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Math 501 - Differential Geometry 

Professor Gluck 

January 26, 2012 
 

2. SURFACES 
 

Definition.  A subset  S    R
3
  is a regular surface if, 

for each point  p  S ,  there is an open neighborhood  V 

of  p  in  R
3
 ,  an open set  U    R

2
  and a map 

 

X: U    V  S , 

such that 

 

(1)  X  is smooth, meaning that if we write 
 

X(u, v)  =  (x(u, v), y(u, v), z(u, v)) , 
 
then the real-valued functions  x(u, v) ,  y(u, v)  and  z(u, v) 

have continuous partial derivatives of all orders in  U . 



 2 

 

 

 

(2)  X  is a homeomorphism, meaning that it is a one-to-one 

correspondence between the points of  U  and  V  S  which 

is continuous in both directions. 

 

(3)  For each point  q  U ,  the linear map 

 

dXq :  R
2
    R

3
 , 

 

called the differential of  X  at  q ,  is one-to-one. 
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The mapping  X:  U    V  S  is called a parametrization 

or a system of local coordinates for the surface  S  in the 

coordinate neighborhood  V  S  of  p . 

 

For simplicity of notation, we will henceforth use  V ,  rather 

than  V  S ,  to denote an open set on the surface  S . 
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        Two-sheeted hyperboloid   z
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                   in cylindrical (r, , z)-coordinates 
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DPVC (CV/Art)
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Miscellaneae 
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             Klein bottle 

 

Picture by John M. Sullivan 

torus.math.uiuc.edu/jms/images 
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Bloomington's Virtual Minimal Surface 

Museum  
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The Catenoid is the only minimal 

surface of revolution. 
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The Helicoid is the only ruled minimal 

surface. 
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The singly periodic Scherk surface 

approaches two orthogonal planes. 

Here is a variation where the two planes 

are not orthogonal. 
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The doubly periodic Scherk surface 

approaches two families of orthogonal 

planes. 

Here is a variation where the two families 

are not orthogonal. One can see helicoids 

forming in the limit! 
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Riemann found a family of singly periodic minimal 

surface whose intersections with horizontal planes 

are circles.  

To the right is a pretty 

degenerate example where one 

can see two helicoids developing. 
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The Enneper surface is a complete minimal 

surface with two straight lines on it. It is not 

embedded:  

From far away, it looks like a plane 

covering itself three times. 
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Minimal Surface Gallery 
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Minimal Surface Gallery 

 

                                            Scherk's surface
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Minimal Surface Gallery 
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Minimal Surface Gallery 
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Minimal Surface Gallery 

 



 24

Minimal Surface Gallery 
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The Willmore bending energy of a surface is the integral 

(over that surface) of squared mean curvature.  

 

A Willmore surface is a minimum (or any critical point)  

for this energy.  

 

One way to get a Willmore surface in R
3
 is to 

stereographically project a minimal surface in S
3
.  

 

The two surfaces pictured here arise in this way from a pair of 

conjugate minimal surfaces in S
3
.

 

Picture and text by John M. Sullivan 

    torus.math.uiuc.edu/jms/images 
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Problem 1.  What surface is described by the equations 

 

   x  =  (a cos   +  b) cos  

   y  =  (a cos   +  b) sin  

   z  =  a sin   , 

 

where  0  <  a  <  b  are positive constants,  and    and   

are angular variables? 

 

Draw this surface, and indicate on the drawing what the 

constants  a  and  b  measure. 
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Problem 2.  Let  f: U    R  be a smooth real-valued  

function defined on the open set  U    R
2
 .   

 

The graph of  f  is the subset of  R
3
  given by 

 

{(x, y, f(x, y) :  (x, y)  U} . 

 

Show that the graph of  f  is a regular surface. 

 



 29

 

Definition.  Let  U  be an open set of  R
m

  and  F: U    R
n
 

a smooth map.  A point  p  U  is called a critical point 

of  F  is the differential  dFp: R
m

    R
n
  is not onto. 

The image  F(p)  of a critical point is called a critical value 

of  F .  A point of  R
n
  which is not a critical value of  F 

is called a regular value of  F . 

