Math 501 - Differential Geometry
Professor Gluck
January 12, 2012

1. CURVES

Definition. A map

$$
\mathrm{F}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)=\left(\mathrm{f}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right), \ldots, \mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{m}}\right)\right)
$$

from an open set in one Euclidean space into another Euclidean space is said to be smooth (or of class C^{∞}) if it has continuous partial derivatives of all orders.

In this chapter, we will be dealing with smooth curves

$$
\alpha: I \rightarrow R^{3},
$$

where $I=(a, b)$ is an open interval in the real line R^{3}, allowing $\mathrm{a}=-\infty$ or $\mathrm{b}=+\infty$.

Do Carmo calls these "parametrized differentiable curves", to emphasize that the specific function α is part of the definition. Thus

$$
\alpha(t)=(\cos t, \sin t) \quad \text { and } \quad \beta(t)=(\cos 2 t, \sin 2 t)
$$

are considered to be different curves in the plane, even though their images are the same circle.

Examples.

(1) The helix $\alpha(t)=(a \cos t, a \sin t, b t), t \in R$
(2) $\alpha(t)=\left(t^{3}, t^{2}\right)$.

Problem 1. Let $\alpha(\mathrm{t})$ be a smooth curve which does not pass through the origin. If $\alpha\left(\mathrm{t}_{0}\right)$ is the point of its image which is closest to the origin (assuming such a point exists), and if $\alpha^{\prime}\left(\mathrm{t}_{0}\right) \neq 0$, show that the position vector $\alpha\left(\mathrm{t}_{0}\right)$ is orthogonal to the velocity vector $\alpha^{\prime}\left(\mathrm{t}_{0}\right)$.

Problem 2. Let $\alpha: I \rightarrow R^{3}$ be a smooth curve and let $\mathrm{V} \in \mathrm{R}^{3}$ be a fixed vector. Assume that $\alpha^{\prime}(\mathrm{t})$ is orthogonal to V for all $\mathrm{t} \epsilon \mathrm{I}$ and also that $\alpha\left(\mathrm{t}_{0}\right)$ is orthogonal to V for some $\mathrm{t}_{0} \in \mathrm{I}$. Prove that $\alpha(\mathrm{t})$ is orthogonal to V for all $\mathrm{t} \epsilon \mathrm{I}$.

Problem 3. Let $\alpha: I \rightarrow R^{3}$ be a smooth curve. Show that $|\alpha(t)|$ is constant if and only if $\alpha(\mathrm{t})$ is orthogonal to $\alpha^{\prime}(\mathrm{t})$ for all $\mathrm{t} \epsilon \mathrm{I}$.

Definition. A smooth curve $\alpha: I \rightarrow R^{3}$ is said to be regular if $\alpha^{\prime}(\mathrm{t}) \neq 0$ for all $\mathrm{t} \epsilon$ I. Equivalently, we say that α is an immersion of I into R^{3}.

The curve $\alpha(t)=\left(t^{3}, t^{2}\right)$ in the plane fails to be regular when $t=0$.

A regular smooth curve has a well-defined tangent line at each point, and the map α is one-to-one on a small neighborhood of each point $t \in I$.

Convention. For simplicity, we'll begin omitting the word "smooth". So for example, we'll just say "regular curve", but mean "regular smooth curve".

Problem 4. If $\alpha:[a, b] \rightarrow R^{3}$ is just continuous, and we attempt to define the arc length of the image $\alpha[a, b]$ to be the LUB of the lengths of all inscribed polygonal paths, show that this LUB may be infinite.

By contrast, show that if α is of class C^{1} (meaning that it has a first derivative $\alpha^{\prime}(t)$ which is continuous), then this LUB is finite and equals $\int_{a}^{b}\left|\alpha^{\prime}(t)\right| d t$.

Let $\alpha: I \rightarrow R^{3}$ be a regular (smooth) curve.
Then the arc length along α, starting from some point $\alpha\left(\mathrm{t}_{0}\right)$, is given by

$$
\mathrm{s}(\mathrm{t})=\int_{\mathrm{to}_{0}}^{\mathrm{t}}\left|\alpha^{\prime}(\mathrm{t})\right| \mathrm{dt} .
$$

Note that $\mathrm{s}^{\prime}(\mathrm{t})=\left|\alpha^{\prime}(\mathrm{t})\right| \neq 0$, so we can invert this function to obtain $\mathfrak{t}=\mathfrak{t}(\mathrm{s})$.

Then $\beta(\mathrm{s})=\alpha(\mathrm{t}(\mathrm{s}))$ is a reparametrization of our curve, and $\left|\beta^{\prime}(\mathrm{s})\right|=1$.

