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Math 501 - Differential Geometry 

Professor Gluck 

February 7, 2012 

 

3. THE GEOMETRY OF THE GAUSS MAP 

Goal.  Learn how surfaces in 3-space are curved. 

Outline 

Pages 5 - 24.  The Gauss map 

S  =  orientable surface in  R
3
  with choice  N  of unit normal. 

Definition of the Gauss map  N: S  S
2
 . 

Its differential  dNp: TpS    TpS
2
  =  TpS . 

Self-adjointness of  dNp ,  meaning   

  < dNp(V) , W >  =  < V , dNp(W) > . 

Second fundamental form encodes how surface is curved. 
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Pages 25 -  78.  Curvature of curves on a surface 

 

Many examples to develop intuition. 

 

Meusnier's Theorem considers all curves on a given surface 

through a given point with a given tangent direction there, 

and compares their curvatures. 

 

Definition of normal curvature of a surface at a point in a 

given direction. 

 

Question. How does the normal curvature of a surface at a 

point vary as we vary the direction? 
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Principal curvatures of the surface  S  at the point  p . 

 

Lines of curvature on a surface. 

 

Definition of Gaussian curvature and mean curvature. 

 

Definition of umbilical points on a surface. 

 

Theorem.  If all points of a connected surface  S  are 

umbilical points, then  S  is contained in a sphere or a plane. 
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Pages 79 - 123.  The Gauss map in local coordinates 

 

Develop effective methods for computing curvature of surfaces. 
 
Detailed example of a paraboloid. 
 
The equations of Weingarten express the entries in the matrix 

for  dNp  in terms of the coefficients of the first and second 

fundamental forms. 
 
Explicit formulas for principal curvatures, Gaussian and mean 

curvatures. 
 
Detailed example on a torus of revolution. 
 
When does a surface lie to one side of its tangent plane at a 

point? 
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The Gauss map. 
 

Let  S    R
3
  be a regular surface in 3-space, and let 

X:  U    V    S  be a parametrization of an open set  V 

in   S  by the open set  U    R
2
 . 

 

For each point  p  V ,  we can select one of the two possible 

unit normal vectors to  S  at  p  by the rule 

 

                                         Xu    Xv 
                          N(p)  =  ——————— (p) . 
                                        |Xu    Xv| 
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The map  N: V    R
3
  is a differentiable unit normal vector 

field defined on the open set  V  in  S . 

 

But it may be impossible to define a differentiable unit 

normal vector field on the whole surface  S . 
 

                            
 

                                                Mobius Band 
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Definition.  A regular surface  S  in  R

3
  is said to be 

orientable if it admits a differentiable field of unit normal 

vectors on the whole surface  S .  A choice of such a field 

is called an orientation of  S . 

 

Problem 1.  Show how a choice of an orientation of  S 

serves to orient all the tangent spaces  TpS . 

 

Convention.  Throughout this chapter,  S  will denote a 

regular orientable surface for which a choice of orientation 

(that is, a differentiable field  N  of unit normal vectors) 

has been made. 
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Definition.  Let  S    R
3
  be a regular surface with an 

orientation  N .  The map  N: S    R
3
  takes its values 

in the unit 2-sphere  S
2
 . 

 

The resulting map  N: S    S
2
  is called the Gauss map 

of the surface  S . 
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The Gauss map is differentiable and its differential at the  

point  p  S ,     dNp: TpS    TN(p)S
2
 ,   is a linear map  

from  TpS  to  TN(p)S
2
 .   

 

The vector  N(p)  is normal to  S  at  p  and also normal  

to  S
2
  at  N(p) .  Hence, as subspaces of  R

3
 ,  we have   

TpS  =  TN(p)S
2
 .  Thus we write 

 

dNp:  TpS    TpS . 

 

Just as the rate of change of a unit normal vector to a curve 

in the plane reports the curvature of that curve, the differential  

dNp  of the Gauss map of a surface  S  reports information 

about the curvature of that surface. 
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Problem 2.  Explain and justify the formulas 

 

dNp(Xu)  =  Nu(p)     and     dNp(Xv)  =  Nv(p) . 

 

Solution.  Let  (t)  be a curve on the surface  S  with 

 
(0)  =  p    and    '(0)  =  Xu . 

 

Then by definition, 

 

dNp(Xu)  =  (d/dt)|t=0 N( (t))  =  Nu(p) . 
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Problem 3.  Let  S  =  S
2
(r)  be a round 2-sphere of radius  r 

about the origin in  R
3
 .  Show that for each  p  S ,  the 

differential 

 

dNp: Tp(S)    Tp(S) 

 

of the Gauss map is given by  dNp  =  (1/r) Identity . 
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Problem 4.  Let  S  be the cylinder  x
2
  +  y

2
  =  1  in  R

3
 . 

Show that for each  p   S ,  the differential 

 

dNp: Tp(S)    Tp(S) 

 

of the Gauss map is the projection of a vertical 2-plane  

onto the horizontal line in it. 
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Problem 5.  Let  S  be the "saddle surface"  z  =  y
2
  —  x

2
 , 

known as a hyperbolic paraboloid.   
 

                              

Parametrize  S  by the map  X :  R
2
    S    R

3
 , 

 

X(u, v)  =  (u , v , v
2
  —  u

2
) . 
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Choose  N(u, v)  to be the roughly upward pointing 

unit normal vector to  S  at the point  X(u, v) . 

 

(1) Show that      

 

Xu  =  (1, 0, —2u)     and     Xv  =  (0, 1, 2v) 

 

 N(u, v)  =  (2u , —2v, 1) / (4u
2
 + 4v

2
 + 1)

1/2
 

 

dNp(Xu)  =  Nu  =  (8v
2
 + 2, 8uv, —4u) / (4u

2
 + 4v

2
 + 1)

3/2
 

 

dNp(Xv)  =  Nv  =  (8uv, —8u
2
 — 2, —4v) / (4u

2
 + 4v

2
 + 1)

3/2
 . 
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(2) Check that  Nu  and  Nv  are both orthogonal to  N . 

 

 

(3) Show that at  p  =  origin, the map  dNp: TpS    TpS 

is given by the matrix 

 

                                      2     0 

                                      0   —2 

 

with respect to the basis  Xu  =  (1, 0, 0) ,  Xv  =  (0, 1, 0) 

of  ToriginS . 
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Problem 6.  Let  S  be the quadratic surface  z  =  ax
2
  +  by

2
 , 

and as in the previous problem, parametrize  S  by the map 

X:  R
2
    S    R

3
  given by  X(u, v)  =  (u, v, au

2
  +  bv

2
) . 

 

Again let  N(u, v)  be the roughly upward pointing unit 

normal vector to  S  at  X(u, v) . 

 

Repeat the calculations from the previous problem, and 

show that at  p = origin, the map  dNp: TpS    TpS  is 

given by the matrix 
 
                                  —2a    0 

                                     0   —2b     
 
with respect to the basis  Xu  =  (1, 0, 0) ,  Xv  =  (0, 1, 0) 

of  ToriginS .    
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Proposition.  Let  S  be a regular surface in  R
3
 .  Then  

the differential  dNp: TpS    TpS  of the Gauss map at 

the point  p  S  is a self-adjoint linear map. 

