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Math 501 - Differential Geometry 

Professor Gluck 

January 12, 2012 

 

1. CURVES 
 

Definition.  A map  

 

F(x1, ..., xm)  =  (f1(x1,...,xm) , ..., fn(x1,...,xm)) 

 

from an open set in one Euclidean space into another 

Euclidean space is said to be smooth (or of class  C )  

if it has continuous partial derivatives of all orders. 
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In this chapter, we will be dealing with smooth curves 

 

: I    R
3
 , 

 

where  I  =  (a, b)  is an open interval in the real line  R
3
 , 

allowing  a  =  —   or  b  =  +  . 

 

Do Carmo calls these "parametrized differentiable curves", 

to emphasize that the specific function    is part of the 

definition.  Thus 

 

(t)  =  (cos t, sin t)     and     (t)  =  (cos 2t, sin 2t) 

 

are considered to be different curves in the plane, even 

though their images are the same circle.
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Examples. 

 

(1) The helix  (t)  =  (a cos t, a sint t, bt) ,  t  R 

 

(2)  (t)  =  (t
3
, t

2
) . 

 

Problem 1.  Let  (t)  be a smooth curve which does not pass 

through the origin.  If  (t0)  is the point of its image 

which is closest to the origin (assuming such a point exists), 

and if  '(t0)    0 ,  show that the position vector  (t0)  is 

orthogonal to the velocity vector  '(t0) . 



 4 

 

 

Problem 2.  Let  : I    R
3
  be a smooth curve  

and let  V  R
3
  be a fixed vector.  Assume that   

'(t)  is orthogonal to  V  for all  t  I  and also that   

(t0)  is orthogonal to  V  for some  t0  I . 

Prove that  (t)  is orthogonal to  V  for all  t  I . 

 

 

Problem 3.  Let  : I    R
3
  be a smooth curve. 

Show that  | (t)|  is constant if and only if 

(t)  is orthogonal to  '(t)  for all  t  I . 
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Definition.  A smooth curve  : I    R
3
  is said to be 

regular if  '(t)    0  for all  t   I .  Equivalently, we 

say that    is an immersion of  I  into  R
3
 . 

 

The curve  (t)  =  (t
3
, t

2
)  in the plane fails to be regular 

when  t = 0 . 

 

A regular smooth curve has a well-defined tangent line  

at each point, and the map    is one-to-one on a small 

neighborhood of each point  t  I . 

 

Convention.  For simplicity, we'll begin omitting the word 

"smooth".  So for example, we'll just say "regular curve",  

but mean "regular smooth curve". 
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Problem 4.  If  : [a, b]    R
3
  is just continuous, and 

we attempt to define the arc length of the image [a, b] 

to be the LUB of the lengths of all inscribed polygonal 

paths, show that this LUB may be infinite. 

 

By contrast, show that if    is of class C
1
 (meaning that 

it has a first derivative  '(t)  which is continuous), then 

this LUB is finite and equals  a
b
  | '(t)|  dt . 



 7 

 

Let  : I    R
3
  be a regular (smooth) curve. 

Then the arc length along   ,  starting from some  

point  (t0) ,  is given by   

 

s(t)  =  to
t
 | '(t)| dt . 

 

Note that  s'(t)  =  | '(t)|    0 ,  so we can invert this 

function to obtain  t  =  t(s) .   

 

Then  (s)  =  (t(s))  is a reparametrization of our curve, 

and  | '(s)|  =  1. 

 

We will say that    is parametrized by arc length. 



 8 

 

 

 

 

In what follows, we will generally parametrize  

our regular curves by arc length. 

 

If  : I    R
3
  is parametrized by arc length,  

then the unit vector  T(s)  =  '(s)  is called the  

unit tangent vector to the curve. 
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Problem 5.  A circular disk of radius 1 in the xy-plane 

rolls without slipping along the x-axis.  The figure 

described by a point of the circumference of the disk 

is called a cycloid. 

                
 

(a)  Find a parametrized curve  : R    R
2
  whose 

image is the cycloid. 

 

(b)  Find the arc length of the cycloid corresponding to 

a complete rotation of the disk. 
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Problem 6.  Let  : [a, b]    R
3
  be a parametrized curve, 

and set  (a)  =  p  and  (b)  =  q . 

 

(1)  Show that for any constant vector  V  with  |V|  =  1 , 

 

(q  —  p)  V  =  a
b
  '(t)  V dt    a

b
  | '(t)|  dt . 

 

(2)  Set  V  =  (q — p) / |q — p|  and conclude that 

 

| (b)  —  (a)|    a
b
  | '(t)|  dt . 