We will say that β is parametrized by arc length.

In what follows, we will generally parametrize our regular curves by arc length.

If $\alpha: I \rightarrow R^{3}$ is parametrized by arc length, then the unit vector $T(s)=\alpha^{\prime}(s)$ is called the unit tangent vector to the curve.

Problem 5. A circular disk of radius 1 in the xy-plane rolls without slipping along the x -axis. The figure described by a point of the circumference of the disk is called a cycloid.

(a) Find a parametrized curve $\alpha: R \rightarrow R^{2}$ whose image is the cycloid.
(b) Find the arc length of the cycloid corresponding to a complete rotation of the disk.

Problem 6. Let $\alpha:[a, b] \rightarrow R^{3}$ be a parametrized curve, and set $\alpha(a)=p$ and $\alpha(b)=q$.
(1) Show that for any constant vector V with $|\mathrm{V}|=1$,

$$
(\mathrm{q}-\mathrm{p}) \bullet \mathrm{V}=\int_{\mathrm{a}}^{\mathrm{b}} \alpha^{\prime}(\mathrm{t}) \bullet \mathrm{Vdt} \leq \int_{\mathrm{a}}^{\mathrm{b}}\left|\alpha^{\prime}(\mathrm{t})\right| \mathrm{dt} .
$$

(2) Set $\mathrm{V}=(\mathrm{q}-\mathrm{p}) /|\mathrm{q}-\mathrm{p}|$ and conclude that

$$
|\alpha(\mathrm{b})-\alpha(\mathrm{a})| \leq \int_{\mathrm{a}}^{\mathrm{b}}\left|\alpha^{\prime}(\mathrm{t})\right| \mathrm{dt} .
$$

This shows that the curve of shortest length from $\alpha(a)$ to $\alpha(b)$ is the straight line segment joining these points.

Problem 7. Let $\alpha: I \rightarrow R^{3}$ be parametrized by arc length. Thus the tangent vector $\alpha^{\prime}(s)$ has unit length. Show that the norm $\left|\alpha^{\prime \prime}(\mathrm{s})\right|$ of the second derivative measures the rate of change of the angle which neighboring tangents make with the tangent at s .

Definition. If $\alpha: I \rightarrow R^{3}$ is parametrized by arc length, then the number $\kappa(\mathrm{s})=|\alpha(\mathrm{s})|$ is called the curvature of α at s .

Problem 8. Show that the curvature of a circle is the reciprocal of its radius.

Let $\alpha: I \rightarrow R^{3}$ be parametrized by arc length. When the curvature $\kappa(\mathrm{s}) \neq 0$, the unit vector

$$
\mathrm{N}(\mathrm{~s})=\alpha^{\prime \prime}(\mathrm{s}) /\left|\alpha^{\prime \prime}(\mathrm{s})\right|
$$

is well-defined.

Problem 9. Show that the unit vector $\mathrm{N}(\mathrm{s})$ is normal to the curve, in the sense that $\mathrm{N}(\mathrm{s}) \bullet \mathrm{T}(\mathrm{s})=0$, where $T(s)$ is the unit tangent vector to the curve.

Definition. When $\kappa(s) \neq 0$, we call $N(s)$ the principal normal vector to the curve.

Let $\alpha: I \rightarrow R^{3}$ be parametrized by arc length, and let $\mathrm{T}(\mathrm{s})$ be the unit tangent vector along α.

If the curvature $\kappa(s) \neq 0$, then we also have the principal normal vector $N(s)$ at $\alpha(s)$.

In that case, define the binormal vector $B(s)$ to α at s by the vector cross product,

$$
\mathrm{B}(\mathrm{~s})=\mathrm{T}(\mathrm{~s}) \times \mathrm{N}(\mathrm{~s}) .
$$

Problem 10. Show that $B^{\prime}(s)$ is parallel to $N(s)$.

Definition. If $\kappa(s) \neq 0$, the torsion $\tau(s)$ of the curve α at s is defined by the formula

$$
\mathrm{B}^{\prime}(\mathrm{s})=-\tau(\mathrm{s}) \mathrm{N}(\mathrm{~s}) .
$$

This is the opposite sign convention from do Carmo.
Problem 11. Find the curvature and torsion of the helix

$$
\alpha(t)=(a \cos t, a \sin t, b t) .
$$

Problem 12. Let $\alpha: I \rightarrow R^{3}$ be parametrized by arclength and have nowhere vanishing curvature $\kappa(s) \neq 0$. Show that

$$
\begin{array}{ll}
\mathrm{T}^{\prime}(\mathrm{s})= & \kappa(\mathrm{s}) \mathrm{N}(\mathrm{~s}) \\
\mathrm{N}^{\prime}(\mathrm{s})=-\kappa(\mathrm{s}) \mathrm{T}(\mathrm{~s}) & \\
\mathrm{B}^{\prime}(\mathrm{s})= & +\tau(\mathrm{s}) \mathrm{B}(\mathrm{~s}) \\
& -\tau(\mathrm{s}) \mathrm{N}(\mathrm{~s}) .
\end{array}
$$

