
 1 

Math 501 - Differential Geometry                                           

Herman Gluck 

Tuesday March 13, 2012 

 

6. GEODESICS 
 

In the Euclidean plane, a straight line can be characterized 

in two different ways: 

 

(1) it is the shortest path between any two points on it; 

 

(2) it bends neither to the left nor the right (that is, it has 

      zero curvature) as you travel along it. 

 

We will transfer these ideas to a regular surface in 3-space, 

where geodesics play the role of straight lines. 
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Covariant derivatives. 

 

To begin, let  S  be a regular surface in  R
3
 ,  and let  W 

be a smooth tangent vector field defined on  S . 
 

                                                             
                           

If  p  is a point of  S  and  Y  is a tangent vector to  S  at  p ,

that is,  Y  TpS ,  we want to figure out how to measure 

the rate of change of  W  at  p  with respect to  Y . 
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Let  (t)  be a smooth curve on  S  defined for  t  in some 

neighborhood of  0 ,  with  (0)  =  p ,  and  '(0)  =  Y .   

 

Then  W( (t))  =  W(t)  is a vector field along the curve   .   
 

                                                     

We define 

 

(DW/dt)(p)  =  orthog proj of  dW/dt|t=0  onto  TpS 

 

and call this the covariant derivative of the vector field  W 

at the point  p  with respect to the vector  Y . 
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The above definition makes use of the extrinsic geometry  

of  S  by taking the ordinary derivative  dW/dt  in  R
3
 ,   

and then projecting it onto the tangent plane to  S  at  p . 

 

But we will see that, in spite of appearances, the covariant 

derivative  DW/dt  depends only on the intrinsic geometry 

of  S . 
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To show that the covariant derivative depends only on the 

intrinsic geometry of  S ,  and also that it depends only on  

the tangent vector  Y  (not the curve  ) ,  we will obtain a 

formula for  DW/dt  in terms of a parametrization  X(u,v)   

of  S  near  p . 

 

Let  (t)  =  X(u(t), v(t)) ,  and write 

 

            W(t)  =  a(u(t), v(t)) Xu  +  b(u(t), v(t)) Xv 

                      =  a(t) Xu  +  b(t) Xv . 

 

Then by the chain rule, 

 

       dW/dt  =  W'(t)  =  a' Xu  +  a (Xu)'  +  b' Xv  +  b (Xv)'       

                                  =      a' Xu  +  a (Xuu u'  +  Xuv v')   

                                      +  b' Xv  +  b (Xvu u'  +  Xvv v') . 
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Recall that 

 

Xuu  =  
1

11 Xu  +  
2

11 Xv  +  e N 

Xuv  =  
1

12 Xu  +  
2

12 Xv  +  f  N 

Xvu  =  
1

21 Xu  +  
2

21 Xv  +  f  N 

Xvv  =  
1

22 Xu  +  
2

22 Xv  +  g N . 

 

Inserting these values into the formula for  dW/dt  and 

dropping each appearance of  N ,  we get 

 

DW/dt  =      (a' + a
1

11u' + a
1

12v' + b
1

21u' + b
1

22v') Xu 

 

                 +  (b' + a
2

11u' + a
2

12v' + b
2

21u' + b
2

22v') Xv . 
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We repeat the formula: 

 

DW/dt  =      (a' + a
1

11u' + a
1

12v' + b
1

21u' + b
1

22v') Xu 

 

                 +  (b' + a
2

11u' + a
2

12v' + b
2

21u' + b
2

22v') Xv . 

 

From this formula, we learn two things: 

 

(1)  The covariant derivative  DW/dt  depends only on  

the tangent vector   Y  =  Xu u'  +  Xv v'   and not on the  

specific curve    used to "represent" it. 

 

(2)  The covariant derivative  DW/dt  depends only on 

the intrinsic geometry of the surface  S ,  because the 

Christoffel symbols  
k

ij  are already known to be intrinsic. 
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Tensor notation. 

 

This is a good time to display the advantages of 

tensor notation. 