 

This shows that the curve of shortest length from  (a)   

to  (b)  is the straight line segment joining these points. 
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Problem 7.  Let  : I    R
3
  be parametrized by arc length. 

Thus the tangent vector  '(s)  has unit length.  Show that 

the norm  | "(s)|  of the second derivative measures the 

rate of change of the angle which neighboring tangents 

make with the tangent at  s . 

 

 

Definition.  If  : I    R
3
  is parametrized by arc length, 

then the number  (s)  =  | "(s)|  is called the curvature 

of    at  s . 
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Problem 8.  Show that the curvature of a circle is the 

reciprocal of its radius. 

 

Let  : I   R
3
  be parametrized by arc length. 

When the curvature  (s)    0 ,  the unit vector 
 

N(s)  =  "(s) / | "(s)| 
 
is well-defined. 

 

Problem 9.  Show that the unit vector  N(s)  is normal 

to the curve, in the sense that  N(s)  T(s)  =  0 , 

where  T(s)  is the unit tangent vector to the curve. 

 

Definition.  When  (s)    0 ,  we call  N(s)  the 

principal normal vector to the curve. 



 13

 

Let  : I    R
3
  be parametrized by arc length, and 

let  T(s)  be the unit tangent vector along   . 

 

If the curvature  (s)    0 ,  then we also have the 

principal normal vector  N(s)  at  (s) . 

 

In that case, define the binormal vector  B(s)  to    at  s 

by the vector cross product,  

 

B(s)  =  T(s)    N(s) . 

 

 

Problem 10.  Show that  B'(s)  is parallel to  N(s) . 
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Definition.  If  (s)    0 ,  the torsion  (s)  of the curve   

  at  s  is defined by the formula 

 

B'(s)  =  — (s) N(s) . 

 

This is the opposite sign convention from do Carmo. 

 

Problem 11.  Find the curvature and torsion of the helix 

 

(t)  =  (a cos t, a sin t, b t) . 
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Problem 12.  Let  : I    R
3
  be parametrized by arc- 

length and have nowhere vanishing curvature  (s)    0 . 

Show that 

 

 T'(s)  =                          (s) N(s) 

 

 N'(s)  =  — (s) T(s)                         +  (s) B(s) 

 

 B'(s)  =                       — (s) N(s) . 
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Definition.  The above equations are called the Frenet 

equations,  and the orthonormal frame 

 

T(s) ,  N(s) ,  B(s)  

 

is called the Frenet frame along the curve   . 
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THEOREM.  Given smooth functions  (s)  >  0   

and  (s) ,  for  s  I ,  there exists a regular curve   

: I    R
3
  parametrized by arc length,  

with curvature  (s)  and  torsion  (s) . 

 

Moreover, another other such curve  : I    R
3
   

differs from    by a rigid motion of  R
3
 . 

 

This result is sometimes called the  

 

 fundamental theorem of the local theory of curves. 
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Problem 13.  The curvature of a smooth curve in the plane 

can be given a well-defined sign, just like the torsion of 

a curve in 3-space.  Explain why this is so. 

 

Problem 14.  Given a smooth function  (s)  defined for 

s  in the interval  I ,  show that the arc-length parametrized 

plane curve having  (s)  as curvature is given by 

 

(s)  =  (  cos (s) ds  +  a ,   sin (s) ds  +  b) , 

 

where 

(s)  =   (s)  ds  +  0 . 

 

Show that this solution is unique up to translation by (a, b)  

and rotation by  0 . 
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Proof of the fundamental theorem  

of the local theory of curves in  R
3
 . 

 

We are given smooth functions  (s)  >  0  and  (s) ,  for  s  I ,  

and must find a regular curve  : I    R
3
  parametrized by arc 

length, with curvature  (s)  and torsion  (s) . 

 

Let's begin by writing the Frenet equations for the Frenet frame. 

 

 T'(s)  =                          (s) N(s) 

 

 N'(s)  =  — (s) T(s)                         +  (s) B(s) 

 

 B'(s)  =                       — (s) N(s) . 
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We'll view this as a system of three first order linear ODEs, 

with given coefficients  (s)  and  (s) ,  for the unknown 

Frenet frame  T(s) , N(s) , B(s) . 

 

We can also view it as a system of nine first order linear ODEs 

for the components of the Frenet frame. 
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Now the fundamental existence and uniqueness theorem for 

systems of first order ODEs promises a unique "local solution", 

that is, a solution defined in some unspecified neighborhood of 

any given point  s0  I ,  with preassigned "initial conditions"  

T(s0) ,  N(s0) ,  B(s0) . 

