rightarrow R^3$  is parametrized by arc length, then the unit vector  $T(s) = \alpha'(s)$  is called the *unit tangent vector* to the curve. **Problem 5.** A circular disk of radius 1 in the xy-plane rolls without slipping along the x-axis. The figure described by a point of the circumference of the disk is called a *cycloid*.



(a) Find a parametrized curve  $\alpha: \mathbb{R} \rightarrow \mathbb{R}^2$  whose image is the cycloid.

(b) Find the arc length of the cycloid corresponding to a complete rotation of the disk.

**Problem 6.** Let  $\alpha$ : [a, b]  $\rightarrow \mathbb{R}^3$  be a parametrized curve, and set  $\alpha(a) = p$  and  $\alpha(b) = q$ .

(1) Show that for any constant vector V with |V| = 1,

$$(q - p) \bullet V = \int_a^b \alpha'(t) \bullet V dt \leq \int_a^b |\alpha'(t)| dt$$
.

(2) Set V = (q-p)/|q-p| and conclude that

$$|\alpha(b) - \alpha(a)| \leq \int_a^b |\alpha'(t)| dt$$
.

This shows that the curve of shortest length from  $\alpha(a)$  to  $\alpha(b)$  is the straight line segment joining these points.

**Problem 7.** Let  $\alpha: I \rightarrow R^3$  be parametrized by arc length. Thus the tangent vector  $\alpha'(s)$  has unit length. Show that the norm  $|\alpha''(s)|$  of the second derivative measures the rate of change of the angle which neighboring tangents make with the tangent at s.

**Definition.** If  $\alpha: I \rightarrow R^3$  is parametrized by arc length, then the number  $\kappa(s) = |\alpha''(s)|$  is called the *curvature* of  $\alpha$  at s.

**Problem 8.** Show that the curvature of a circle is the reciprocal of its radius.

Let  $\alpha: I \rightarrow R^3$  be parametrized by arc length. When the curvature  $\kappa(s) \neq 0$ , the unit vector

$$N(s) = \alpha''(s) / |\alpha''(s)|$$

is well-defined.

**Problem 9.** Show that the unit vector N(s) is normal to the curve, in the sense that  $N(s) \bullet T(s) = 0$ , where T(s) is the unit tangent vector to the curve.

**Definition.** When  $\kappa(s) \neq 0$ , we call N(s) the *principal normal vector* to the curve.

Let  $\alpha: I \rightarrow R^3$  be parametrized by arc length, and let T(s) be the unit tangent vector along  $\alpha$ .

If the curvature  $\kappa(s) \neq 0$ , then we also have the principal normal vector N(s) at  $\alpha(s)$ .

In that case, define the *binormal vector* B(s) to  $\alpha$  at s by the vector cross product,

$$B(s) = T(s) \times N(s).$$

**Problem 10.** Show that B'(s) is parallel to N(s).

**Definition.** If  $\kappa(s) \neq 0$ , the *torsion*  $\tau(s)$  of the curve  $\alpha$  at s is defined by the formula

$$B'(s) = -\tau(s) N(s) .$$

This is the opposite sign convention from do Carmo.

**Problem 11.** Find the curvature and torsion of the helix

 $\alpha(t) = (a \cos t, a \sin t, b t).$ 

**Problem 12.** Let  $\alpha: I \rightarrow R^3$  be parametrized by arclength and have nowhere vanishing curvature  $\kappa(s) \neq 0$ . Show that

 $T'(s) = \kappa(s) N(s)$   $N'(s) = -\kappa(s) T(s) + \tau(s) B(s)$   $B'(s) = -\tau(s) N(s).$ 



**Definition.** The above equations are called the *Frenet equations*, and the orthonormal frame

T(s), N(s), B(s)

is called the *Frenet frame* along the curve  $\alpha$ .

**THEOREM.** Given smooth functions  $\kappa(s) > 0$ and  $\tau(s)$ , for  $s \in I$ , there exists a regular curve  $\alpha: I \rightarrow R^3$  parametrized by arc length, with curvature  $\kappa(s)$  and torsion  $\tau(s)$ .

Moreover, another other such curve  $\beta: I \rightarrow R^3$ differs from  $\alpha$  by a rigid motion of  $R^3$ .

This result is sometimes called the

fundamental theorem of the local theory of curves.