Definition. The above equations are called the Frenet equations, and the orthonormal frame

$$
\mathrm{T}(\mathrm{~s}), \mathrm{N}(\mathrm{~s}), \mathrm{B}(\mathrm{~s})
$$

is called the Frenet frame along the curve α.

THEOREM. Given smooth functions $\kappa(\mathbf{s})>0$ and $\tau(\mathrm{s})$, for $\mathrm{s} \in \mathrm{I}$, there exists a regular curve $\alpha: I \rightarrow \mathbf{R}^{3}$ parametrized by arc length, with curvature $\kappa(\mathrm{s})$ and torsion $\tau(\mathrm{s})$.

Moreover, another other such curve $\beta: \mathbf{I} \rightarrow \mathbf{R}^{\mathbf{3}}$ differs from α by a rigid motion of \mathbf{R}^{3}.

This result is sometimes called the
fundamental theorem of the local theory of curves.

Problem 13. The curvature of a smooth curve in the plane can be given a well-defined sign, just like the torsion of a curve in 3 -space. Explain why this is so.

Problem 14. Given a smooth function $\kappa(s)$ defined for s in the interval I, show that the arc-length parametrized plane curve having $\kappa(\mathrm{s})$ as curvature is given by

$$
\alpha(s)=\left(\int \cos \theta(s) d s+a, \int \sin \theta(s) d s+b\right),
$$

where

$$
\theta(\mathrm{s})=\int \kappa(\mathrm{s}) \mathrm{ds}+\theta_{0} .
$$

Show that this solution is unique up to translation by (a, b) and rotation by θ_{0}.

Proof of the fundamental theorem of the local theory of curves in $\mathbf{R}^{\mathbf{3}}$.

We are given smooth functions $\kappa(s)>0$ and $\tau(s)$, for $s \in I$, and must find a regular curve $\alpha: \mathrm{I} \rightarrow \mathrm{R}^{3}$ parametrized by arc length, with curvature $\kappa(\mathrm{s})$ and torsion $\tau(\mathrm{s})$.

Let's begin by writing the Frenet equations for the Frenet frame.

$$
\begin{array}{lr}
\mathrm{T}^{\prime}(\mathrm{s})= & \kappa(\mathrm{s}) \mathrm{N}(\mathrm{~s}) \\
\mathrm{N}^{\prime}(\mathrm{s})=-\kappa(\mathrm{s}) \mathrm{T}(\mathrm{~s}) & \\
\mathrm{B}^{\prime}(\mathrm{s})= & -\tau(\mathrm{s}) \mathrm{N}(\mathrm{~s}) .
\end{array}
$$

We'll view this as a system of three first order linear ODEs, with given coefficients $\kappa(s)$ and $\tau(s)$, for the unknown Frenet frame $\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s}), \mathrm{B}(\mathrm{s})$.

We can also view it as a system of nine first order linear ODEs for the components of the Frenet frame.

Now the fundamental existence and uniqueness theorem for systems of first order ODEs promises a unique "local solution", that is, a solution defined in some unspecified neighborhood of any given point $\mathrm{s}_{0} \in \mathrm{I}$, with preassigned "initial conditions" $\mathrm{T}\left(\mathrm{s}_{0}\right), \mathrm{N}\left(\mathrm{s}_{0}\right), \mathrm{B}\left(\mathrm{s}_{0}\right)$.

Although for general systems we can only guarantee a local solution, for linear systems another theorem promises a unique "global solution", that is, one defined on the entire interval I .

So we'll use that theorem, pick an arbitrary point $\mathrm{s}_{0} \in \mathrm{I}$, and pick an arbitrary "right handed" orthonormal frame $\mathrm{T}\left(\mathrm{s}_{0}\right), \mathrm{N}\left(\mathrm{s}_{0}\right), \mathrm{B}\left(\mathrm{s}_{0}\right)$ to get us started.

Then we'll apply the global existence and uniqueness theorem for linear systems of ODEs to get a unique family of vectors $\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s}), \mathrm{B}(\mathrm{s})$ which are defined for all $\mathrm{s} \epsilon \mathrm{I}$, which satisfy the Frenet equations, and which have arbitrary preassigned initial values $T\left(\mathrm{~s}_{0}\right), N\left(\mathrm{~s}_{0}\right), \mathrm{B}\left(\mathrm{s}_{0}\right)$.