 

Although for general systems we can only guarantee a local 

solution, for linear systems another theorem promises a unique 

"global solution", that is, one defined on the entire interval  I . 
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So we'll use that theorem, pick an arbitrary point  s0  I , 

and pick an arbitrary "right handed" orthonormal frame 

T(s0) ,  N(s0) ,  B(s0)  to get us started. 

 

Then we'll apply the global existence and uniqueness theorem 

for linear systems of ODEs to get a unique family of vectors  

T(s) ,  N(s) ,  B(s)  which are defined for all  s  I , which 

satisfy the Frenet equations, and which have arbitrary 

preassigned initial values  T(s0) ,  N(s0) ,  B(s0) . 
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Let's pause to check that the nature of the Frenet equations 

 

 T'(s)  =                          (s) N(s) 

 

 N'(s)  =  — (s) T(s)                         +  (s) B(s) 

 

 B'(s)  =                       — (s) N(s)  

 

guarantees that if we start off with an orthonormal frame 

T(s0) ,  N(s0) ,  B(s0) ,  then the solution will be an 

orthonormal frame for all  s  I . 
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Consider the six real-valued functions defined for  s  I , 

and obtained by taking the various inner products of the 

vectors  T(s) ,  N(s) ,  B(s) : 

 

     <T(s), T(s)>          <N(s), N(s)>          <B(s), B(s)> 

 

     <T(s), N(s)>          <T(s), B(s)>          <N(s), B(s)> . 

 

When  s = s0 ,  these six quantities start off with the values 

 

               1                             1                            1  

 

               0                             0                            0
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These six quantities satisfy a system of first order linear ODEs, 

obtained from the Frenet equations.  For example, 

 

<T(s), T(s)> '  =  2 <T(s), T'(s)>  =  2 (s) <T(s), N(s)> 

 

<T(s), N(s)> '  =  <T'(s), N(s)>  +  <T(s), N'(s)> 

 

=  < (s) N(s), N(s)> + <T(s), — (s)T(s) + (s) B(s)> 

 

=  (s) <N(s), N(s)> — (s) <T(s), T(s)> + (s) <T(s), B(s)> , 

 

and so forth.   
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The constant solution 

 

<T(s), T(s)> =1    <N(s), N(s)> = 1    <B(s), B(s)> = 1 

 

<T(s), N(s)> = 0   <T(s), B(s)> = 0    <N(s), B(s)> = 0 

 

satisfies this system of ODEs, with the given initial 

conditions, so by uniqueness this is the only solution. 

 

Conclusion:  If the vectors  T(s) , N(s) , B(s)  start out 

orthonormal at  s0  I ,  then they remain orthonormal 

for all  s  I . 
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Where are we so far? 

 

We have proved that, given smooth functions  (s) > 0 

and  (s)  defined for all  s   I ,  and an orthonormal 

frame  T(s0) , N(s0) , B(s0)  defined for some s0  I ,   

then there is a unique orthonormal frame  T(s) , N(s) , B(s)   

defined for all  s  I  with these preassigned initial values,  

and satisfying the Frenet equations throughout  I . 
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Now, to get the curve  : I    R
3
  defined for  s  I   

and having the preassigned curvature  (s) > 0  and 

torsion  (s) ,  just pick the point  (s0)  at random 

in  R
3
  and then define 

 

(s)  =  (s0)  +  so

s
  T(s)  ds . 

 

We get  '(s)  =  T(s) ,  which is a unit vector,  

so    is parametrized by arc-length. 
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The Frenet equations 

 

 T'(s)  =                          (s) N(s) 

 

 N'(s)  =  — (s) T(s)                         +  (s) B(s) 

 

 B'(s)  =                       — (s) N(s)  

 

then tell us that the curve    has curvature  (s)  and 

torsion  (s) ,  as desired. 
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Once the point  (s0)  and the initial orthonormal frame 

T(s0) , N(s0) , B(s0)  is picked, the curve is unique. 

 

Thus any other such curve  : I    R
3
  differs from   

by a rigid motion of  R
3
 . 

 

This completes the proof of the fundamental theorem of 

the local theory of curves in R
3
 . 
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Problem 15.  Let  : I    R
3
  be a regular curve with 

nowhere vanishing curvature.  Assume that all the 

principal normal lines of    pass through a fixed point 

in  R
3
 .  Prove that the image of    lies on a circle. 

 

Problem 16.  Let  r  =  r( ) ,  a        b , describe a plane 

curve in polar coordinates. 

 

(a)  Show that the arc length of this curve is given by 

 

a
b
 [r

2
  +  (r')

2
]

1/2
 d  . 