 

Proof.  If  W1  and W2    TpS ,  we must show that 

 

< dNp(W1) , W2 >  =  < W1 , dNp(W2) > . 

 

It is sufficient to do this when  W1  =  Xu  and  W2  =  Xv 

for any parametrization  X(u, v)  of  S  near  p .  Since 

dNp(Xu)  =  Nu  and  dNp(Xv)  =  Nv ,  we must show that 

 

< Nu , Xv >  =  < Xu , Nv > . 
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Now, N  is orthogonal to both  Xu  and  Xv  throughout the  

neighborhood of  p  on  S ,  so we have 

 

< N , Xu >  =  0  and  < N , Xv >  =  0 . 

 

Differentiate the first equation with respect to  v  and the 

second with respect to  u ,  getting 

 

< Nv , Xu >  +  < N , Xuv >  =  0 ,  and 

 

< Nu , Xv >  +  < N , Xvu >  =  0 . 

 

Then            < Nu , Xv >  =  < Xu , Nv > 

 

by equality of mixed partials, proving the Proposition. 
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Problem 7.  Let  R
n
  denote n-dimensional Euclidean space 

with its usual inner product  < , > .    

 

A linear map  A: R
n
    R

n
  is said to be self-adjoint if 

< A(V), W >  =  < V , A(W) >  for all vectors  V , W  R
n
 . 

 

(a)  Prove that  A  is self-adjoint if and only if its matrix 

with respect to an orthonormal basis of  R
n
  is symmetric. 

 

(b)  Show that if  A: R
n
    R

n
  is a self-adjoint linear map, 

then the formula  B(V, W)  =  < A(V), W >  defines a 

symmetric bilinear form  B:  R
n
  R

n
    R , and vice versa. 
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(c)  Let  A: R
n
    R

n
  be self-adjoint, and let  V  be a unit 

vector in  R
n
  which maximizes the quantity  < A(V), V > .  

Show that  V  is an eigenvector of  A , that is,  A(V)  =   V .    

 

Remark.  Part (c) above is the key step in this problem. 

 

(d)  For this eigenvector  V  of  A , show that if   

< V , W >  =  0 ,  then  < V , A(W) >  =  0 .   

 

(e) Conclude that if  A: R
n
    R

n
  is a self-adjoint linear map, 

then there is an orthonormal basis for  R
n
  in terms of which 

the matrix for  A  is diagonal. 
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Now the fact that the differential  dNp: TpS    TpS  of  

the Gauss map is a self-adjoint linear map allows us to  

associate with it a quadratic form  Q  on  TpS  defined by 
 

Q(W)  =  < dNp(W) , W > . 
 
We can recapture the bilinear form  < dNp(W1) , W2 > , 

and hence the map  dNp  itself, by polarizing the quadratic 

form  Q ,  and hence lose no information by focusing on  Q . 

 

Definition.  The second fundamental form of  S  at  p 

is the quadratic form  IIp  defined by 
 

IIp(W)  =  —Q(W)  =  — < dNp(W), W > . 
 
We will shortly explain why we use the minus sign. 
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Example.  At the point  p  =  (0, 0, 0)  on the quadratic 

surface  z  =  ax
2
  +  by

2
 ,  the second fundamental form 

is given by 

 

IIp(1, 0, 0)  =  2a     and     IIp(0, 1, 0)  =  2b . 
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Example.  Consider the helicoid   

 

X(u, v)  =  (u cos v , u sin v , v) . 
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Xu  =  (cos v , sin v , 0)   and   Xv  =  (—u sin v, u cos v, 1) 

N(u, v)  =  (sin v , — cos v , u) / (1 + u
2
)

1/2
 

Nu  =  (—u sin v , u cos v , 1) / (1 + u
2
)

3/2
 

Nv  =  (cos v , sin v , 0) / (1 + u
2
)

1/2
 

< Nu , Xu >  =  0                          < Nu , Xv >  =  (1 + u
2
)—1/2

 

< Nv , Xu >  =  (1 + u
2
)—1/2

           < Nv , Xv >  =  0 

dN(Xu)  =  Nu  =  Xv / (1 + u
2
)

3/2
 

dN(Xv)  =  Nv  =  Xu / (1 + u
2
)

1/2
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Curvature of curves on a surface. 

 

Surfaces can be curved in different amounts,  
 

                                                             

 

and in different ways.  The ellipsoid above is convex at 

every point, while the saddle surface below is not. 
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It is a matter of common sense to try to get a feelingfor the 

curvature of a surface by investigating the curvature of curves 

which lie on that surface, and we do this now.  

 

As a quick review, if we are have a regular curve in 3-space 

defined by    (t)  =  (x(t), y(t), z(t)) , 

 

then its curvature is given by   (t)  =  | '(t)    "(t)| / | '(t)|
3
 , 

 

and its principal normal vector  N(t)  is obtained from  

 

"  —  ' (< ", '> / < ', '>) 

 
by dividing this vector by its length. 
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Problem 8.  On a sphere of any radius, consider a great 

circle and a smaller circle which are tangent to one 

another at some point.  Let  G  be the curvature of the 

great circle and  S  be the curvature of the small circle. 

Let    denote the angle between their principal normals 

at the common point.  Show that 

 

S  =  G / cos  . 
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Problem 9.  Show that the curvature of the parabola 

y  =   a x
2
  at the origin is  a . 

 

 

Given a surface  S  in 3-space and a point  p  on  S ,  we can 

always translate  S  so as to bring  p  to the origin, and then 

rotate  S  about the origin so that it is tangent to the xy-plane 

there.  Afterwards, near the origin,  S  is simply the graph of a 

function  z  =  f(x, y)  with 

 

f(0, 0)  =  0 ,  fx(0, 0)  =  0   and    fy(0, 0)  =  0 . 
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A neighborhood of the origin in the xy-plane can serve 

as our parameter domain for a neighborhood of the origin 

on  S ,  with parametrization 

 

X(u, v)  =  (u ,  v ,  f(u, v)) . 
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Let's investigate the curvature of all curves on  S  which 

pass through the origin and are tangent there to the x-axis. 

 

In the parameter domain, such a curve is given by 

 

u(t)  =  t     and     v(t)  =  g(t) , 

 

with  g(0)  =  0  and  g'(0)  =  0 . 
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On the surface  S ,  the corresponding curve is 

 

(t)  =  (t ,  g(t) ,  f(t, g(t))) . 
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First consider the simplest such curve, say  0 ,  which is 

parametrized by the x-axis itself.  Then  g(t)  =  0  and 

 

0(t)  =  (t ,  0 ,  f(t, 0)) . 