Let's pause to check that the nature of the Frenet equations

$$
\begin{array}{ll}
\mathrm{T}^{\prime}(\mathrm{s})= & \kappa(\mathrm{s}) \mathrm{N}(\mathrm{~s}) \\
\mathrm{N}^{\prime}(\mathrm{s})=-\kappa(\mathrm{s}) \mathrm{T}(\mathrm{~s}) & \\
\mathrm{B}^{\prime}(\mathrm{s})= & +\tau(\mathrm{s}) \mathrm{B}(\mathrm{~s}) \\
& -\tau(\mathrm{s}) \mathrm{N}(\mathrm{~s})
\end{array}
$$

guarantees that if we start off with an orthonormal frame $\mathrm{T}\left(\mathrm{s}_{0}\right), \mathrm{N}\left(\mathrm{s}_{0}\right), \mathrm{B}\left(\mathrm{s}_{0}\right)$, then the solution will be an orthonormal frame for all s ϵ I .

Consider the six real-valued functions defined for $\mathrm{s} \epsilon \mathrm{I}$, and obtained by taking the various inner products of the vectors $\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s}), \mathrm{B}(\mathrm{s})$:

$$
\begin{array}{lll}
\langle\mathrm{T}(\mathrm{~s}), \mathrm{T}(\mathrm{~s})\rangle & \langle\mathrm{N}(\mathrm{~s}), \mathrm{N}(\mathrm{~s})\rangle & \langle\mathrm{B}(\mathrm{~s}), \mathrm{B}(\mathrm{~s})\rangle \\
\langle\mathrm{T}(\mathrm{~s}), \mathrm{N}(\mathrm{~s})\rangle & \langle\mathrm{T}(\mathrm{~s}), \mathrm{B}(\mathrm{~s})\rangle & \langle\mathrm{N}(\mathrm{~s}), \mathrm{B}(\mathrm{~s})\rangle .
\end{array}
$$

When $s=s_{0}$, these six quantities start off with the values
1
1
1
0
0
0

These six quantities satisfy a system of first order linear ODEs, obtained from the Frenet equations. For example,
$\langle\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{s})\rangle^{\prime}=2\left\langle\mathrm{~T}(\mathrm{~s}), \mathrm{T}^{\prime}(\mathrm{s})\right\rangle=2 \kappa(\mathrm{~s})\langle\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s})\rangle$
$\langle\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s})\rangle^{\prime}=\left\langle\mathrm{T}^{\prime}(\mathrm{s}), \mathrm{N}(\mathrm{s})\right\rangle+\left\langle\mathrm{T}(\mathrm{s}), \mathrm{N}^{\prime}(\mathrm{s})\right\rangle$
$=\langle\kappa(\mathrm{s}) \mathrm{N}(\mathrm{s}), \mathrm{N}(\mathrm{s})\rangle+\langle\mathrm{T}(\mathrm{s}),-\kappa(\mathrm{s}) \mathrm{T}(\mathrm{s})+\tau(\mathrm{s}) \mathrm{B}(\mathrm{s})\rangle$
$=\kappa(\mathrm{s})\langle\mathrm{N}(\mathrm{s}), \mathrm{N}(\mathrm{s})\rangle-\kappa(\mathrm{s})\langle\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{s})\rangle+\tau(\mathrm{s})\langle\mathrm{T}(\mathrm{s}), \mathrm{B}(\mathrm{s})\rangle$,
and so forth.

The constant solution
$\langle\mathrm{T}(\mathrm{s}), \mathrm{T}(\mathrm{s})\rangle=1 \quad\langle\mathrm{~N}(\mathrm{~s}), \mathrm{N}(\mathrm{s})\rangle=1 \quad\langle\mathrm{~B}(\mathrm{~s}), \mathrm{B}(\mathrm{s})\rangle=1$
$\langle\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s})\rangle=0 \quad\langle\mathrm{~T}(\mathrm{~s}), \mathrm{B}(\mathrm{s})\rangle=0 \quad\langle\mathrm{~N}(\mathrm{~s}), \mathrm{B}(\mathrm{s})\rangle=0$
satisfies this system of ODEs, with the given initial conditions, so by uniqueness this is the only solution.

Conclusion: If the vectors $\mathrm{T}(\mathrm{s}), \mathrm{N}(\mathrm{s}), \mathrm{B}(\mathrm{s})$ start out orthonormal at $\mathrm{s}_{0} \in \mathrm{I}$, then they remain orthonormal for all $\mathrm{s} \in \mathrm{I}$.