 

(b)  Show that the curvature is given by 

 

( )  =  [2(r')
2
  — r r"  +  r

2
] / [(r')

2
  +  r

2
]

3/2 
. 
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Problem 17.  Let  : I    R
3
  be a regular curve, not 

necessarily parametrized by arc length. 

 

(a)  Show that the curvature of    is given by 

 

(t)  =  | '  "| / | '|
3
 . 

 

(b)  If the curvature is nonzero, so that the torsion is 

well-defined, show that the torsion is given by 

 

(t)  =  ( '  ")  ''' / | '  "|
2
 . 
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Definitions.  A closed plane curve is a regular curve 

: [a, b]    R
2
  such that    and all its derivatives 

agree at  a  and at  b ,  that is, 

 

(a)  =  (b) ,  '(a)  =  '(b) ,  "(a)  =  "(b) , ... . 

 

Alternatively, one can use the entire real line as domain, 

: R    R
2
 ,  and require that    be periodic of some 

period  L > 0 ,  that is,  (t + L)  =  (t)  for all  t  R . 

 

Another alternative: one can use a circle (of any radius)  

as the domain for a closed curve. 
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A curve is simple if it has no further intersections, other 

than the coincidence of the beginning and end points. 

 

If we use a circle for the domain,  : S
1
    R

2
 ,  then 

the curve is simple if    is one-to-one.  Since  S
1
  is 

compact, this is the same thing as saying that    is 

a homeomorphism onto its image. 
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If  : [a, b]    R
2
  is a regular closed curve in the plane, 

parametrized by arc length, then its total curvature is  

defined by the integral 

 

Total curvature  =  a

b
  (s) ds . 

 



 36

 

 

Problem 18.  (a) Show that the total curvature of a regular 

closed curve in the plane is  2n   for some integer  n . 

 

(b) Show that if the regular closed curve is simple,  

then  n  =  +1  or  —1 . 

 

(c)  Suppose that a regular closed curve in the plane has 

curvature which is strictly positive or strictly negative, 

and that the above integer  n  equals  +1  or  —1 .   

 

Show that the curve is simple. 
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Let  : S
1
    R

2
  be a regular closed curve in the plane.   

For each point    S
1
 ,  the unit tangent vector  T( )  to  

the curve at the point  ( )  is given by 

 

T( )  =  '( ) / | '( )| . 

 

Thus  T: S
1
    S

1
 ,  and then the induced map 

 

T* :  1(S
1
)    1(S

1
) 

 

is a group homorphism from the integers to the integers, 

and hence is multiplication by some integer  n ,  which we 

call the degree of the map  T ,  or the winding number or 

rotation index of the curve   . 
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Problem 19. Show that this integer  n  is the same as the 

integer  n  in the previous problem, that is, show that the  

total curvature of the curve    is  2 n . 

 

Definition.  Let  0  and  1 :  S
1
    R

2
  be regular closed 

curves in the plane.  A homotopy 

 

A: S
1
  [0, 1]    R

2
 

 

between  0  and  1  is said to be a regular homotopy 

if each intermediate curve,  t :  S
1
    R

2
 ,  defined by 

t( )  =  (  , t) ,  is a regular curve. 
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Remark.  If  0  and  1 :  S
1
    R

2
  are regularly 

homotopic, then they have the same winding number. 

 

 

WHITNEY-GRAUSTEIN THEOREM.  Two regular 

curves  0  and  1:  S
1
    R

2
  are regularly homotopic 

if and only if they have the same winding number. 
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Volumes of tubes...two problems. 

 

 

(1) Show that the area of a tube of radius    about a 

simple closed curve of length  L  in the plane is  2  L . 

                         

 

(2) Show that the volume of a tube of radius    about 

a simple closed curve of length  L  in 3-space is   
2 
L . 

 

 

 We will solve both of these problems, and the  

 Frenet equations for curves will be our main tool.                                                    
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Tubes about circles in the plane. 

 

The simplest example is that of a tube of radius    about a 

circle of radius  r  in the plane, so just an annulus between 

concentric circles of radii  r +   and  r   ,  with area 
 
      (r + )

2
     (r  )

2
  =   4r   =  (2 r) (2 ) 

 
             =  (circumference of circle) (width of tube) 
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Tubes about any curve in the plane. 

 

Parametrize the curve by arc length:  x  =  x(s)  for  0  s  L . 

 

Let  T(s)  =  x'(s)  and  N(s)  denote unit tangent and normal 

vectors along the curve. 
    