 

Notation used above   Tensor notation 

Xu  and  Xv     X,1  and  X,2 

W  =  a Xu  +  b Xv   W  =  w
1 
X,1 + w

2 
X,2   

                                                         =  w
i 
X,i 

Y  =  u' Xu  +  v' Xv   Y   =  y
i
 X,i 

a'  and  b'           Y(w
1
)  and  Y(w

2
) 

DW/dt            DYW  (or  YW ) 
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Formula for covariant derivative 

 

DW/dt  =      (a' + a
1

11u' + a
1

12v' + b
1

21u' + b
1

22v') Xu 

 

                 +  (b' + a
2

11u' + a
2

12v' + b
2

21u' + b
2

22v') Xv . 

 

 

Same formula in tensor notation 

 

DYW  =  (Y(w
k
)  +  w

i
 

k
ij y

j
) X,k  . 
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Parallel vector fields and parallel transport. 

 

Let  S  be a regular surface in  R
3
 ,  and  : I    S  a 

smooth curve in  S .  A vector field  W  along    is a 

choice of tangent vector  W(t)    T (t)S  for each  t  I . 

 

This vector field is smooth if we can write 

 

W(t)  =  a(t) Xu  +  b(t) Xv 

 

in local coordinates, with  a(t)  and  b(t)  smooth fns of  t . 

 

Problem 1.  Check that this definition of smoothness of  

a vector field along    is independent of the choice of 

local coordinates for  S . 
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Example.  The velocity vector field  '(t)  is an example 

of a smooth vector field along   . 

 

If  W  is a smooth vector field along the smooth curve   

on  S ,  then the expression 

 

DW/dt  =      (a' + a
1

11u' + a
1

12v' + b
1

21u' + b
1

22v') Xu 

 

                 +  (b' + a
2

11u' + a
2

12v' + b
2

21u' + b
2

22v') Xv 

 

is well-defined and is called the covariant derivative of  W 

along   .  As before,  DW/dt  is simply the orthogonal 

projection of  dW/dt  onto  TpS . 
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Example.  Let    be a smooth curve on the regular surface  S , 

with velocity vector field  '(t) .  The covariant derivative  

D '/dt   is the portion of the acceleration  d '/dt  =  "(t)  

which is tangent to  S . 

 

Definition.  A smooth vector field  W  defined along a 

smooth curve  : I    S  is said to be parallel if 

 

DW/dt  =  0  for all  t  I . 

 

Problem 2.  Show that a vector field  W  defined along a 

curve    in the plane  R
2
  is parallel along    if and only 

if  W  is constant. 
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Problem 3.  Let  V  and  W  be parallel vector fields along 

a curve  : I    S .  Show that the inner product  < V , W > 

is constant along   .  Conclude that the lengths  |V|  and 

|W|  are also constant along   . 

 

 

Problem 4.  Let  : I    S
2
  parametrize a great circle  

at constant speed.  Show that the velocity field  '  is 

parallel along   .  
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Proposition.  Let  : I    S  be a smooth curve on the 

regular surface  S .  Let  W0  be an arbitrary tangent 

vector to  S  at  (t0) .  Then there is a unique parallel 

vector field  W(t)  along    with  W(t0)  =  W0 . 

 

Proof.  Working in local coordinates  X: U    S , 

we can write  (t)  =  X(u(t), v(t)) .  Let 

 

W(t)  =  a(t) Xu  +  b(t) Xv 

 

be the vector field we seek.   
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Then, since 

 

DW/dt  =      (a' + a
1

11u' + a
1

12v' + b
1

21u' + b
1

22v') Xu 

                 +  (b' + a
2

11u' + a
2

12v' + b
2

21u' + b
2

22v') Xv , 

 

the condition that  W(t)  be parallel along    is that 

 

a' + a
1

11u' + a
1

12v' + b
1

21u' + b
1

22v'  =  0 

b' + a
2

11u' + a
2

12v' + b
2

21u' + b
2

22v'  =  0 . 