**Problem 13.** The curvature of a smooth curve in the plane can be given a well-defined sign, just like the torsion of a curve in 3-space. Explain why this is so.

**Problem 14.** Given a smooth function  $\kappa(s)$  defined for s in the interval I, show that the arc-length parametrized plane curve having  $\kappa(s)$  as curvature is given by

$$\alpha(s) = (\int \cos \theta(s) \, ds + a \, , \, \int \sin \theta(s) \, ds + b) \, ,$$

where

$$\theta(s) = \int \kappa(s) ds + \theta_0$$
.

Show that this solution is unique up to translation by (a, b) and rotation by  $\theta_0$ .

## Proof of the fundamental theorem of the local theory of curves in $\mathbb{R}^3$ .

We are given smooth functions  $\kappa(s) > 0$  and  $\tau(s)$ , for  $s \in I$ , and must find a regular curve  $\alpha: I \rightarrow R^3$  parametrized by arc length, with curvature  $\kappa(s)$  and torsion  $\tau(s)$ .

Let's begin by writing the Frenet equations for the Frenet frame.

 $T'(s) = \kappa(s) N(s)$   $N'(s) = -\kappa(s) T(s) + \tau(s) B(s)$   $B'(s) = -\tau(s) N(s).$ 

We'll view this as a system of three first order linear ODEs, with given coefficients  $\kappa(s)$  and  $\tau(s)$ , for the unknown Frenet frame T(s), N(s), B(s).

We can also view it as a system of nine first order linear ODEs for the components of the Frenet frame.

Now the fundamental existence and uniqueness theorem for systems of first order ODEs promises a unique "local solution", that is, a solution defined in some unspecified neighborhood of any given point  $s_0 \in I$ , with preassigned "initial conditions"  $T(s_0)$ ,  $N(s_0)$ ,  $B(s_0)$ .

Although for general systems we can only guarantee a local solution, for linear systems another theorem promises a unique "global solution", that is, one defined on the entire interval I.

So we'll use that theorem, pick an arbitrary point  $s_0 \in I$ , and pick an arbitrary "right handed" orthonormal frame  $T(s_0)$ ,  $N(s_0)$ ,  $B(s_0)$  to get us started.

Then we'll apply the global existence and uniqueness theorem for linear systems of ODEs to get a unique family of vectors T(s), N(s), B(s) which are defined for all  $s \in I$ , which satisfy the Frenet equations, and which have arbitrary preassigned initial values  $T(s_0)$ ,  $N(s_0)$ ,  $B(s_0)$ . Let's pause to check that the nature of the Frenet equations

$$T'(s) = \kappa(s) N(s)$$

 $N'(s) = -\kappa(s) T(s) + \tau(s) B(s)$ 

$$B'(s) = -\tau(s) N(s)$$

guarantees that if we start off with an orthonormal frame  $T(s_0)$ ,  $N(s_0)$ ,  $B(s_0)$ , then the solution will be an orthonormal frame for all s  $\epsilon$  I.

Consider the six real-valued functions defined for  $s \in I$ , and obtained by taking the various inner products of the vectors T(s), N(s), B(s):

< T(s), T(s) > < N(s), N(s) > < B(s), B(s) > < T(s), N(s) > < N(s), B(s) > .

When  $s = s_0$ , these six quantities start off with the values



These six quantities satisfy a system of first order linear ODEs, obtained from the Frenet equations. For example,

and so forth.

The constant solution

<T(s), T(s)>=1 <N(s), N(s)>=1 <B(s), B(s)>=1

 $< T(s), N(s) > = 0 \quad < T(s), B(s) > = 0 \quad < N(s), B(s) > = 0$ 

satisfies this system of ODEs, with the given initial conditions, so by uniqueness this is the only solution.

*Conclusion:* If the vectors T(s), N(s), B(s) start out orthonormal at  $s_0 \in I$ , then they remain orthonormal for all  $s \in I$ .

Where are we so far?