                                 

 

Frenet eqns:  T'(s)  =  (s) N(s)   and   N'(s)  =   (s) T(s) . 
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To produce the -tube about this curve, we define 

 

F: {0  s  L}  {  < t < }    R
2
 

by 

F(s, t)  =  x(s)  +  t N(s) . 

 

Then the partial derivatives of  F  are given by 

 

Fs  =  x'(s)  +  t N'(s)  =  T(s)  +  t ( (s) T(s)) 

 

                                                =  (1  t (s)) T(s) 

 

              Ft  =  N(s) . 
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Hence the area of the -tube about our curve is given by 

 

        s t  |det dF|  dt ds  =  s t (1  t (s)) dt ds 

 

                       =  s  (t  1/2 t
2
 (s))|–   ds  =  s  2   ds  =  L . 2  

 

                       =  (length of curve) (width of strip), 

 

independent of the nature of the curve. 
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Tubes about any curve in 3-space. 

 

Parametrize the curve by arc length:  x  =  x(s)  for  0  s  L . 

 

Frenet frame along the curve: T(s) = x'(s) ,  N(s) ,  B(s) . 
  

            
  
Frenet eqns:  T'(s)  =                         (s) N(s) 

    N'(s)  =   (s) T(s)                       +  (s) B(s) 

    B'(s)  =                        (s) N(s) 
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To produce the -tube about this curve, we define 

 

F: {0  s  L}  {t
2
 + u

2
 < }    R

3
 

by 

F(s, t, u)  =  x(s)  +  t N(s)  +  u B(s) . 

 

Then the partial derivatives of  F  are given by 

 

 Fs  =  (1  t (s) T(s)    u (s) N(s)  +  t (s) B(s) 

 

 Ft  =  N(s) 

 

 Fu  =  B(s) 
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Hence the volume of the -tube about our curve is given by 

 

  s t2+u2< 2  |det dF|  dt du ds  =  s  t2+u2< 2  (1  t (s)) dt du ds 

 

                       =  s   
2
  ds  =  L .  

2 

 

                       =  (length of curve) (area of -disk), 

 

independent of the nature of the curve. 

 

We used the fact that the integral of the odd function  t  over 

the disk  t
2
 + u

2
 < 

2
  is zero. 
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Problem.  To get a Frenet frame along a curve in  R
3
 ,  one 

needs to assume that the curvature  (s)  never vanishes. 

 

Without this hypothesis, one can still prove that 

 

vol -tube  =  (length of curve) (area of -disk) . 

 

(a)  Let  T(s) ,  A(s) ,  B(s)  be an ON frame along our 

curve  x(s) .  Show that the Frenet eqns are replaced by 

 

 T'(s)  =                         (s) A(s)  +  (s) B(s) 

 

 A'(s)  =   (s) T(s)                       +  (s) B(s) 

 

 B'(s)  =   (s) T(s)    (s) A(s) . 
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(b)  Defining the -tube about our curve  x(s)  by 

 

F(s, t, u)  =  x(s)  +  t A(s)  +  u B(s) , 

 

with  T(s)  =  x'(s) ,  and hence  A(s)  and  B(s)  orthogonal to 

the curve, show that we get 

 

     vol -tube  =  s t2+u2< 2 |det dF| dt du ds   

 

                       =  s t2+u2< 2 (1  t (s)  u (s)) dt du ds 

 

                       =  s   
2
  ds  =  L .  

2 

 

                       =  (length of curve) (area of -disk) . 
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Tough Problem.  Show that for a smooth curve in  R
n
 ,   

we get 

 

vol -tube  =  (length of curve) (vol B
n–1

( )) , 

  

where  B
n–1

( )  is a round ball of radius    in  R
n–1

 . 
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Tubes about round spheres in 3-space. 
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The "tube" of radius    about a round sphere of radius  r  in 

3-space is just the region between the concentric spheres of 

radii  r +   and  r   ,  with volume 

 

4/3  (r + )
3
    4/3  (r  )

3
  =  4/3  (6 r

2
   +  2 

3
) 

 

=  (4  r
2
) 2   +  8/3  

3
  =  (area of sphere) 2   +  8/3  

3
 

 

=  2  (area of sphere  +  2 /3 (sphere) 
2) , 

 

which is exactly "Weyl's tube formula" for surfaces in  R
3
 . 
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Problem.   Compute the volume of the -tube about 

a torus of revolution in 3-space, and show that it is 

 

   vol -tube  =  2  (area of torus)  

 

                     =  2  (area of torus  +  2 /3 (torus) 
2) , 

 

since  (torus)  =  0 ,  again in accord with Weyl's 

tube formula. 

 