 

In a neighborhood of the origin, this curve is simply the 

intersection of the  xz-plane with the surface  S . 
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Let's compute the curvature  0  at the origin of this curve, 

 

0(t)  =  (t ,  0 ,  f(t, 0)) . 

 
We have 

 
0'(t)  =  (1 ,  0 ,  fx(t, 0))              

 

0'(0)  =  (1 ,  0 ,  0) 
 

0"(t)  =  (0 ,  0 ,  fxx(t, 0))            

 

0"(0)  =  (0 ,  0 ,  fxx(0,0)) . 
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For simplicity of notation, let's write  fxx , 0' , 0"  and  0  

and understand that these are evaluated at the origin. 

Then we get 

 

0  =  | 0'    0"| / | 0'|
3
  =  |(0 ,  —fxx ,  0)|  =  |fxx| . 

 

Now let's compute the curvature    at the origin of the 

more general curve 

 

(t)  =  (t ,  g(t) ,  f(t, g(t))) . 
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'(t)  =  (1 ,  g'(t) ,  fx  +  fy g'(t))      

 

'(0)  =  (1 ,  0 ,  0) 

 

"(t)  =  (0 ,  g"(t) ,  fxx + fxyg' + fyxg' + fyy(g')
2
 + fyg") 

 

"(0)  =  (0 ,  g" ,  fxx) , 

 

because  fx ,  fy  and  g'  are all  0  at the origin. 
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Then at the origin we get 

 

  =  | '    "| / | '|
3
  =  |(0 ,  —fxx ,  g")|  =  (fxx

2
  +  g"

2
)

1/2
 

 

Next we want to compare the curvature    of the general 

curve  (t)  which lies on the surface  S  and passes through 

the origin tangent to the x-axis, with the curvature  0  of the 

special curve  0(t)  which is the intersection of the surface 

S  with the xz-plane.  Since 

 

'  =  (1 ,  0 ,  0)     and     "  =  (0 ,  g" ,  fxx) , 

 

the principal normal  N   to the curve    at the origin is 

 

N   =  (0 ,  g" ,  fxx) / (g"
2
 + fxx

2
)

1/2
 . 
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Let    denote that angle between the unit normal vector 

N  =  (0, 0, 1)  to the surface at the origin (this is also the 

principal normal vector to the curve  0)  and the principal 

normal vector  N   to the curve    at the origin. 
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Then 

 

cos   =  < N , N  >  =  fxx / (g"
2
 + fxx

2
)

1/2
 . 

 

Recall that  

 

  =  (fxx
2
  +  g"

2
)

1/2
     and     0  =  |fxx| . 

 

Hence   

 

  =  0 / |cos | . 
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In other words, the curvature of the curve    at the origin 

depends only on the curvature of the normal section  0 

and the angle between the principal normal to    and the 

normal to the surface. 

 

This is known as Meusnier's Theorem. 
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We see from Meusnier's Theorem that at the origin on the 

surface  S ,  the curvature  0  of the normal section in the 

direction of the x-axis is the smallest possible curvature 

at the origin of any curve on  S  which is tangent there to  

the x-axis, since 

 

  =  0 / |cos | . 

 

We will call  0  the normal curvature of the surface  S 

at the origin in the direction of the x-axis. 
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If we agree and fix a unit normal vector  N  to the surface 

at that point, then we can even give a sign to the normal 

curvature  0  by orienting the normal plane in a given 

tangent direction (for example, in the above case, as the 

xz-plane rather than the zx-plane). 

 

 

Now we ask, how does the normal curvature of a surface 

at a given point in a given direction vary, as we fix the 

point but vary the direction? 
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As before, we move the surface  S  so that the point in 

question is at the origin, and the tangent plane to the 

surface is the xy-plane.  Then our surface has the form 

 

X(u, v)  =  (u ,  v ,  f(u, v)) , 

 

where  f(0, 0)  =  0 ,  fu(0, 0)  =  0  and  fv(0, 0)  =  0 . 

 

Looking back at our previous calculations of curvature, 

we see that only the second derivatives  fuu ,  fuv  and  fvv 

at the origin come into play...but no higher derivatives. 
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Thus we can assume, without loss of generality, that 

 

f(u, v)  =  Au
2
  +  Buv  +  Cv

2
 . 

 

Furthermore, by rotating the surface about the z-axis, 

we can get rid of the  uv  term. 

 

 

Problem 10.  Show that rotating the surface about the  

z-axis to get rid of the  uv  term above is simply making  

use of the diagonalizability of a symmetric 2  2 matrix. 
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So now we can assume, after suitable rotation about the 

z-axis, that  

 

f(u, v)  =   a u
2
  +   b v

2
 , 

 

where we use the    so that  fuu  =  a   and  fvv  =  b . 

Thus our surface is parametrized by 

 

X(u, v)  =  (u ,  v ,   a u
2
  +   b v

2
) . 

 

Referring back to our previous calculations, we see that 

the normal curvatures  k1  and  k2  of our surface in the 

directions of the  x-  and  y-axes are given by 

 

k1  =  a     and     k2  =  b . 
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Note two things: 

 

(1)  We have switched to do Carmo's notation for 

normal curvatures, and 

 

(2)  We have selected the vector  N  =  (0, 0, 1)  as our 

preferred unit normal to the surface  S  at the origin, so 

that normal curvatures now have signs. 



 47

 

 

 

 

Now we want to calculate the normal curvature  k   of 

our surface at the origin in the direction of the vector 

(cos  , sin )  in the xy-plane. 

 

To do this, we consider the curve  (t)  on  S  given by 

 

(t)  =  (t cos  ,  t sin  ,   a t
2
 cos

2
  +   b t

2
 sin

2
) . 
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                          S  =  {(u ,  v ,   a u
2
  +   b v

2
)} 
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We calculate. 

 

(t)  =  (t cos  ,  t sin  ,   a t
2
 cos

2
  +   b t

2
 sin

2
)  

 

'(t)  =  (cos  ,  sin  ,  a t cos
2

  +  b t sin
2

) 

 

'(0)  =  (cos  ,  sin  ,  0) 

 

"(t)  =  (0 ,  0 ,  a cos
2

  +  b sin
2

)  =  "(0) . 

 

Since  t  is an arc-length parameter for our curve   ,   

its signed curvature at the origin, using  N  =  (0, 0, 1)   

as the preferred normal to the curve, is simply 
 

k   =  "  N  =  a cos
2

  +  b sin
2  . 
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Then using  k   in place of  k  ,  and  k1  and  k2  in place 

of  a  and  b ,  we have 

 

k   =  k1 cos
2

  +  k2 sin
2

 , 

 

which tells us how the normal curvature varies with direction. 
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Definition.  The maximum normal curvature  k1  and 

the minimum normal curvature  k2  are called the 

principal curvatures of the surface  S  at the point  p . 

The corresponding (orthogonal) directions are called 

the principal directions at  p . 
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In the previous example, where we considered the point 

p  =  (0, 0, 0)  on the surface  z  =   a x
2
  +   b y

2
 , 

the principal curvatures were the numbers  k1  =  a  and 

k2  =  b ,  and the corresponding principal directions 

were given by the x- and y-axes. 