 

Note that any point of  R
n
  which is not in the image  F(U) 

is, by default, a regular value of  F . 

 

Problem 3.  Let  U  be an open subset of  R
3
 and  f: U   R 

a smooth function.  If  a  is a regular value of  f ,  show that 

f—1
(a)  is a regular surface in  R

3
 . 

 
Hint.  Use the inverse function theorem. 
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Problem 4.  Show that  1  is a regular value of the function 

 

f(x, y, z)  =  x
2
/a

2
  +  y

2
/b

2
  +  z

2
/c

2
 , 

 

and conclude that the ellipsoid 

 

x
2
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2
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2
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2
  +  z

2
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2
  =  1 

 

is a regular surface. 
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Problem 5.  Let  S  be a regular surface in  R
3
  and  p  S . 

Show that there is a neighborhood  V  of  p  in  S  which 

is the graph of a differentiable function having one of the 

following three forms: 

 

z  =  f(x, y) ,  y  =  g(x, z) ,  x  =  h(y, z) . 



 32

 

Problem 6 (Change of parameters).  Let 

 

X1:  U1    V1     and     X2: U2    V2 

 

be two parametrizations of the regular surface  S ,  and 

suppose that the point  p  of  S  lies in the image of both: 

 

p    W  =  X1(U1)  X2(U2)  =  V1  V2 . 

 

Show that the map 

 

X2
—1

 X1 :  X1
—1

(W)    X2
—1

(W) 

 

is a diffeomorphism (that is, a one-to-one correspondence 

which is smooth in both directions). 



 33

                            



 34

 

 

Definition.  Let  f :  S    R  be a real-valued function 

defined on the regular surface  S  in  R
3
 .  We will  

say that  f  is smooth if for every parametrization 

X: U    V  of an open set  V  on  S ,  the composite  

map  f  X : U    R  is smooth. 

 

 

Problem 7.  Show that to check that a given real-valued 

function  f :  S    R  is smooth, you don't really have to 

check that the compositions  f  X  are smooth for all 

parametrizations  X  of  S .  It's enough to do it for any  

family of parametrizations whose images cover  S . 
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Problem 8.  Let  S  be a regular surface in  R
3
 ,  let  V   

be an open subset of  R
3
  which contains  S ,  and let 

f :  V    R  be a smooth function.  Show that the  

restriction of  f  to  S  is also a smooth function. 

 

 

Problem 9.  Given two surfaces  S1  and  S2  in  R
3
  and 

a map  f :  S1    S2 .   

 

Figure out how to use parametrizations of  S1  and  S2   

to define smoothness of  f . 
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The tangent plane to a regular surface at a point. 

 

Definition.  Let  S  be a regular surface in  R
3
  and 

p  a point of  S .  Pick any parametrization of  S , 

X: U    V  S ,  with  p  lying in the open set  V  S . 

Let  q  be the unique point of  U  such that  X(q)  =  p . 

The linear map  dXq: R
2
    R

3
 , that is, the differential 

of  X  at  q ,  is one-to-one, and hence its image, dXq(R
2
) , 

is a 2-dimensional subspace of  R
3
 .  We call this the 

tangent space to  S  at  p ,  and denote it by  TpS . 

 

Problem 10.  Show that this definition of  TpS  is independent 

of the choice of parametrization  X . 
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The common convention is to draw the tangent space to   

S  at  p  so that it goes through  p  rather than through the 

origin, and simply remember that it is a vector space. 
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Problem 11.  Let  S  be a regular surface in  R
3
 .   

Show that the tangent space to  S  at  p  consists of the tangent 

vectors at  p  to all the regular curves which lie  

on  S  and go through  p . 

 

 

Problem 12.  If  S1  and  S2  are regular surfaces in  R
3
   

and  f: S1    S2  is a smooth map, show how to define  

its differential 

 

dfp : TpS1    Tf(p)S2 . 

 

Then prove the chain rule for the differentials of smooth 

maps between regular surfaces in  R
3
 . 
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Problem 13.  Suppose  f: S1   S2  is a smooth map  

between regular surfaces in  R
3
 .  Suppose that at the  

point  p  S1 ,  the differential  dfp : TpS1    Tf(p)S2   

is an isomorphism. 