 

This is a system of two first order linear ODEs for the 

unknown functions  a(t)  and  b(t) .  By standard theorems, 

a solution exists and is unique, with given initial condition 

W0  =  a(t0) Xu  +  b(t0) Xv . 
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Remark.  This proposition allows us to talk about 

parallel transport of a given tangent vector  W0  TpS 

along a curve    on  S  which passes through  p . 

 

Problem 5.  Let    be a smooth curve on  S  connecting 

the points  p  and  q .  Show that parallel transport along   

is an isometry from  TpS  to  TqS . 

 

Problem 6.  Show that if two surfaces are tangent along 

a common curve   ,  then parallel transport along   

is the same for both surfaces. 

 

Problem.  Explain how to carry out parallel transport 

along piecewise smooth curves. 
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Geodesics.   

 

Definition.  Let  S  be a regular surface in  R
3
 .  A smooth 

curve  : I    S  is called a geodesic if the field of its tangent 

vectors  '(t) is parallel along   ,  that is, if 

 

D '/dt  =  0 . 

 

Note that we can also write this equation as 

 

D ' '  =  0     or     ' '  =  0 .  
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Remarks. 

 

  The geodesics on the plane  R
2
  are just the straight lines, 

travelled at constant speed. 

 

  Every geodesic on a surface is travelled at constant 

speed. 

 

  A straight line which lies on a surface is automatically 

a geodesic. 

 

  A smooth curve on a surface is a geodesic if and only 

if its acceleration vector is normal to the surface. 

 

  The geodesics on a round sphere are the great circles. 
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Problem 7.  (a) Find as many geodesics as you can on the 

right circular cylinder  x
2
  +  y

2
  =  1  in  R

3
 .   

 

(b) Observe that there can be infinitely many geodesics 

connecting two given points on this cylinder. 

 

 

Next we want to define the geodesic curvature of a curve 

on a regular surface.  Before doing that, let's recall how we 

defined curvature of curves in  R
3
  and  R

2
 . 

 

If  : I    R
3
  is a smooth curve parametrized by arc length, 

we defined the curvature of    at  s  to be the real number 

(s)  =  | "(s)| .  There is no way to give a sign to the 

curvature of a curve in  R
3
 . 



 20

 

 

But if  : I    R
2
  is a smooth plane curve parametrized by 

arc length, we can give a sign to its curvature as follows.   

 

Orient the plane  R
2
 .  Let  T(s)  =  '(s)  be the unit tangent 

vector to the curve at  (s) .  Let  N(s)  to be the unit vector 

normal to  (s)  such that the ordered O.N. basis  T(s) , N(s)  

agrees with the chosen orientation of  R
2
 .   

 

Then define  (s)  =  < "(s) , N(s) > .   

 

With the usual orientation of  R
2
 ,  positive curvature  

indicates the curve is bending to the left as you go ahead; 

negative indicates bending to the right.
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We can do the same thing on an oriented regular surface  S 

in  R
3
 ,  as follows. 

 

Let  :  I    S  be a smooth curve on  S ,  parametrized 

by arc length.  Let  T(s)  =  '(s)  be the unit tangent vector 

to the curve at  (s) .  Let  M(s)  be the unit vector at  (s) 

which is tangent to the surface  S  but orthogonal to  T(s) , 

chosen so that the ordered O.N. basis  T(s) , M(s)  agrees 

with the chosen orientation of  T (s) S . 

 

If we have already chosen a unit surface normal  N  for our 

surface  S ,  then we can simply let  M(s)  =  N( (s))  T(s) . 

That way, the ordered O.N. basis  T(s) , M(s) , N( (s)) 

agrees with the orientation of  R
3
 . 



 22

 

 

Now we define the geodesic curvature of the curve   

at the point  (s)  to be 

 

g(s)  =  < "(s) , M(s) > . 

 

Note that   

 

< "(s) , M(s) >  =  < d '/ds , M(s) >  =  < D '/ds , M(s) > . 