Where are we so far?

We have proved that, given smooth functions $\kappa(s)>0$ and $\tau(s)$ defined for all $s \in I$, and an orthonormal frame $\mathrm{T}\left(\mathrm{s}_{0}\right), \mathrm{N}\left(\mathrm{s}_{0}\right), \mathrm{B}\left(\mathrm{s}_{0}\right)$ defined for some $\mathrm{s}_{0} \in \mathrm{I}$, then there is a unique orthonormal frame $T(s), N(s), B(s)$ defined for all $\mathrm{s} \in \mathrm{I}$ with these preassigned initial values, and satisfying the Frenet equations throughout I .

Now, to get the curve $\alpha: I \rightarrow R^{3}$ defined for $\mathrm{s} \epsilon \mathrm{I}$ and having the preassigned curvature $K(s)>0$ and torsion $\tau(\mathrm{s})$, just pick the point $\alpha\left(\mathrm{s}_{0}\right)$ at random in R^{3} and then define

$$
\alpha(s)=\alpha\left(s_{0}\right)+\int_{\mathrm{so}}{ }^{\mathrm{s}} \mathrm{~T}(\mathrm{~s}) \mathrm{ds} .
$$

We get $\alpha^{\prime}(\mathrm{s})=\mathrm{T}(\mathrm{s})$, which is a unit vector, so α is parametrized by arc-length.

The Frenet equations

$$
\begin{array}{ll}
\mathrm{T}^{\prime}(\mathrm{s})= & \kappa(\mathrm{s}) \mathrm{N}(\mathrm{~s}) \\
\mathrm{N}^{\prime}(\mathrm{s})=-\kappa(\mathrm{s}) \mathrm{T}(\mathrm{~s}) & \\
\mathrm{B}^{\prime}(\mathrm{s})= & +\tau(\mathrm{s}) \mathrm{B}(\mathrm{~s})
\end{array}
$$

then tell us that the curve α has curvature $\kappa(s)$ and torsion $\tau(\mathrm{s})$, as desired.

Once the point $\alpha\left(\mathrm{s}_{0}\right)$ and the initial orthonormal frame $\mathrm{T}\left(\mathrm{s}_{0}\right), \mathrm{N}\left(\mathrm{s}_{0}\right), \mathrm{B}\left(\mathrm{s}_{0}\right)$ is picked, the curve is unique.

Thus any other such curve $\beta: I \rightarrow R^{3}$ differs from α by a rigid motion of R^{3}.

This completes the proof of the fundamental theorem of the local theory of curves in R^{3}.

Problem 15. Let $\alpha: I \rightarrow R^{3}$ be a regular curve with nowhere vanishing curvature. Assume that all the principal normal lines of α pass through a fixed point in R^{3}. Prove that the image of α lies on a circle.

Problem 16. Let $\mathrm{r}=\mathrm{r}(\theta)$, $\mathrm{a} \leq \theta \leq \mathrm{b}$, describe a plane curve in polar coordinates.
(a) Show that the arc length of this curve is given by

$$
\int_{\mathrm{a}}^{\mathrm{b}}\left[\mathrm{r}^{2}+\left(\mathrm{r}^{\prime}\right)^{2}\right]^{1 / 2} \mathrm{~d} \theta .
$$

(b) Show that the curvature is given by

$$
\kappa(\theta)=\left[2\left(r^{\prime}\right)^{2}-\mathrm{rr} \mathrm{r}^{\prime \prime}+\mathrm{r}^{2}\right] /\left[\left(\mathrm{r}^{\prime}\right)^{2}+\mathrm{r}^{2}\right]^{3 / 2} .
$$

Problem 17. Let $\alpha: I \rightarrow R^{3}$ be a regular curve, not necessarily parametrized by arc length.
(a) Show that the curvature of α is given by

$$
\kappa(\mathrm{t})=\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right| /\left|\alpha^{\prime}\right|^{3} .
$$

(b) If the curvature is nonzero, so that the torsion is well-defined, show that the torsion is given by

$$
\tau(t)=\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \bullet \alpha^{\prime \prime \prime} /\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|^{2} .
$$

Definitions. A closed plane curve is a regular curve $\alpha:[a, b] \rightarrow R^{2}$ such that α and all its derivatives agree at a and at b, that is,

$$
\alpha(a)=\alpha(b), \alpha^{\prime}(a)=\alpha^{\prime}(b), \alpha^{\prime \prime}(a)=\alpha^{\prime \prime}(b), \ldots
$$

Alternatively, one can use the entire real line as domain, $\alpha: R \rightarrow R^{2}$, and require that α be periodic of some period $\mathrm{L}>0$, that is, $\alpha(\mathrm{t}+\mathrm{L})=\alpha(\mathrm{t})$ for all $\mathrm{t} \in \mathrm{R}$.