 

Recall from Problem 6 that in this case we have 

 

dNp(Xu)  =  — a Xu     and     dNp(Xv)  =  — b Xv , 

 

so that the principal directions are the directions of the 

eigenvectors of the differential  dNp  of the Gauss map 

N: S    S
2
  at the point  p . 
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Since the second fundamental form  IIp  was defined by 

 

IIp(V)  =  — < dNp(V) , V > , 

 

we have 

 

IIp(Xu)  =  — < — a Xu , Xu >  =  a |Xu|
2
  

 

IIp(Xv)  =  — < — b Xv , Xv >  =  b |Xv|
2
 . 
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Definition.  If a regular connected curve  C  on the 

surface  S  is such that for all points  p  C ,  the tangent 

line to  C  at  p  is a principal direction of  S  at  p , 

then  C  is said to be a line of curvature of  S . 
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Problem 11.  Show that a necessary and sufficient condition 

for a connected regular curve  C  on  S  to be a line of curvature 

is that 

 

N
 
'(t)  =  (t) '(t) , 

 

for any parametrization  (t)  of  C ,  where  N(t)  =  N( (t)) 

and  (t) is a differentiable function of  t .  In this case, 

— (t)  is the principal curvature along  (t) . 
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Definition.  Let  S  be a regular surface in  R
3
  and  p  S . 

Let  k1  and  k2  be the principal curvatures of  S  at  p. 

Then 

 

K  =  k1 k2     and     H  =   (k1  +  k2) 

 

are called the Gaussian curvature and mean curvature 

of  S  at  p . 
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Problem 12.  Let  A: R
2
    R

2
  be a linear map, let 

V1 , V2  be a basis for  R
2
 ,  and let  A  be the matrix of  A 

with respect to this basis.  Show that the determinant and the 

trace of  A  do not depend on the choice of basis  V1 ,  V2 ,   

but only on the linear map  A .  Thus we can refer to these 

quantities as the determinant and trace of the linear map  A . 

 

 

Problem 13.  Recall the Gauss map  N: S    S
2
  and 

its differential  dNp: TpS    TpS
2
  =  TpS . 

 

Show that  K  =  det dNp  and  H  =  —  trace dNp . 
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Definition.  A point  p  on a surface  S  is called 

 

(1)  elliptic if  K  >  0  there  (equivalently, the two 

 principal curvatures  k1  and  k2  are either both > 0 

 or both < 0 ) . 

 

Any point of a sphere or ellipsoid is elliptic. 

 

All curves on  S  which pass through an elliptic point  p  have 

their principal normals pointing toward the same side of the 

tangent plane  TpS . 



 59

                        



 60

 

 

 

 

(2)  hyperbolic if  K  <  0  there (equivalently, k1  and  k2 

  have opposite signs) . 

 

The point  (0, 0, 0) of the saddle  z = y
2
 — x

2
  is hyperbolic.  

There are curves on  S  which pass through a hyperbolic point  

p  which have their principal normals pointing toward either 

side of  TpS . 
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(3)  parabolic if  K  =  0  there, but only one of  k1  and  k2 

 is  0) . 

 

The points of a circular cylinder are parabolic. 
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(4)  planar  if  K  =  0  there, and both of  k1  and  k2  =  0 . 

 

The points of a plane are planar points. 

 

The point  (0, 0, 0)  is a planar point of the surface 

z  =  (x
2
  +  y

2
)

2
 . 
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Definition.  A point  p  on a surface  S  where the two 

principal curvatures are equal,  k1  =  k2 ,  is called an 

umbilical point.  This includes the planar points, where 

k1  =  k2  =  0 . 

 

Examples.  All points of a sphere are umbilical points. 

The point  (0, 0, 0)  is an umbilical point on the paraboloid 

z  =  x
2
  +  y

2
 . 
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THEOREM.  If all points of a connected surface  S  are 

umbilical points, then  S  is contained in either a sphere 

or a plane. 

 

 

We'll prove this theorem, and begin with some warm-up 

exercises. 
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Problem 14.   

 

(a) Prove, as succinctly as possible, that a regular curve  

in 3-space with zero curvature everywhere is a portion  

of a straight line. 

 

(b) Prove, again as succinctly as possible, that a regular 

curve in the plane with constant nonzero curvature is a 

portion of a circle. 

 

Hint for (b).  Go out from each point of the curve to the 

point which you believe to be the center of the circle, and  

then show that this proposed center point does not change

as you move along the original curve.
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Problem 15.  Prove that if all normal lines to a connected 

regular surface  S  meet a fixed straight line  L , then  S  is 

a portion of a surface of revolution. 

 

Hint.  Go down one dimension and first prove that if all the 

normal lines to a connected plane curve pass through a fixed 

point, then that curve is an arc of a circle. 

 

Then in the original problem, show that the intersection of  S 

with each plane orthogonal to the line  L  is an arc of a circle, 

with center on the line  L . 

 

Conclude from this that  S  is a portion of a surface of 

revolution. 
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Next, let's consider the special case of the above theorem 

where we are told that all the points of the connected 

surface  S are planar.  We will prove that  S  is a portion  

of a plane. 

 

If  (u, v)  are local coordinates for  S  in a neighborhood 

of a point  p ,  then the fact that  S  is planar at every 

point tells us that 

 

dNp(Xu)  =  Nu  =  0     and     dNp(Xv)  =  Nv  =  0 , 

 

which tells us that the unit normal vector  N(u, v)  does 

not change as  u  and  v  change, that is, it is a constant. 
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It is now at least visually evident that  S  is a portion of 

a plane. 
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To actually prove that  S  is a portion of a plane, start 

with any point  p  on  S ,  then translate and rotate  S  so  

as to move  p  to the origin and make  S  tangent to the  

xy-plane there. 
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Then in these local coordinates we have 

  X(u, v)  =  (u ,  v ,  f(u, v)) 

          Xu  =  (1 ,  0 ,  fx(u, v)) 

               Xv  =  (0 ,  1 ,  fy(u, v)) 

     Xu    Xv  =  (— fx(u, v) ,  — fy(u, v) ,  1) . 

Now at the origin, the unit normal vector  N  points along 

the z-axis, say  N  =  (0, 0, 1).   

 

Then it must point in this direction at every point of  S , 

and hence  fx(u, v)    0    fy(u, v) . 

 

Thus  f    0  in our coordinate neighborhood, so an open 

neighborhood of  p  on  S  lies in a plane. 

 

Since  S  is connected, all of  S  lies in the same plane. 
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We turn now to the general case of our theorem. 

 

Given a connected surface  S ,  all of whose points are 

umbilical, we must prove that  S  is contained in either a sphere 

or a plane. 