 

Thus a smooth curve  : I    S  parametrized by arc length 

is a geodesic if and only if its geodesic curvature is zero. 
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Problem 8.  Show that the geodesic curvature of the curve   

: I    S  at the point  (s)  is the same as the ordinary 

curvature at that point of the plane curve obtained by  

projecting    orthogonally onto the tangent plane  T (s)S . 

 

Solution.  Shift parameters so that  s = 0  at the point in 

question, assume that  (0)  is at the origin of our coordinate 

system, and that the unit tangent vector  T  to this curve,  

the normal  M  within the surface, and the surface normal  N  

line up with the  x ,  y  and  z  axes. 

 

Assume that  s  is an arc length parameter along our curve. 
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Write    (s)  =  (x(s), y(s), z(s)) . 

 

Then    '(0)  =  (x'(0), y'(0), z'(0))  =  (1, 0, 0)  

 

and      "(0)  =  (x"(0), y"(0), z"(0))  =  (0, b, c) . 

 

When  s = 0 ,  the curvature of this curve in 3-space is 

 

                             | "(0)|  =  (b
2
 + c

2
)

1/2
 

 

while its geodesic curvature on the surface is  b . 
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Projecting our curve onto the tangent plane to the surface  

at the given point yields the curve 

 

                         (s)  =  (x(s), y(s), 0) , 

 

where  s  is no longer an arc length parameter. 

 

The unsigned curvature of    at the given point is 

 

        (0)  =  | '(0)  "(0)| / | '(0)|
3
  

 

                 =  |(1, 0, 0)  (0, b, 0)| / 1
3
  =  |b| .  

 

Its signed curvature there is  b ,  the same as the geodesic 

curvature of    on our surface, completing the argument. 
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Problem 9.  Let  : I    S be a smooth curve on the  

regular surface  S  in  R
3
 .   

 

Let  (s)  be the ordinary curvature of the curve    in  R
3
 ,   

let  g(s)  be its geodesic curvature on the surface  S ,  and  

let  kn(s)  be the normal curvature of the surface  S  at the  

point  (s)  in the direction  '(s) .  Show that 

 

(s)
2
  =  g(s)

2
  +  kn(s)

2
 . 

 

Check this when    is a small circle on a round sphere. 
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Solution.  Let's do the example first on a sphere of radius  R ,  

as shown below. 
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The small circle shown has radius  r  =  R sin  ,   

and when parametrized by arc length is given by 

 

          (s)  =  (r cos(s/r) , r sin(s/r) , R cos ) . 

 

Then      '(s)  =  ( sin(s/r) , cos(s/r) , 0)      and 

 

         "(s)  =  (– (1/r) cos(s/r) ,  (1/r) sin(s/r) , 0) . 

 

The curvature of this small circle is    =  1/r  =  1 / (R sin ) . 

 

Its geodesic curvature is   

 

g  =  " • M  =  (1/r) cos   =  cos  / (R sin ) . 

 

The normal curvature of our surface is  n  =  1/R . 
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To check that  
2
  =  g

2
  +  n

2
 ,  we write 

 

       g
2
  +  n

2
  =  (cos

2
 / (R

2
 sin

2
))  +  1/R

2
  

 

                             =  (cos
2  

 +  sin
2

) / (R
2 
sin

2
) 

 

                             =  1 / (R
2
 sin

2
)  =  

2
 , 

 

as desired. 
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The proof of the formula                 

 

                            (s)
2
  =  g(s)

2
  +  kn(s)

2
 

 

is an application of Meusnier's Theorem. 
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The curve    shown above passes through the point  p  on 

the surface  S  with tangent vector  T  and principal normal  N  . 

Its curvature there is   . 

 

The orthormal frame  T, M, N  consists of the tangent vector  T , 

an orthogonal vector  M  still tangent to  S ,  and the surface 

normal  N . 

 

The plane spanned by  T  and  N  cuts the surface along the 

curve  o ,  whose curvature  kn  is the normal curvature of  

the surface  S  at  p . 
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By Meusnier's Theorem, the curvature    of the curve    at  p  

is related to the normal curvature  kn  by the formula   

 

  =  kn / cos  , 

 

where    is the angle between  N   and  N ,  as shown in the 

figure above. 

