13.6.4

We have equation

$$
k \frac{\partial^{2} u}{\partial x^{2}}+r=\frac{\partial u}{\partial t}
$$

subject to the boundary condition

$$
u(0, t)=u_{0}, \quad u(1, t)=u_{1}, \quad u(x, 0)=f(x)
$$

This is a time independent nonhomogeneous BVP problem. Following the example 1 in the book, we write $u(x, t)=v(x, t)+\psi(x)$ with $v(x, t)$ satisfying the homogeneous BVP and $k \psi^{\prime \prime}(x)+r=0$ with $\psi(0)=u_{0}$ and $\psi_{1}=u_{1}$. It's easy to solve

$$
\psi(x)=u_{0}(1-x)-\frac{r}{2 k}\left(x^{2}-x\right)+u_{1} x=-\frac{r}{2 k} x^{2}+\left(u_{1}+\frac{r}{2 k}-u_{0}\right) x+u_{0} .
$$

Using this, we have

$$
v(x, 0)=u(x, 0)-\psi(x)=f(x)+\frac{r}{2 k} x^{2}-\left(u_{1}+\frac{r}{2 k}-u_{0}\right) x-u_{0}
$$

Solving v in the usual manner we have

$$
v(x, t)=\sum_{n=1}^{\infty} A_{n} \sin (n \pi x) e^{-k n^{2} \pi^{2} t}
$$

where

$$
A_{n}=2 \int_{0}^{1}\left[f(x)+\frac{r}{2 k} x^{2}-\left(u_{1}+\frac{r}{2 k}-u_{0}\right) x-u_{0}\right] \sin (n \pi x) \mathrm{d} x
$$

And in terms of these A_{n} we have

$$
u(x, t)=-\frac{r}{2 k} x^{2}+\left(u_{1}+\frac{r}{2 k}-u_{0}\right) x+u_{0}+\sum_{n=1}^{\infty} A_{n} \sin (n \pi x) e^{-k n^{2} \pi^{2} t}
$$

13.6.12

We have the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=-h, \quad h>0
$$

on $(0, \pi) \times(0, \infty)$ subject to the boundary condition

$$
u(0, y)=0, \quad u(\pi, y)=1, \quad u(x, 0)=0
$$

Well, the inhomogeneous part is y independent, therefore we can write

$$
u(x, y)=v(x, y)+\psi(x)
$$

with $v(x, y)$ satisfying the homogeneous BVP and

$$
\psi^{\prime \prime}(x)=-h
$$

with $\psi(0)=0$ and $\psi(\pi)=1$. Solving ψ we get

$$
\psi(x)=-\frac{h}{2}\left(x^{2}-x\right)+x=-\frac{h}{2} x^{2}+\left(\frac{h}{2}+1\right) x
$$

Using this we have

$$
v(x, 0)=u(x, 0)-\psi(x)=\frac{h}{2} x^{2}-\left(\frac{h}{2}+1\right) x
$$

v also has a secret boundary condition that $v(x, y) \rightarrow 0$ when $y \rightarrow \infty$. Solving v in the usual manner we have

$$
v(x, y)=\sum_{n=1}^{\infty} A_{n} \sin (n x) e^{-n y}
$$

where

$$
A_{n}=\frac{2}{\pi} \int_{0}^{\pi}\left[\frac{h}{2} x^{2}-\left(\frac{h}{2}+1\right) x\right] \sin (n x) \mathrm{d} x=\frac{2}{n \pi} \int_{0}^{n \pi}\left[\frac{h}{2 n^{2}} x^{2}-\left(\frac{h}{2 n}+\frac{1}{n}\right) x\right] \sin (x) \mathrm{d} x
$$

which we can evaluate as

$$
\left.\frac{2}{n \pi}\left\{\left[\frac{h}{2 n^{2}} x^{2}-\left(\frac{h}{2 n}+\frac{1}{n}\right) x\right](-\cos x)+\left[\frac{h}{n^{2}} x-\left(\frac{h}{2 n}+\frac{1}{n}\right)\right] \sin x+\frac{h}{n^{2}} \cos x\right\}\right|_{0} ^{n \pi}=\frac{2}{n \pi}\left\{\left[\frac{h}{n^{2}}-\frac{h \pi^{2}}{2}+\left(\frac{h}{2}+1\right) \pi\right](-1)^{n}-\frac{h}{n^{2}}\right\}
$$