Another alternative: one can use a circle (of any radius) as the domain for a closed curve.

A curve is simple if it has no further intersections, other than the coincidence of the beginning and end points.

If we use a circle for the domain, $\alpha: S^{1} \rightarrow R^{2}$, then the curve is simple if α is one-to-one. Since S^{1} is compact, this is the same thing as saying that α is a homeomorphism onto its image.

If $\alpha:[a, b] \rightarrow R^{2}$ is a regular closed curve in the plane, parametrized by arc length, then its total curvature is defined by the integral

$$
\text { Total curvature }=\int_{a}^{b} \kappa(s) \text { ds . }
$$

Problem 18. (a) Show that the total curvature of a regular closed curve in the plane is $2 n \pi$ for some integer n.
(b) Show that if the regular closed curve is simple, then $\mathrm{n}=+1$ or -1 .
(c) Suppose that a regular closed curve in the plane has curvature which is strictly positive or strictly negative, and that the above integer n equals +1 or -1 .

Show that the curve is simple.

Let $\alpha: S^{1} \rightarrow R^{2}$ be a regular closed curve in the plane. For each point $\theta \in S^{1}$, the unit tangent vector $T(\theta)$ to the curve at the point $\alpha(\theta)$ is given by

$$
\mathrm{T}(\theta)=\alpha^{\prime}(\theta) /\left|\alpha^{\prime}(\theta)\right| .
$$

Thus $\mathrm{T}: \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$, and then the induced map

$$
\mathrm{T}_{*}: \pi_{1}\left(\mathrm{~S}^{1}\right) \rightarrow \pi_{1}\left(\mathrm{~S}^{1}\right)
$$

is a group homorphism from the integers to the integers, and hence is multiplication by some integer n, which we call the degree of the map T , or the winding number or rotation index of the curve α.

Problem 19. Show that this integer n is the same as the integer n in the previous problem, that is, show that the total curvature of the curve α is $2 \pi n$.

Definition. Let α_{0} and $\alpha_{1}: S^{1} \rightarrow R^{2}$ be regular closed curves in the plane. A homotopy

$$
A: S^{1} \times[0,1] \rightarrow R^{2}
$$

between α_{0} and α_{1} is said to be a regular homotopy if each intermediate curve, $\alpha_{t}: S^{1} \rightarrow R^{2}$, defined by $\alpha_{t}(\theta)=A(\theta, t)$, is a regular curve.

Remark. If α_{0} and $\alpha_{1}: S^{1} \rightarrow R^{2}$ are regularly homotopic, then they have the same winding number.

WHITNEY-GRAUSTEIN THEOREM. Two regular curves α_{0} and $\alpha_{1}: S^{1} \rightarrow R^{2}$ are regularly homotopic if and only if they have the same winding number.

Volumes of tubes...two problems.

(1) Show that the area of a tube of radius ε about a simple closed curve of length L in the plane is $2 \varepsilon \mathrm{~L}$.
(2) Show that the volume of a tube of radius ε about a simple closed curve of length L in 3 -space is $\pi \varepsilon^{2} L$.

We will solve both of these problems, and the Frenet equations for curves will be our main tool.

Tubes about circles in the plane.

The simplest example is that of a tube of radius ε about a circle of radius r in the plane, so just an annulus between concentric circles of radii $r+\varepsilon$ and $r-\varepsilon$, with area

$$
\begin{aligned}
& \pi(\mathrm{r}+\varepsilon)^{2}-\pi(\mathrm{r}-\varepsilon)^{2}=\pi 4 \mathrm{r} \varepsilon=(2 \pi r)(2 \varepsilon) \\
& \quad=(\text { circumference of circle })(\text { width of tube })
\end{aligned}
$$

Tubes about any curve in the plane.

Parametrize the curve by arc length: $\mathrm{x}=\mathrm{x}(\mathrm{s})$ for $0 \leq \mathrm{s} \leq \mathrm{L}$.
Let $T(s)=x^{\prime}(s)$ and $N(s)$ denote unit tangent and normal vectors along the curve.

Frenet eqns: $T^{\prime}(s)=\kappa(s) N(s)$ and $N^{\prime}(s)=-\kappa(s) T(s)$.