 

Assuming    is parametrized by arc length, its geodesic 

curvature  g  at  p  is by definition 

 

g  =  < " , M >  =  <  N  , M >  =   cos ( /2  )  =   sin  . 

 

Then             g
2
  +  kn

2
  =  

2
 sin

2
  +  

2
 cos

2
   =  

2
 , 

 

as desired.
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THEOREM (Existence and uniqueness of geodesics). 

Let  S  be a regular surface in  R
3
 ,  p  a point on  S ,   

and  W  0  a tangent vector to  S  at  p .  Then there is an   

 > 0  and a unique geodesic  : (— , )    S  such that 

 

(0)  =  p        and        '(0)  =  W . 

 

Proof.  Using local coordinates  X: U    S ,  let us write 

the geodesic to be found as  (t)  =  X(u(t), v(t)) .  Then 

'(t)  =  Xu u'(t)  +  Xv v'(t) . 



 34

 

 

In our now familiar formula for the covariant derivative, 

 

DW/dt  =      (a' + a
1

11u' + a
1

12v' + b
1

21u' + b
1

22v') Xu 

                 +  (b' + a
2

11u' + a
2

12v' + b
2

21u' + b
2

22v') Xv , 

 

the role of the vector  W  =  a Xu  +  b Xv  will be played by 

'(t)  =  Xu u'(t)  +  Xv v'(t) ,  and the role of the vector 

Y  =  u' Xu  +  v' Xv  will also be played by  '(t) .   

 

In other words, 

 

a  =  u' ,     b  =  v' ,     a'  =  u"     and     b'  =  v" . 
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Thus 

 

DW/dt  =  D '/dt  =  D ' ' 

 

        =      (u" + u' 
1

11u' + u' 
1

12v' + v' 
1

21u' + v' 
1

22v') Xu 

 

            +  (v" + u' 
2

11u' + u' 
2

12v' + v' 
2

21u' + v' 
2

22v') Xv . 

 

So the system of ODEs to be satisfied by a geodesic is 

 

u" + u' 
1

11u' + u' 
1

12v' + v' 
1

21u' + v' 
1

22v'  =  0 ,   

 

v" + u' 
2

11u' + u' 
2

12v' + v' 
2

21u' + v' 
2

22v'  =  0 . 
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The standard existence and uniqueness theorem for  

such systems of ODEs promises us a unique solution 

u  =  u(t) ,   v  =  v(t)  defined on some interval  (— , ) 

and satisfying the initial conditions 

 

u(0)  =  u0 ,  v(0)  =  v0 ,  u'(0)  =  u0'  and  v'(0)  =  v0' , 

 

where  X(u0 , v0)  =  p  and  dX(u0', v0')  =  W . 

 

This completes the proof. 

 

Problem 10.  Show that in tensor notation, the two equations 

for a geodesic  (t)  =  X(u
1
(t), u

2
(t))  are 

 

(u
k
)"  +  (u

i
)' 

k
ij (u

j
)'  =  0 ,      for  k  =  1, 2 . 
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Example - Geodesics on a surface of revolution. 

 

Consider the surface of revolution parametrized by 

 

X(u, v)  =  ( f(v) cos u ,  f(v) sin u ,  g(v) ) . 
 

                                             
                             

Xu  =  (— f sin u ,  f cos u ,  0)  

Xv  =  (f ' cos u ,  f ' sin u ,  g') 
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E  =  < Xu , Xu >  =  f
 2
 

 

F  =  < Xu , Xv >  =  0 

 

G  =  < Xv , Xv >  =  f
 
'
 2
  +  g'

 2
 

 

 
1

11  =  0                      
2

11  =  — f f
 
' / (f

 
'
 2
  +  g'

 2
) 

 
1

12  =  f
 
' / f                 

2
12  =  0 

 
1

22  =  0                      
2

22  =  (f
 
' f

 
" + g' g") / (f

 
'
 2
  +  g'

 2
) 
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The geodesic equations are 

(1)  u" + u' 
1

11 u' + u' 
1

12 v' + v' 
1

21 u' + v' 
1

22 v'  =  0 

(2)  v" + u' 
2

11 u' + u' 
2

12 v' + v' 
2

21 u' + v' 
2

22 v'  =  0 . 