We have proved that, given smooth functions  $\kappa(s) > 0$ and  $\tau(s)$  defined for all  $s \in I$ , and an orthonormal frame  $T(s_0)$ ,  $N(s_0)$ ,  $B(s_0)$  defined for some  $s_0 \in I$ , then there is a unique orthonormal frame T(s), N(s), B(s)defined for all  $s \in I$  with these preassigned initial values, and satisfying the Frenet equations throughout I. Now, to get the curve  $\alpha: I \rightarrow R^3$  defined for  $s \in I$ and having the preassigned curvature  $\kappa(s) > 0$  and torsion  $\tau(s)$ , just pick the point  $\alpha(s_0)$  at random in  $R^3$  and then define

$$\alpha(s) = \alpha(s_0) + \int_{s_0}^{s} T(s) \, ds$$

We get  $\alpha'(s) = T(s)$ , which is a unit vector, so  $\alpha$  is parametrized by arc-length. The Frenet equations

$$T'(s) = \kappa(s) N(s)$$

$$N'(s) = -\kappa(s) T(s) + \tau(s) B(s)$$

$$B'(s) = -\tau(s) N(s)$$

then tell us that the curve  $\alpha$  has curvature  $\kappa(s)$  and torsion  $\tau(s)$ , as desired.

Once the point  $\alpha(s_0)$  and the initial orthonormal frame  $T(s_0)$ ,  $N(s_0)$ ,  $B(s_0)$  is picked, the curve is unique.

Thus any other such curve  $\beta: I \rightarrow R^3$  differs from  $\alpha$  by a rigid motion of  $R^3$ .

This completes the proof of the fundamental theorem of the local theory of curves in  $R^3$ .

**Problem 15.** Let  $\alpha: I \rightarrow R^3$  be a regular curve with nowhere vanishing curvature. Assume that all the principal normal lines of  $\alpha$  pass through a fixed point in  $R^3$ . Prove that the image of  $\alpha$  lies on a circle.

**Problem 16.** Let  $r = r(\theta)$ ,  $a \le \theta \le b$ , describe a plane curve in polar coordinates.

(a) Show that the arc length of this curve is given by

$$\int_{a}^{b} \left[ r^{2} + (r')^{2} \right]^{1/2} d\theta .$$

(b) Show that the curvature is given by

$$\kappa(\theta) = \left[2(r')^2 - r r'' + r^2\right] / \left[(r')^2 + r^2\right]^{3/2}$$

**Problem 17.** Let  $\alpha: I \rightarrow R^3$  be a regular curve, not necessarily parametrized by arc length.

(a) Show that the curvature of  $\alpha$  is given by

$$\kappa(t) = |\alpha' \times \alpha''| / |\alpha'|^3$$

(b) If the curvature is nonzero, so that the torsion is well-defined, show that the torsion is given by

$$\tau(t) = (\alpha' \times \alpha'') \bullet \alpha''' / |\alpha' \times \alpha''|^2.$$

**Definitions.** A *closed plane curve* is a regular curve  $\alpha$ : [a, b]  $\rightarrow \mathbb{R}^2$  such that  $\alpha$  and all its derivatives agree at a and at b, that is,

$$\alpha(a) = \alpha(b), \ \alpha'(a) = \alpha'(b), \ \alpha''(a) = \alpha''(b), \dots$$

Alternatively, one can use the entire real line as domain,  $\alpha: \mathbb{R} \rightarrow \mathbb{R}^2$ , and require that  $\alpha$  be periodic of some period L > 0, that is,  $\alpha(t + L) = \alpha(t)$  for all  $t \in \mathbb{R}$ .

Another alternative: one can use a circle (of any radius) as the domain for a closed curve.

A curve is *simple* if it has no further intersections, other than the coincidence of the beginning and end points.

If we use a circle for the domain,  $\alpha: S^1 \rightarrow R^2$ , then the curve is simple if  $\alpha$  is one-to-one. Since  $S^1$  is compact, this is the same thing as saying that  $\alpha$  is a homeomorphism onto its image. If  $\alpha$ : [a, b]  $\rightarrow \mathbb{R}^2$  is a regular closed curve in the plane, parametrized by arc length, then its *total curvature* is defined by the integral

Total curvature =  $\int_a^b \kappa(s) ds$ .

**Problem 18.** (a) Show that the total curvature of a regular closed curve in the plane is  $2n\pi$  for some integer n.

(b) Show that if the regular closed curve is simple, then n = +1 or -1.

(c) Suppose that a regular closed curve in the plane has curvature which is strictly positive or strictly negative, and that the above integer n equals +1 or -1.