 

Given a point  p  on the surface  S ,  move  S  as usual so 

that  p  goes to the origin and  S  is tangent to the xy-plane 

there.  Then, near the origin,  S  is given in local (u, v) 

coordinates by 

 

X(u, v)  =  (u ,  v ,  f(u, v)) . 
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Since each point of  S  is an umbilical point, let  k(u, v) 

denote the common value of the two principal curvatures 

of  S  at the point  X(u, v) .  Then our key equations are 

 

dNp(Xu)  =  Nu  =  — k(u, v) Xu  ,   and 

 

dNp(Xv)  =  Nv  =  — k(u, v) Xv . 
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Focus on the curve  C  obtained by intersecting our surface 

S  with the xz-plane.  In a neighborhood of the origin, the 

curve  C  =  {X(u, 0)}  is parametrized by  u . 

                                               



 75

 

 

The tangent vector  Xu  to  C  lies in the  xz-plane, 

the unit normal vector  N  to  S  at the origin is the 

vector  (0, 0, 1) ,  and the equation 

 

                                 Nu  =  — k(u, 0) Xu 

 

tells us that the rate of change of  N  along the curve   

C  also lies in the xz-plane.  It follows that the surface normal  

N  itself must lie in the xz-plane along  C .   

 

In particular,  N  serves as a unit normal vector to the  

curve  C . 
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If  k(0, 0)    0 ,  then, at least for small  u , the line through  

X(u, 0)  spanned by  N(u, 0)  will intersect the z-axis. 

 

Since we can rotate the surface  S  about the z-axis to  

line up any surface direction at the origin with the x-axis, 

it follows that all the lines normal to the surface  S  at 

points near the origin must intersect the z-axis. 

 

By a previous problem,  S  must be a surface of revolution 

about the point  p . 

 

Since  p  was an arbitrary point of  S ,  the surface  S  must, 

at least locally, be a surface of revolution about each of 

its points. 
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Problem 16.  Show how it follows from this that the principal 

curvature  k(u, v)  must be constant throughout  S . 

 

 

Since we have already dealt with the case that  k    0 , 

and shown the corresponding surface  S  to be a portion 

of a plane, we will assume now that  k  is a nonzero 

constant.  By reversing our choice of unit normal vector 

N  to  S ,  we can assume that  k  >  0 . 

 

Going back to the curve  C ,  we claim that the principal 

curvature  k(u, 0)  =  k  of the surface  S  along  C  is 

also the ordinary curvature of the plane curve  C . 
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Letting  s  denote an arc length parameter along  C , 

and recalling that the surface normal  N  =  N(u, 0)  is 

also the principal normal to the curve  C ,  we have 

 

                  dN/ds  =  (dN/du) du/ds  =  Nu du/ds   

 

                              =  — k Xu du/ds  =  — k dX/ds , 

 

which, from the Frenet equation, tells us that  k  is 

the curvature of the plane curve  C . 



 79

 

Thus the curve  C  lies on a circle of curvature  k ,  and  

hence the surface  S ,  obtained by rotating  C  about the 

z-axis, must lie on a sphere of curvature  k ,  at least in 

a neighborhood of the origin. 
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By connectedness,  the entire surface  S  lies on a sphere  

of curvature  k ,  completing the proof of the theorem. 

 

  

Remark.  Read do Carmo's proof of this theorem,  

on pages 147 - 148 of his book.  I like his proof better. 
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The Gauss map in local coordinates. 

 

In this section we develop effective methods for computing 

curvature of surfaces in local coordinates. 

 

To set the tone, we begin with an example. 
 

                                                                                                     

                          Circular paraboloid  z  =  x
2
  +  y

2
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We can parametrize the circular paraboloid by 

 

X(u, v)  =  (u , v , u
2
 + v

2 
) . 

 

Then 

 

Xu  =  (1 , 0 , 2u)     and     Xv  =  (0 , 1 , 2v) . 

 

The unit normal vector to  S  is 

 

            N(u, v)  =  Xu  Xv / |Xu  Xv|   

 

                          =  (—2u , —2v , 1) / (1 + 4u
2
 + 4v

2
)

1/2
 . 



 83

We then compute 

 

Nu  =  (—2 — 8v
2
 , 8uv , —4u) / (1 + 4u

2
 + 4v

2
)

3/2
 

 

Nv  =  (8uv , —2 — 8u
2
 , —4v) / (1 + 4u

2
 + 4v

2
)

3/2
 . 

 

Since  Nu  and  Nv  lie in the tangent space  TpS ,  we can 

express them in the basis  Xu  and  Xv  as follows: 

 

Nu  =  (—2 — 8v
2
) / (...)

3/2
  Xu   +   8uv / (...)

3/2
  Xv 

 

Nv  =  8uv / (...)
3/2

  Xu   +   (—2 — 8u
2
) / (...)

3/2
  Xv . 

 

Since  Nu  =  dNp(Xu)  and  Nv  =  dNp(Xv) ,  the four 

coefficients above give the (transpose of the) matrix 

for the linear transformation  dNp: TpS    TpS  in the 

basis  Xu ,  Xv . 
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The Gaussian curvature  K  =  det dNp  and the mean 

curvature  H  =  —  trace dNp  are then calculated to be 

 

                K  =  4 / (1 + 4u
2
 + 4v

2
)

2
  =  4 / (1 + 4z)

2
  

 

                H  =  (2 + 4z) / (1 + 4z)
3/2

 . 

 

The eigenvalues of  dNp  are the principal curvatures 

k1  and  k2  of  S ,  and the corresponding eigenvectors 

give the principal directions on  S .   

 

They can be calculated from the matrix for  dNp  by  

standard but messy linear algebra. 
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Now we consider the general case of a surface in  R
3
 . 

 

Let  U  be an open set in the plane  R
2
  and   

 

X: U    S    R
3
 

 

a local parametrization of a portion of a regular surface  S 

in  R
3
 .  We choose 

 

N  =  Xu  Xv / |Xu  Xv| 

 

as our unit normal vector field throughout the coordinate 

neighborhood  X(U)  on  S . 
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Let  (t)  =  X(u(t) , v(t))  be a parametrized curve on  S , 

with  (0)  =  p . 

 

The tangent vector to  (t)  at  p  is 

 

'  =  Xu u'  +  Xv v' , 

 

where we understand all quantities to be evaluated at  p . 
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The rate of change of the unit normal vector  N  to  S 

as we move along the curve    is given by 

 

dN( ')  =  N'(u(t), v(t))  =  Nu u'  +  Nv v' . 

 

Since  Nu  =  dN(Xu)  and  Nv  =  dN(Xv)  both belong 

to  TpS ,  we can write 

 

Nu  =  a11 Xu  +  a21 Xv     and     Nv  =  a12 Xu  +  a22 Xv , 

 

where  aij  =  aij(u, v)  in our coordinate neighborhood.   
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Then 

 

     dN( ')  =  Nu u'  +  Nv v' 

 

                  =  (a11 Xu  +  a21 Xv) u'  +  (a12 Xu  +  a22 Xv) v' 

 

                  =  (a11 u'  +  a12 v') Xu  +  (a21 u'  +  a22 v') Xv . 