To produce the ε-tube about this curve, we define

$$
\mathrm{F}:\{0 \leq \mathrm{s} \leq \mathrm{L}\} \times\{-\varepsilon<\mathrm{t}<\varepsilon\} \rightarrow \mathrm{R}^{2}
$$

by

$$
F(s, t)=x(s)+t N(s) .
$$

Then the partial derivatives of F are given by

$$
\begin{aligned}
\mathrm{F}_{\mathrm{s}}=\mathrm{x}^{\prime}(\mathrm{s})+\mathrm{t} \mathrm{~N}^{\prime}(\mathrm{s}) & =\mathrm{T}(\mathrm{~s})+\mathrm{t}(-\kappa(\mathrm{s}) \mathrm{T}(\mathrm{~s})) \\
& =(1-\mathrm{t} \kappa(\mathrm{~s})) \mathrm{T}(\mathrm{~s})
\end{aligned}
$$

Hence the area of the ε-tube about our curve is given by

$$
\begin{aligned}
& \int_{\mathrm{S}} \int_{\mathrm{t}}|\operatorname{det} \mathrm{dF}| \mathrm{dt} \mathrm{ds}=\int_{\mathrm{S}} \int_{\mathrm{t}}(1-\mathrm{t} \kappa(\mathrm{~s})) \mathrm{dt} \mathrm{ds} \\
& \quad=\left.\int_{\mathrm{S}}\left(\mathrm{t}-1 / 2 \mathrm{t}^{2} \kappa(\mathrm{~s})\right)\right|_{-\varepsilon} ^{\varepsilon} \mathrm{ds}=\int_{\mathrm{S}} 2 \varepsilon \mathrm{ds}=\mathrm{L} \cdot 2 \varepsilon \\
& \quad=\text { (length of curve) (width of strip), }
\end{aligned}
$$

independent of the nature of the curve.

Tubes about any curve in 3-space.

Parametrize the curve by arc length: $\mathrm{x}=\mathrm{x}(\mathrm{s})$ for $0 \leq \mathrm{s} \leq \mathrm{L}$.
Frenet frame along the curve: $\mathrm{T}(\mathrm{s})=\mathrm{x}^{\prime}(\mathrm{s}), \mathrm{N}(\mathrm{s}), \mathrm{B}(\mathrm{s})$.

Frenet eqns: T'(s) =
$\kappa(\mathrm{s}) \mathrm{N}(\mathrm{s})$

$$
\begin{array}{ll}
\mathrm{N}^{\prime}(\mathrm{s})=-\kappa(\mathrm{s}) \mathrm{T}(\mathrm{~s}) & +\tau(\mathrm{s}) \mathrm{B}(\mathrm{~s}) \\
\mathrm{B}^{\prime}(\mathrm{s})= & -\tau(\mathrm{s}) \mathrm{N}(\mathrm{~s})
\end{array}
$$

To produce the ε-tube about this curve, we define

$$
\mathrm{F}:\{0 \leq \mathrm{s} \leq \mathrm{L}\} \times\left\{\mathrm{t}^{2}+\mathrm{u}^{2}<\varepsilon\right\} \rightarrow \mathrm{R}^{3}
$$

by

$$
\mathrm{F}(\mathrm{~s}, \mathrm{t}, \mathrm{u})=\mathrm{x}(\mathrm{~s})+\mathrm{tN}(\mathrm{~s})+\mathrm{uB}(\mathrm{~s}) .
$$

Then the partial derivatives of F are given by

$$
\begin{aligned}
& F_{s}=(1-t \kappa(s) T(s)-u \tau(s) N(s)+t \tau(s) B(s) \\
& F_{t}=N(s) \\
& F_{u}=B(s)
\end{aligned}
$$

Hence the volume of the ε-tube about our curve is given by $\int_{\mathrm{s}} \int_{\mathrm{t}^{2}+\mathrm{u}^{2}<\varepsilon^{2}}|\operatorname{det} \mathrm{dF}| \mathrm{dt}$ du ds $=\int_{\mathrm{S}} \int_{\mathrm{t}^{2}+\mathrm{u}^{2}<\varepsilon^{2}}(1-\mathrm{t} \kappa(\mathrm{s})) \mathrm{dt} d \mathrm{~d} \mathrm{ds}$

$$
\begin{aligned}
& =\int_{s} \pi \varepsilon^{2} \mathrm{ds}=\mathrm{L} \cdot \pi \varepsilon^{2} \\
& =\text { (length of curve) (area of } \varepsilon \text {-disk), }
\end{aligned}
$$

independent of the nature of the curve.

We used the fact that the integral of the odd function t over the disk $\mathrm{t}^{2}+\mathrm{u}^{2}<\varepsilon^{2}$ is zero.

Problem. To get a Frenet frame along a curve in R^{3}, one needs to assume that the curvature $\kappa(\mathrm{s})$ never vanishes.