Show that the curve is simple.

Let  $\alpha: S^1 \to R^2$  be a regular closed curve in the plane. For each point  $\theta \in S^1$ , the unit tangent vector  $T(\theta)$  to the curve at the point  $\alpha(\theta)$  is given by

 $T(\theta) = \alpha'(\theta) / |\alpha'(\theta)|.$ 

Thus  $T: S^1 \rightarrow S^1$ , and then the induced map

$$T_*: \pi_1(S^1) \rightarrow \pi_1(S^1)$$

is a group homorphism from the integers to the integers, and hence is multiplication by some integer n, which we call the *degree* of the map T, or the *winding number* or *rotation index* of the curve  $\alpha$ . **Problem 19.** Show that this integer n is the same as the integer n in the previous problem, that is, show that the total curvature of the curve  $\alpha$  is  $2\pi n$ .

**Definition.** Let  $\alpha_0$  and  $\alpha_1 : S^1 \rightarrow R^2$  be regular closed curves in the plane. A homotopy

A: 
$$S^1 \times [0, 1] \rightarrow R^2$$

between  $\alpha_0$  and  $\alpha_1$  is said to be a *regular homotopy* if each intermediate curve,  $\alpha_t : S^1 \rightarrow R^2$ , defined by  $\alpha_t(\theta) = A(\theta, t)$ , is a *regular* curve. **Remark.** If  $\alpha_0$  and  $\alpha_1 : S^1 \rightarrow R^2$  are regularly homotopic, then they have the same winding number.

**WHITNEY-GRAUSTEIN THEOREM.** Two regular curves  $\alpha_0$  and  $\alpha_1$ :  $S^1 \rightarrow R^2$  are regularly homotopic if and only if they have the same winding number.

## **Volumes of tubes...two problems.**

(1) Show that the area of a tube of radius  $\varepsilon$  about a simple closed curve of length L in the plane is  $2\varepsilon L$ .

(2) Show that the volume of a tube of radius  $\varepsilon$  about a simple closed curve of length L in 3-space is  $\pi \varepsilon^2 L$ .

We will solve both of these problems, and the Frenet equations for curves will be our main tool.

#### **Tubes about circles in the plane.**

The simplest example is that of a tube of radius  $\varepsilon$  about a circle of radius r in the plane, so just an annulus between concentric circles of radii  $r + \varepsilon$  and  $r - \varepsilon$ , with area

$$\pi (r + \varepsilon)^{2} - \pi (r - \varepsilon)^{2} = \pi 4r\varepsilon = (2\pi r) (2\varepsilon)$$

= (circumference of circle) (width of tube)



## Tubes about any curve in the plane.

Parametrize the curve by arc length: x = x(s) for  $0 \le s \le L$ .

Let T(s) = x'(s) and N(s) denote unit tangent and normal vectors along the curve.



Frenet eqns:  $T'(s) = \kappa(s) N(s)$  and  $N'(s) = -\kappa(s) T(s)$ .

To produce the  $\varepsilon$ -tube about this curve, we define  $F: \{0 \le s \le L\} \times \{-\varepsilon < t < \varepsilon\} \implies \mathbb{R}^2$ by F(s, t) = x(s) + t N(s).

Then the partial derivatives of F are given by

$$F_{s} = x'(s) + t N'(s) = T(s) + t (-\kappa(s) T(s))$$
$$= (1 - t \kappa(s)) T(s)$$

 $F_t = N(s)$ .

Hence the area of the  $\varepsilon$ -tube about our curve is given by

 $\int_{s} \int_{t} |\det dF| dt ds = \int_{s} \int_{t} (1 - t \kappa(s)) dt ds$ 

$$= \int_{s} (t - 1/2 t^{2} \kappa(s))|_{-\varepsilon} \delta s = \int_{s} 2\varepsilon ds = L \cdot 2\varepsilon$$

= (length of curve) (width of strip),

independent of the nature of the curve.

### **Tubes about any curve in 3-space.**

Parametrize the curve by arc length: x = x(s) for  $0 \le s \le L$ .

Frenet frame along the curve: T(s) = x'(s), N(s), B(s).