 
Thus 

                                          a11   a12         

                dN (u', v')
T
  =                     (u', v')

T
     

                                          a21   a22          

 

This shows that the above matrix  (aij)  expresses the 

linear map  dNp :  TpS    TpS  with respect to the 

basis  Xu  and  Xv . 
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The expression of the second fundamental form  IIp  with 

respect to the basis  Xu  and  Xv  for  TpS  is given by 

 

IIp( ')  =  — < dNp( ') , ' >   

 

                   =  — < Nu u'  +  Nv v' , Xu u'  +  Xv v' > 

 

                   =  e u'
2
  +  2f u'v'  +  g v'

2
 ,   where 

 

e  =  — < Nu , Xu >  =  < N , Xuu > 

 

f  =  — <Nv , Xu>  =  <N , Xuv>  =  <N , Xvu>  =  — <Nu , Xv> 

 

g  =  — < Nv , Xv >  =  < N , Xvv > .  



 90

The quantities  e(u, v) ,  f(u, v)  and  g(u, v)  are called 

the coefficients of the second fundamental form  II 

in the local (u, v) coordinates. 

 

Example.  For the circular paraboloid  z  =  x
2
  +  y

2
  

discussed above, we have 

 

Xu  =  (1 , 0 , 2u)     and     Xv  =  (0 , 1 , 2v) , 

 

and hence 

 

Xuu  =  Xvv  =  (0 , 0 , 2)    and    Xuv  =  Xvu  =  (0 , 0 , 0) . 

 

We also have 

 

N  =  (—2u , —2v , 1) / (1 + 4u
2
 + 4v

2
)

1/2
 . 
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Then the coefficients of the second fundamental form 

are given by 

 

e  =  < N , Xuu >  =  2 / (1 + 4u
2
 + 4v

2
)

1/2
 

 

f  =  < N , Xuv >  =  0 

 

g  =  < N , Xvv >  =  2 / (1 + 4u
2
 + 4v

2
)

1/2
 . 
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We return to the general case. 

 

Recall that  aij(u, v)  are the entries of the matrix for  dNp 

with respect to the basis  Xu  and  Xv  for  TpS . 

 

We next obtain formulas for the functions  aij  in terms of the 

coefficients  E , F , G  of the first fundamental form and the 

coefficients  e , f , g  of the second fundamental form. 
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Recall that 

 

E  =  < Xu , Xu >      F  =  < Xu , Xv > ,     G  =  < Xv , Xv > 

 

e  =  — < Nu , Xu > ,     f  =  — < Nu , Xv >  =  —  < Nv , Xu > , 

 

                                                                g  =  — < Nv , Xv > , 

 

Nu  =  a11 Xu  +  a21 Xv     and     Nv  =  a12 Xu  +  a22 Xv . 

 

— e  =  < Nu , Xu >  =  a11 E  +  a21 F 

 

— f  =  a11 F  +  a21 G  =  a12 E  +  a22 F 

 

— g  =  a12 F  +  a22 G 
 
. 
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We can express this in matrix form by 

 

                         e   f           a11  a21      E   F 

                 —                =   

                         f   g           a12  a22      F   G 

 

or compactly by 

 

— II  =  A
t
  I . 

Thus 

A
t
  =  — II  I—1

 , 

 

where 

                                                          G   —F 

                        I—1
  =  (EG — F

2
)—1

                   . 

                                                         —F    E 
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We then solve the equation  A
t
  =  — II  I—1

  for the  aij 

and get the equations of Weingarten, 

 

a11  =  (f F  —  e G) / (EG  —  F
2
) 

 

a12  =  (g F  —  f G) / (EG  —  F
2
) 

 

a21  =  (e F  —  f E) / (EG  —  F
2
) 

 

a22  =  (f F  —  g E) / (EG  —  F
2
) . 
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Example.  For the circular paraboloid  z  =  x
2
  +  y

2
 , 

which serves as our running example, we now use the 

Weingarten formulas to calculate the entries  aij  of the 

matrix for the linear map  dNp: TpS    TpS  with respect 

to the basis  Xu ,  Xv . 

 

Recall that             X  =  (u , v , u
2
 + v

2
 ) , 

 

Xu  =  (1 , 0 , 2u)     and     Xv  =  (0 , 1 , 2v) . 

 

Hence 

E  =  < Xu , Xu >  =  1  +  4u
2
 

F  =  < Xu , Xv >  =  4uv 

G  =  < Xv , Xv >  =  1  +  4v
2
 . 
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From this, we get 

 

EG — F
2
  =  1  +  4u

2
  +  4v

2
 . 

 

In the previous example, we calculated 

 

   e  =  2 / (1  +  4u
2 
 +  4v

2
)

1/2 

 

   f  =  0 

 

   g  =  2 / (1  +  4u
2
  +  4v

2
)

1/2
 . 
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Now we calculate 

 

a11  =  (f F  —  e G) / (EG  —  F
2
) 

   =  (—2  —  8v
2
) / (1  +  4u

2
  +  4v

2
)

3/2
 

a12  =  (g F  —  f G) / (EG  —  F
2
) 

      =  8uv / (1  +  4u
2
  +  4v

2
)

3/2
 

a21  =  (e F  —  f E) / (EG  —  F
2
) 

      =  8uv / (1  +  4u
2
  +  4v

2
)

3/2
 

a22  =  (f F  —  g E) / (EG  —  F
2
)  

            =  (—2  —  8u
2
) / (1  +  4u

2
  +  4v

2
)

3/2
 . 

 

These match the earlier values at the top of page 46, 

which we used there to calculate the Gaussian and 

mean curvatures for this example. 
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As for the Gaussian curvature  K  in local (u, v) coordinates, 

we recall the matrix equation 

 

       e   f           a11  a21      E   F 

                 —                =   

                         f   g           a12  a22      F   G 

 

 

and immediately get 

 

K  =  a11 a22  —  a12 a21  =  (eg — f 
2
) / (EG — F

2
) . 
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If we write the above matrix equation as 

 

— II  =  A
t
 I , 

 

then the equation for the Gaussian curvature reads 

 

K  =  det II / det I . 

 

Recall that the principal curvatures  k1  and  k2  are the 

eigenvalues of the linear map  dNp: TpS    TpS ,  or 

equivalently the eigenvalues of the matrix  A  =  (aij) 

which expresses this linear map in the basis  Xu , Xv 

for  TpS . 
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Then we defined Gaussian and mean curvatures by 

 

K  =  k1 k2         and          H  =   (k1  +  k2) . 

 

Thus 

 

       H  =  — (a11  +  a22) 

 

            =   (eG  —  2 f F  +  gE) / (EG  —  F
2
) . 
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Furthermore, the principal curvatures  k1  and  k2  are 

roots of the characteristic equation of the matrix  A , 

 

k
2
  —  2Hk  +  K  =  0 , 

 

and therefore are given by 

 

k  =  H  ± (H
2
  —  K) . 