Without this hypothesis, one can still prove that

$$
\text { vol } \varepsilon \text {-tube }=\text { (length of curve) }(\text { area of } \varepsilon \text {-disk }) .
$$

(a) Let $\mathrm{T}(\mathrm{s})$, $\mathrm{A}(\mathrm{s}), \mathrm{B}(\mathrm{s})$ be an ON frame along our curve $\mathrm{x}(\mathrm{s})$. Show that the Frenet eqns are replaced by

$$
\begin{array}{ll}
\mathrm{T}^{\prime}(\mathrm{s})= & \alpha(\mathrm{s}) \mathrm{A}(\mathrm{~s})+\beta(\mathrm{s}) \mathrm{B}(\mathrm{~s}) \\
\mathrm{A}^{\prime}(\mathrm{s})=-\alpha(\mathrm{s}) \mathrm{T}(\mathrm{~s}) \quad+\gamma(\mathrm{s}) \mathrm{B}(\mathrm{~s}) \\
\mathrm{B}^{\prime}(\mathrm{s})=-\beta(\mathrm{s}) \mathrm{T}(\mathrm{~s})-\gamma(\mathrm{s}) \mathrm{A}(\mathrm{~s}) .
\end{array}
$$

(b) Defining the ε-tube about our curve $\mathrm{x}(\mathrm{s})$ by

$$
\mathrm{F}(\mathrm{~s}, \mathrm{t}, \mathrm{u})=\mathrm{x}(\mathrm{~s})+\mathrm{tA}(\mathrm{~s})+\mathrm{uB}(\mathrm{~s}),
$$

with $\mathrm{T}(\mathrm{s})=\mathrm{x}^{\prime}(\mathrm{s})$, and hence $\mathrm{A}(\mathrm{s})$ and $\mathrm{B}(\mathrm{s})$ orthogonal to the curve, show that we get

$$
\begin{aligned}
\text { vol } \varepsilon \text {-tube } & =\int_{\mathrm{S}} \int_{\mathrm{t}^{2}+\mathrm{u}^{2}<\varepsilon^{2}}|\operatorname{det} \mathrm{dF}| \mathrm{dt} \text { du ds } \\
& =\int_{\mathrm{S}} \int_{\mathrm{t}^{2}+\mathrm{u}^{2}<\varepsilon^{2}}(1-\mathrm{t} \alpha(\mathrm{~s})-\mathrm{u} \beta(\mathrm{~s})) \mathrm{dt} d u \mathrm{ds} \\
& =\int_{\mathrm{s}} \pi \varepsilon^{2} \mathrm{ds}=\mathrm{L} \cdot \pi \varepsilon^{2} \\
& =\text { (length of curve) (area of } \varepsilon \text {-disk) } .
\end{aligned}
$$

Tough Problem. Show that for a smooth curve in R^{n}, we get

$$
\text { vol } \varepsilon \text {-tube }=(\text { length of curve })\left(\operatorname{vol~B}{ }^{\mathrm{n}-1}(\varepsilon)\right)
$$

where $\mathrm{B}^{\mathrm{n}-1}(\varepsilon)$ is a round ball of radius ε in $\mathrm{R}^{\mathrm{n}-1}$.

Tubes about round spheres in 3-space.

The "tube" of radius ε about a round sphere of radius r in 3 -space is just the region between the concentric spheres of radii $r+\varepsilon$ and $r-\varepsilon$, with volume
$4 / 3 \pi(\mathrm{r}+\varepsilon)^{3}-4 / 3 \pi(\mathrm{r}-\varepsilon)^{3}=4 / 3 \pi\left(6 \mathrm{r}^{2} \varepsilon+2 \varepsilon^{3}\right)$
$=\left(4 \pi r^{2}\right) 2 \varepsilon+8 / 3 \pi \varepsilon^{3}=$ (area of sphere) $2 \varepsilon+8 / 3 \pi \varepsilon^{3}$
$=2 \varepsilon\left(\right.$ area of sphere $+2 \pi / 3 \chi($ sphere $\left.) \varepsilon^{2}\right)$,
which is exactly "Weyl's tube formula" for surfaces in R^{3}.

Problem. Compute the volume of the ε-tube about a torus of revolution in 3-space, and show that it is

$$
\text { vol } \varepsilon \text {-tube }=2 \varepsilon \text { (area of torus) }
$$

$$
=2 \varepsilon\left(\text { area of torus }+2 \pi / 3 \chi \text { (torus) } \varepsilon^{2}\right)
$$

since χ (torus) $=0$, again in accord with Weyl's tube formula.