Using these coefficient we have

$$
u(x, y)=v(x, y)+\psi(x)=-\frac{h}{2}\left(x^{2}-x\right)+x=-\frac{h}{2} x^{2}+\left(\frac{h}{2}+1\right) x+\sum_{n=1}^{\infty} A_{n} \sin (n x) e^{-n y}
$$

13.6.18

We have the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}+2 t+3 t x=\frac{\partial u}{\partial t}
$$

on $(0,1) \times(0, \infty)$ subject to the boundary conditions

$$
u(0, t)=t^{2}, \quad u(1, t)=1, \quad u(x, 0)=x^{2}
$$

Now the inhomogeneous part is t-dependent, therefore we can follow the example 2 and write

$$
u(x, y)=v(x, y)+\psi(x, t)
$$

with $\psi(x, t)$ defined as

$$
\psi(x, t)=t^{2}+x\left(1-t^{2}\right)
$$

The equation for v becomes

$$
\frac{\partial^{2} v}{\partial x^{2}}+2 t+3 t x-\frac{\partial \psi}{\partial t}=\frac{\partial^{2} v}{\partial x^{2}}+5 t x=\frac{\partial v}{\partial t}
$$

with the boundary conditions

$$
v(0, t)=0, \quad v(1, t)=0, \quad v(x, 0)=x^{2}-x
$$

We first expand

$$
\begin{gathered}
3 t x=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x) \\
B_{n}=2 \int_{0}^{1} 3 t x \sin (n \pi x) \mathrm{d} x=\frac{6 t}{n^{2} \pi^{2}} \int_{0}^{n \pi} x \sin x \mathrm{~d} x=\left.\frac{6 t}{n^{2} \pi^{2}}(-x \cos x+\sin x)\right|_{0} ^{n \pi}=\frac{6(-1)^{n+1} t}{n \pi}
\end{gathered}
$$

Therefore if we expand

$$
v(x, t)=\sum_{n=1}^{\infty} T_{n}(t) \sin (n \pi x)
$$

we have for each n

$$
-(n \pi)^{2} T_{n}(t)+\frac{6(-1)^{n+1} t}{n \pi}=T_{n}^{\prime}(t)
$$

To solve this, we first rewrite it as

$$
\left(e^{n^{2} \pi^{2} t} T_{n}(t)\right)^{\prime}=e^{n^{2} \pi^{2} t} \frac{6(-1)^{n+1} t}{n \pi}=6(-1)^{n+1}\left(e^{n^{2} \pi^{2} t} \frac{t}{n^{3} \pi^{3}}-e^{n^{2} \pi^{2} t} \frac{1}{n^{5} \pi^{5}}\right)^{\prime}
$$

This means

$$
T_{n}(t)=A_{n} e^{-n^{2} \pi^{2} t}+\frac{6(-1)^{n+1}\left(n^{2} \pi^{2} t-1\right)}{n^{5} \pi^{5}}
$$

To get A_{n}, we let $t=0$, then $T_{n}(0)=A_{n}+\frac{6(-1)^{n}}{n^{5} \pi^{5}}$. Hence

$$
A_{n}=2 \int_{0}^{1}\left(x^{2}-x\right) \sin (n \pi x) \mathrm{d} x-\frac{6(-1)^{n}}{n^{5} \pi^{5}}=\frac{4\left[(-1)^{n}-1\right]}{n^{3} \pi^{3}}-\frac{6(-1)^{n}}{n^{5} \pi^{5}}
$$

We get

$$
u(x, t)=t^{2}+x\left(1-t^{2}\right)+\sum_{n=1}^{\infty}\left[A_{n} e^{-n^{2} \pi^{2} t}+\frac{6(-1)^{n+1}\left(n^{2} \pi^{2} t-1\right)}{n^{5} \pi^{5}}\right] \sin (n \pi x)
$$