Frenet eqns: T'(s) = 
$$\kappa(s) N(s)$$
  
N'(s) =  $-\kappa(s) T(s)$  +  $\tau(s) B(s)$   
B'(s) =  $-\tau(s) N(s)$ 

To produce the  $\varepsilon$ -tube about this curve, we define

F: 
$$\{0 \le s \le L\} \times \{t^2 + u^2 < \epsilon\} \rightarrow R^3$$
  
by  
F(s, t, u) = x(s) + t N(s) + u B(s).

Then the partial derivatives of F are given by

$$F_{s} = (1 - t \kappa(s) T(s) - u \tau(s) N(s) + t \tau(s) B(s)$$

 $F_t = N(s)$  $F_u = B(s)$  Hence the volume of the  $\varepsilon$ -tube about our curve is given by

 $\int_{s} \int_{t^{2}+u^{2} < \epsilon^{2}} |\det dF| dt du ds = \int_{s} \int_{t^{2}+u^{2} < \epsilon^{2}} (1 - t \kappa(s)) dt du ds$  $= \int_{s} \pi \epsilon^{2} ds = L \cdot \pi \epsilon^{2}$ 

= (length of curve) (area of  $\varepsilon$ -disk),

independent of the nature of the curve.

We used the fact that the integral of the odd function t over the disk  $t^2 + u^2 < \varepsilon^2$  is zero. **Problem.** To get a Frenet frame along a curve in  $\mathbb{R}^3$ , one needs to assume that the curvature  $\kappa(s)$  never vanishes.

Without this hypothesis, one can still prove that

vol  $\varepsilon$ -tube = (length of curve) (area of  $\varepsilon$ -disk).

(a) Let T(s), A(s), B(s) be an ON frame along our curve x(s). Show that the Frenet eqns are replaced by

$$T'(s) = \alpha(s) A(s) + \beta(s) B(s)$$

 $A'(s) = -\alpha(s) T(s) + \gamma(s) B(s)$ 

 $B'(s) = -\beta(s) T(s) - \gamma(s) A(s).$ 

(b) Defining the  $\varepsilon$ -tube about our curve x(s) by

$$F(s, t, u) = x(s) + t A(s) + u B(s)$$

with T(s) = x'(s), and hence A(s) and B(s) orthogonal to the curve, show that we get

vol 
$$\varepsilon$$
-tube =  $\int_{s} \int_{t^{2}+u^{2} < \varepsilon^{2}} |\det dF| dt du ds$   
=  $\int_{s} \int_{t^{2}+u^{2} < \varepsilon^{2}} (1 - t\alpha(s) - u\beta(s)) dt du ds$   
=  $\int_{s} \pi \varepsilon^{2} ds = L \cdot \pi \varepsilon^{2}$ 

= (length of curve) (area of 
$$\varepsilon$$
-disk).

**Tough Problem.** Show that for a smooth curve in  $\mathbb{R}^n$ , we get

vol  $\varepsilon$ -tube = (length of curve) (vol B<sup>n-1</sup>( $\varepsilon$ )),

where  $B^{n-1}(\epsilon)$  is a round ball of radius  $\epsilon$  in  $R^{n-1}$ .

# **Tubes about round spheres in 3-space.**



The "tube" of radius  $\varepsilon$  about a round sphere of radius r in 3-space is just the region between the concentric spheres of radii  $r + \varepsilon$  and  $r - \varepsilon$ , with volume

$$4/3 \pi (r + \epsilon)^{3} - 4/3 \pi (r - \epsilon)^{3} = 4/3 \pi (6 r^{2} \epsilon + 2 \epsilon^{3})$$

= 
$$(4 \pi r^2) 2\epsilon + 8/3 \pi \epsilon^3$$
 = (area of sphere)  $2\epsilon + 8/3 \pi \epsilon^3$ 

= 
$$2\epsilon$$
 (area of sphere +  $2\pi/3 \chi$ (sphere)  $\epsilon^2$ ),

which is exactly "Weyl's tube formula" for surfaces in  $\mathbb{R}^3$ .

**Problem.** Compute the volume of the  $\varepsilon$ -tube about a torus of revolution in 3-space, and show that it is

vol  $\varepsilon$ -tube =  $2\varepsilon$  (area of torus)

= 
$$2\epsilon$$
 (area of torus +  $2\pi/3 \chi$ (torus)  $\epsilon^2$ ),

since  $\chi$ (torus) = 0, again in accord with Weyl's tube formula.