 

This equation shows that the principal curvatures are 

differentiable functions of the coordinates  u  and  v , 

except possibly at the umbilical points, where  H
2
  =  K .
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Summary of formulas.  We start with the local parametri- 

zation   X: U    S   of a surface  S  in  R
3
 .   

 

We use the basis  Xu ,  Xv  for the tangent plane  TpS ,  and 

write a general tangent vector in  TpS  as the velocity vector  

 

'  =  Xu u'  +  Xv v'  

 

of a curve  (t)  =  X(u(t) , v(t))  on  S . 
 

The unit normal vector field  N  =  Xu  Xv / |Xu  Xv|  to  S 

leads to the Gauss map  N: S    S
2
 ,  whose differential   

dNp : TpS    TpS
2
  =  TpS   has the matrix  A  =  (aij)  in  

the basis  Xu , Xv  for  TpS . 

 



 104 

The first fundamental form is defined to be 

 

I( ')  =  < ' , ' >  =  < Xu u' + Xv v' , Xu u' + Xv v' > 

                                =  E u'
2
  +  2F u' v'  +  G v'

2
 ,   with 

 

 E  =  < Xu , Xu >      F  =  < Xu , Xv > ,     G  =  < Xv , Xv > . 

 

The second fundamental form is defined to be 

  II( ')  =  — < dNp( ') , ' >   

                  =  — < Nu u' + Nv v' , Xu u' + Xv v' >  

                  =  e u'
2
  +  2f u' v'  +  g v'

2
 ,  with 

e  =  — < Nu , Xu >  =  < N , Xuu > 

f  =  — < Nu , Xv >  =  —  < Nv , Xu >  =  < N , Xuv > 

g  =  — < Nv , Xv >  =  < N , Xvv > . 
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The entries  aij  of the matrix  A  which represents 

dNp : TpS    TpS  in the basis  Xu , Xv  are given by 

the Weingarten equations 

 

a11  =  (f F  —  e G) / (EG  —  F
2
) 

 

a12  =  (g F  —  f G) / (EG  —  F
2
) 

 

a21  =  (e F  —  f E) / (EG  —  F
2
) 

 

a22  =  (f F  —  g E) / (EG  —  F
2
) . 
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The Gaussian curvature  K  is given by 

 

K  =  a11 a22  —  a12 a21  =  (eg — f 
2
) / (EG — F

2
) . 

 

The mean curvature  H  is given by 

 

H  =  — (a11 + a22)  =   (eG — 2 f F + gE) / (EG — F
2
) . 

 

The principal curvatures  k1  and  k2  are given by 

 

k1 , k2  =  H  ± (H
2
  —  K) . 
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Example.  Consider the torus of revolution pictured below. 

                                                   

X( , )  =  ((b + a cos ) cos  , (b + a cos ) sin  , a sin ) 

 

First we compute a basis for the tangent space  TpS . 

X   =  (— a sin  cos  , — a sin  sin  , a cos ) 

X   =  (—(b + a cos ) sin  , (b + a cos ) cos  , 0) 
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Then we compute the coefficients of the first fundamental 

form  I  =  E u'
2
  +  2F u'v'  +  G v'

2
 . 

 

E  =  < X  , X  >  =  a
2
 

 

F  =  < X  , X  >  =  0 

 

G  =  < X  , X  >  =  (b + a cos )
2
 

 

EG — F
2
  =  a

2
 (b + a cos )

2
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Next we compute the unit outward normal and its derivatives. 

X   X   =  a (b + a cos ) (cos  cos  , cos  sin  , sin ) 

N  =  X   X  / | X   X |  =  (cos  cos  , cos  sin  , sin ) 

N   =  (— sin  cos  , — sin  sin  , cos ) 

N   =  (— cos  sin  , cos  cos  , 0) 

 

Then we compute the coefficients of the second fundamental 

form  II  =  e u'
2
  +  2f u'v'  +  g v'

2
 . 

e  =  — < N  , X  >  =  — a 

f  =  — < N  , X  >  =  0 

g  =  — < N  , X  >  =  — (b + a cos ) cos  
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Next we compute the entries  aij  of the matrix  A  which 

represents  dNp: TpS    TpS  in the basis  Xu , Xv . 

 

a11  =  (f F  —  e G) / (EG  —  F
2
)  =  1/a 

 

a12  =  (g F  —  f G) / (EG  —  F
2
)  =  0 

 

a21  =  (e F  —  f E) / (EG  —  F
2
)   =  0 

 

a22  =  (f F  —  g E) / (EG  —  F
2
)   =  cos  / (b + a cos ) 
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Next we compute the Gaussian and mean curvatures. 

 

K  =  (eg — f
2
) / (EG — F

2
)  =  cos  / (a (b + a cos )) 

 

H  =   (eG — 2 f F  + gE) / (EG — F
2
) 

     =  —  (b + 2a cos ) / (a (b + a cos )) 

 

Then we compute the principal curvatures. 

 

H
2
 — K  =   b

2
 / (a

2
 (b + a cos )

2
) 

 

(H
2
 — K)  =   b / (a (b + a cos )) 

 

k1  =  H  —  (H
2
 — K)  =  — 1/a 

 

k2  =  H  +  (H
2
 — K)  =  — cos  / (b + a cos ) 
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From the formula for the Gaussian curvature, 

 

K  =  cos  / (a (b + a cos )) , 

 

we see that  K  >  0  when  — /2  <    <  /2 ,  that is, 

on the outside of the torus, and that  K  <  0  when 

/2  <    <  3 /2 ,  that is, on the inside on the torus. 

 

We see that  K  =  0  along the top and bottom circles,  

where    =  /2  and where   =  3 /2  "="  — /2 . 
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The outside points are elliptic, the inside points are 

hyperbolic, and the top and bottom circles consist of 

parabolic points. 

 

When    =  0  we are on the outermost circle of the torus, 

where  K  =  (1/a) (1/(a + b)) .  Here, the outermost circle  

of radius  a + b  and the meridian circle  = constant,  

of radius  a ,  are both normal sections of the torus in  

principal directions.   

 

Hence the Gaussian curvature there is the product of the 

curvatures of these two circles. 
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When    =    we are on the very innermost circle of the 

torus, where  K  =  (— 1/a) (1/(b — a)) .  Here, the innermost 

circle has radius  b — a  and the meridian circle has radius  a. 

Again they are both normal sections of the torus in principal 

directions.  

 

The negative sign of the curvature is due to the fact that the 

innermost circle curves toward the outer normal, while the 

meridian circle curves away from it.



 115 

 

Proposition.  Let  p  S  be an elliptic point on the regular 

surface  S .  Then there is a neighborhood  V  of  p  on  S 

such that all points in  V ,  other than  p  itself, lie in the 

same open half space determined by the tangent plane  TpS . 
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If  p  is a hyperbolic point, then every neighborhood  V  of 

p  on  S  contains points lying in both open half spaces 

determined by  TpS . 
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Before proving this, we warm up with the following 

 

Problem 17.  Consider the graph  y  =  f(x)  of a smooth 

function  f  such that  f(0)  =  0  and  f '(0)  =  0 .  Then 

the graph goes through the origin and is tangent there to 

the x-axis.  Suppose that  f "(0)  >  0 .  Then there is a 

neighborhood  V  of the origin on the graph of  f  such 

that all points of  V ,  other than the origin itself, lie in 

the open upper half plane of the xy-plane. 