 

Prove that  f  is a diffeomorphism from some open 

neighborhood of  p  on  S1  to some open neighborhood  

of  f(p)  on  S2 . 
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The first fundamental form. 

 

Let  S  be a regular surface in  R
3
  and  p  S .  Then the 

tangent plane  TpS  to  S  at  p  is a 2-dimensional subspace of  

R
3
 ,  meaning that it is a 2-plane passing through the origin, 

even though when drawing it, we usually move it parallel to 

itself so that it passes through the point  p . 

 

Thus  TpS  inherits an inner product  < , >p  from  R
3
 , 

and if  W1  and  W2  are two tangent vectors to  S  at  p , 

their inner product is written as  < W1 , W2 >p . 
 



 41

                                          



 42

 

The inner product  < W1 , W2 >p  is a symmetric bilinear 

form on the tangent space  TpS ,  meaning that it is a map 

 

< , >p :  TpS    TpS    R 

 

which is linear in each of the arguments  W1  and  W2  

when the other is held fixed, and that  

 

< W1, W2 >p  =  < W2 , W1 >p . 

 

The associated quadratic form 

 

Ip :  TpS    R 

is defined by 

Ip(W)  =  < W , W >p . 
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Note that the original bilinear form  < , >p  can be  

recovered from the associated quadratic form because 

 

Ip(W1 + W2)  =  < W1 + W2 , W1 + W2 > 

 

=  <W1 , W1>  +  <W1 , W2>  +  <W2 , W1>  +  <W2 , W2> 

 

=  Ip(W1)  +  2 <W1 , W2>  +  Ip(W2) ,     and hence 

 

<W1 , W2>  =   ( Ip(W1 + W2)  —  Ip(W1)  —  Ip(W2) ) . 
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Thus there is no loss of information in focusing on the 

associated quadratic form, and on the plus side we gain 

in notational symplicity because we only have to evaluate 

it on one vector  W  instead of on two,  W1  and  W2 . 

 

 

Definition.  The quadratic form  Ip(W)  =  <W , W>p 

is called the first fundamental form of the regular surface 

S  at the point  p . 

 

The first fundamental form simply encodes how the 

surface  S  inherits the natural inner product of  R
3
 . 
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We will see shortly that the first fundamental form allows  

us to make geometric measurements on the surface, such  

as lengths of curves, angles between tangent vectors, and 

areas of regions on the surface, without referring to the 

ambient space  R
3
  where the surface lies. 

 

We will see later that the first fundamental form also 

encodes some, but not all, of the information about the 

"curvature" of the surface in  R
3
 . 
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Notation for tangent vectors to  S . 

                               

Let  S  be a surface in  R
3
  and  p  a point of  S . 

 

Let  X :  U    V  be a parametrization of a neighborhood  V  

of  p  on  S ,  and let  (u, v)  be Euclidean coordinates on  U . 

 

If  (u(t), v(t))  describes a curve in  U ,  then  X(u(t), v(t)) 

describes its image on  S . 
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If  (u'(t), v'(t))  is the velocity vector to the curve in  U ,  then   

 

X'(t)  =  Xu u'(t)  +  Xv v'(t) 

 

is the velocity vector to the image curve on  S ,  and hence a 

tangent vector to  S  at the point  p  =  X(u(t), v(t)) . 

 

The vector partial derivatives  Xu  and  Xv  provide a basis 

for the tangent space  TpS . 
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Notation for the first fundamental form. 

 

Let  W  =  Xu u'  +  Xv v'  be a tangent vector to  S  at  p , 

as just explained. 

 

Then evaluating the first fundamental form  Ip  on  W , 

we get 

 

Ip(W)  =  < W , W >p 

 

   =  < Xu u'  +  Xv v' , Xu u'  +  Xv v' >p 

 

   =  <Xu , Xu>p (u')
2
  +  2 <Xu , Xv> u' v'  +  <Xv , Xv> (v')

2
 

 

   =  E(u, v) (u')
2
  +  2 F(u, v) u' v'  +  G(u, v) (v')

2
 . 
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The three real-valued functions 

 

 E(u, v)  =  <Xu , Xu>,   

 

     F(u, v) = <Xu , Xv>,  

 

         G(u,v) = <Xv, Xv> 

 

encode complete information about the first fundamental 

form throughout the given coordinate neighborhood on  S . 