Inserting the actual values for the Christoffel symbols gives 

(1)  u"  +  2 (f '/f) u' v'  =  0 

(2)  v"  +  (—f f ' / (f '
2
 + g'

2
)) u'

2
   

             +  ((f ' f " + g' g") / (f '
2
 + g'

2
)) v'

2
  =  0 . 

 

Caution about the notation: 

 

f '  =  df/dv    f "  =  d
2
f/dv

2
   and likewise for  g ,  but 

u'  =  du/dt     u"  =  d
2
u/dt

2
   and likewise for  v . 
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Problem 11.  Check that  u  =  constant and  v  =  v(t) 

is a solution of the geodesic equations for some choice 

of  v(t) . 

 

Hint.  Equation (1) above is automatically satisfied, and 

equation (2) simply determines  v(t)  so that the curve is 

travelled at constant speed. 

 

Problem 12.  Show that the curve  X(u(t), v(t))  on our 

surface of revolution is travelled at constant speed 

if and only if 

 

(3)      u" f 
2
 u'  +  v" (f '

2
 + g'

2
) v'   

                        +  (f ' f " + g' g") v'
3
  +  f f ' u'

2
 v'  =  0 . 
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Problem 13.  Show that equations (1) and (2) together 

imply equation (3) . 

 

Problem 14.  Show that if  f '(v0)  =  0 ,  then the circle 

u  =  c t   and   v  =  v0  satisfies equations (1)  and  (2) , 

and is hence a geodesic. 

 

Problem 15.  Show that if  v'    0 ,  then equations 

(1)  and  (3)  together imply equation (2) .  So to get a 

geodesic, just satisfy equation  (1)  and make sure you 

travel at constant speed. 
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The issue now is to interpret equation  

 

(1)  u"  +  2 (f '/f) u' v'  =  0 . 

 

This equation implies that 

 

            (f
 2
 u')'  =  f

 2
 u"  +  2 f f ' v' u'   

                         =  f
 2
 (u"  +  2 (f '/f) u' v')  =  0 , 

 

which tells us that          f
 2
 u'  =  constant . 

 

To see the meaning of this, imagine that we travel at  

constant speed  c  along the curve  X(u(t), v(t))  on our  

surface of revolution.  
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Let  (t)  denote the angle that our curve makes with the 

horizontal circle on the surface through the given point. 

 

Then on the one hand, 

 

< Xu u'  +  Xv v' , Xu >  =  < Xu , Xu > u'  =  f
 2
 u' 

 

while on the other hand, this inner product equals 

 

| Xu u'  +  Xv v'|  |Xu| cos   =  c  f  cos  . 

 

So the equation  f
 2
 u'  =  constant  is equivalent to 

 

(4)                          f cos   =  constant . 
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CLAIRAUT'S THEOREM.  Geodesics on the surface 

of revolution  X(u, v)  =  ( f(v) cos u ,  f(v) sin u ,  g(v) ) 

are characterized by the equation 

 

f cos   =  constant . 
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Comments. 

 

  The value of  f cos   is constant along a given geodesic, 

but different geodesics may have different constants. 

 

  If we consider all geodesics through a given point 

 

X(u0 , v0)  =  ( f(v0) cos u0 ,  f(v0) sin u0 ,  g(v0) ) 

 

on the surface, then 

 

— f(v0)    constant    f(v0) . 
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The extreme constants  — f(v0)  and  f(v0)  correspond to 

geodesics through X(u0 , v0)  which at that point are tangent  

to the horizontal circle.   

 

The constant  0  corresponds to the vertical geodesic through  

X(u0 , v0) ,  which is simply the profile curve  u  =  u0 . 

 

  Traveling along a given geodesic, as the surface moves 

farther away from the z-axis, the geodesic becomes more 

vertical. 