 

Hint.  Use Taylor's theorem which says that 

 

f(x)  =  f(0)  +  f '(0) x  +   f "(0) x
2
  +  R(x) , 

 

where the remainder  R(x)  satisfies  Limx 0 |R(x)| / x
2
   =   0 . 
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Proof of Proposition.  Let  p  be an elliptic point on the 

regular surface  S .  As usual, we can take  p  to be the 

origin, and  S  to be tangent there to the xy-plane.  Then  

a neighborhood  V  of  p  on  S  is the graph of a function   

f :  U    R ,  where  U  is a neighorhood of the origin 

in the xy-plane: 

 

V  =  {X(u, v)  =  (u, v, f(u, v)) :  (u, v)  U} . 

 

We have  f(0, 0)  =  0 ,  fx(0, 0)  =  0  and  fy(0, 0)  =  0 . 

Therefore 

 

f(u, v)  =  (fxx(0,0) u
2
 + 2 fxy(0,0) uv + fyy(0,0) v

2
) + R(u,v) , 

 

and               lim(u,v) (0,0) R(u, v) / (u
2
 + v

2
)  =  0 . 
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Notice that at the origin we have 

e  =  < N , Xuu >  =  fxx(0, 0) 

f  =  < N , Xuv >  =  fxy(0, 0) 

g  = < N , Xvv >  =  fyy(0, 0) . 

 

Therefore we can write 

 

f(u, v)  =  (e u
2
  +  2 f uv  +  g v

2
)  +  R(u, v) . 

 

Since   

K  =  (eg  —  f
2
) / (EG  —  F

2
) , 

 

and  EG  —  F
2
  >  0 ,  we see that the sign of  K  agrees 

with the sign of  eg  —  f
2
 . 
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At an elliptic point, we have  eg  —  f
2
  >  0 ,  and it 

follows easily that there is a real number  a  >  0  so that 

 

e u
2
  +  2 f uv  +  g v

2
  >  a (u

2
  +  v

2
) . 

 

If we choose our neighborhood  U  of  (0, 0)  in the xy-plane 

so small that  R(u, v)  <   a (u
2
  +  v

2
)  within that neigh- 

borhood, that we will have  f(u, v)  >  0  for  (u, v)  U . 
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It follows that the surface  S ,  which is the graph of  f , 

lies above the xy-plane for all  (u, v)   U ,  as claimed. 

 

If  p  is a hyperbolic point, then normal cross sections 

of  S  in the two principal directions easily provide points 

which lie on both sides of the tangent plane  TpS . 

 

This completes the proof of the proposition. 
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Example.  The "monkey saddle" 

 

X(u, v)  =  (u ,  v ,  u
3
  —  3 v

2
 u) 

 

is shown below. 
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The coefficients  e ,  f ,  g  of the second fundamental form 

are all zero at the origin, so the origin is a planar point on 

this surface.   

 

The xy-plane is the tangent plane to this surface at the 

origin. 

 

Every neighborhood of the origin on this surface has points 

which lie above, and also points which lie below, 

the tangent plane. 
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Problem 18.  Let  S  be a surface of revolution in 3-space. 

Calculate the first and second fundamental forms, the 

Gaussian, mean and principal curvatures, and the principal 

directions at all points of  S . 

 

Solution.  We sketch below the curve in the  r z - plane 

which we then rotate about the  z-axis  to get the surface  S . 
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We assume our curve in the  r z - plane  is parametrized by 

arc length  s ,  and write 

 

   X   =  (r(s) cos  , r(s) sin  , z(s)) 
 

   Xs  =  (r' cos  , r' sin  , z') 

 

   X   =  ( r sin  , r cos  , 0) , 

 

note happily that  Xs  X  ,  and calculate that 

 

   N  =  (z' cos  , z' sin  , r') . 

 

We check that  N  is orthogonal to both  Xs  and  X  ,  and that  

it is of unit length because  s  is an arc length parameter. 
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We continue... 

 

   dN(Xs)  =  Ns  =  (z" cos  , z" sin  , r") 

 

   dN(X )  =  N   =  ( z' sin  , z' cos  , 0) , 

 

and check that  Ns  and  N   are both orthogonal to  N . 

We next compute that 

 

   Ns  =  (r' z"  r" z') Xs 

 

   N   =  (z' / r) X  . 

 

Hence the matrix for the linear map  dNp: TpS    TpS  is the 

diagonal matrix   

diag(r' z"  r" z' , z' / r) . 
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Conclusions so far: 

 

The tangent vectors  Xs  and  X   give the principal directions. 

 

The corresp. principal curvatures are  r' z"  r" z'  and  z' / r . 

 

Gaussian curvature is their product: 

 

K  =  (r' z"  r" z') (z' / r) . 

 

Mean curvature is their average 

 

H  =  1/2 (r' z"  r" z' + z' / r) . 
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Continuing... 

 

The principal curvature  r' z"  r" z'  is exactly the curvature 

of the curve in the  r z - plane which was rotated about the  

z-axis to produce the surface  S . 

 

The principal curvature  z' / r  is the curvature  1/r  of the 

horizontal circle on  S ,  multiplied by  z' ,  which is the 

cosine of the angle between the principal normal to this circle 

and the normal to the surface  S . 
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Quick check. 

 

Consider the circle of radius  R  is the  r z - plane given in 

arc length parametrization by 

 

r  =  R cos(s/R)     and     z  =  R sin(s/R) . 

 

If we rotate this about the z-axis, we get a round sphere of 

radius  R . 

 

We use the above formulas for principal curvatures and see 

that both in this case equal  1/R ,  as they should. 
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Problem 19.  Let the surface  S  be given as the graph   
 

X(u, v)  =  (u ,  v ,  f (u, v)) . 
 

Calculate the first and second fundamental forms, the 

Gaussian, mean and principal curvatures, and the principal 

directions at all points of  S . 

 

Hint.  Many satisfying cancellations lead to the formula 
 
                                          fuu fvv    fuv

2 

                             K  =  –––––––––––––– 
            (1  +  fu

2
  +  fv

2
)

2
  

 
for the Gaussian curvature.  Confirm this for a sphere of 

radius  R ,  with  f (u, v)  =  (R
2
  u

2
  v

2
)

1/2 
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Problem 20.  Let  V  be a small neighborhood of the  

point  p  on the regular surface  S ,  and  N(V)    S
2
   

its image under the Gauss map  N . 

 

Show that the Gaussian curvature  K  of  S  at  p  is  

given by the limit 

 

K  =  limV p  area(N(V)) / area(V) . 

 

Show that this generalizes an analogous result for the 

curvature of plane curves. 