 

Notice that we have dropped the subscript  p  from the 

notation for the inner product, since it is clear from context. 
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Examples. 

 

  Consider the xy-coordinate plane in  R
3
  as a surface  S 

parametrized by itself: 

 

X(u, v)  =  (u, v, 0) . 

 

Then  Xu  =  (1, 0, 0)  and  Xv  =  (0, 1, 0) ,  hence 

 

E(u, v)  =  <Xu , Xu>  =  1 

F(u, v)  =  <Xu , Xv>  =  0 

G(u, v)  =  <Xv , Xv>  =  1 . 
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  Consider the torus of revolution in  R
3
  as a surface  S 

parametrized by 

 

X( , )  =  ((a cos  + b)cos , (a cos  + b)sin , a sin ) . 

 

Then   

 

X   =  (— a sin  cos , — a sin  sin  , a cos ) 

X
  
=  (—(a cos  + b)sin , (a cos  + b)cos , 0) , 

 

E( , )  =  <X  , X >  =  a
2
 

F( , )  =  <X  , X >  =  0 

G( , )  =  <X  , X >  =  (a cos  + b)
2
 . 



 52

 

  Consider the unit 2-sphere  S
2
  in  R

3
  parametrized by 

 

X( , )  =  (sin  cos  , sin  sin  , cos ) . 
 

                                                 

The parametrization is singular when    =  0 (north pole) 

and when    =   (south pole), so we restrict  0  <    <   . 
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To make the parametrization one-to-one rather than  

many-to-one, we can require that  0  <    <  2  .   

 

Then 

 

X   =  (cos  cos  , cos  sin  , — sin ) 

 

X   =  (— sin  sin  , sin  cos  , 0) 

 

E( , )  =  <X  , X >  =  1 

F( , )  =  <X  , X >  =  0 

G( , )  =  <X  , X >  =  sin
2

 .    
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Arc length of curves on a surface. 

 

Let  X: U    V    S  be a parametrization of a portion  

of the regular surface  S  in  R
3
 . 

 

Give a curve on  S ,  the portion of it which runs within 

the open set  V  can be expressed as  X(u(t), v(t)) , 

where  (u(t), v(t))  is a curve in  U . 

 

The arc length  s  of this curve is then given by 

 

s  =   |dX/dt| dt  =   < X'(t) , X'(t) >
1/2

  dt   

 

    =   I(X'(t))
1/2

  dt 

 

    =   [E(u, v) (u')
2
  + 2 F(u,v) u' v'  +  G(u, v) (v')

2
]

1/2
  dt . 
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In view of this, it is customary to write 

 

ds
2
  =  E du

2
  +  2 F du dv  +  G dv

2
 , 

 

as a short hand for the formula 

 

(ds/dt)
2
  =  E (du/dt)

2
  +  2 F (du/dt) (dv/dt)  +  G (dv/dt)

2
 . 
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Problem 14.  Let  X: U    V    S  be a parametrization  

of a portion of the regular surface  S  in  R
3
 .  The image 

under  X  of the curves  u  =  constant  and  v  =  constant 

are called the coordinate curves on  V .  Show that the 

angle  (u, v)  between these curves is given by 

 

cos (u, v)  =  F(u, v) / (E(u,v) G(u,v))  =  F / (EG) . 
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Problem 15.  Let  X: U    V    S  be a parametrization  

of a portion of the regular surface  S  in  R
3
 .  Let  Uo  be  

a subdomain of  U  and  Vo  =  X(Uo)  the corresponding 

subdomain of  V  in  S .  Justify the formula 

 

area(Vo)  =  Uo |Xu  Xv|  du dv , 

 

and use it to compute the total surface area of the unit 

2-sphere  S
2
    R

3
 . 
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Problem 16.  Use this same formula to compute the total 

surface area of the torus of revolution 

 

X( , )  =  ((a cos  + b)cos , (a cos  + b)sin , a sin ) , 

 

where  0  <  a  <  b . 


