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1 Lecture 1

Definition 1.1 (Complex Manifold). A complex manifold is a manifold with
coordinates holomorphic on Cn rather than C∞ on Rn.

What is the difference betwene holomorphic and C∞?
From the PDE point of view, they must satisfy the Cauchy-Riemann equa-

tions: f(z) = u+ iv is holomorphic if and only if ∂u
∂x = ∂v

∂y and ∂u
∂y = − ∂v

∂x .
The fact that this causes the function f to be analytic(holomorphic) is what

gives the theory a very algebraic flavor.

Example 1.2 (Sphere). We get a map S2\{N} → C and another S2\{S} → C
by stereographic projection. The map from S2 \ {N,S} to itself that takes the
image of the first to the image of the second is 1

z on C∗, which is holomorphic. So
what are the holomorphic functions? Any holomorphic function gives a bounded
entire function by removing a point, and so must be constant! This is in fact
true for holomorphic functions on compact connected complex manifolds.

Theorem 1.3. The only global holomorphic functions on a compact connected
complex manifold are the constants.

Corollary 1.4. There are no compact complex submanifolds on Cn of dimen-
sion greater than 0.

Example 1.5 (Projective Space). Set Pn = Cn+1 \ {0}/ ∼ where z′ ∼ z iff
there exists λ ∈ C∗ such that z′ = λz. We put charts on it by looking at
Ui = {[z] ∈ Pn|zi 6= 0}.

Question 1. When is a compact complex manifold a submanifold of Pn?

We will also be interested in

Example 1.6 (Grassmannians). G(k, n) is the space of k-dimensional subspaces
of Cn.

Two manifolds may be C∞ diffeomorphic but not holomorphic.
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Example 1.7 (Torus). As a C∞ manifold, a torus is just S1 × S1. However,
it can have many complex structures. To get one, view it as C/Λ where Λ is a
lattice isomorphic to Z2. There are many different lattices, and so we can get
many complex structures this way. It is not hard to see that they are distinct.

The theory of complex manifolds splits into compact and noncompact, we’re
only going to look at the compact complex manifolds.

So what do we do? We have no holomorphic functions. A function can be
viewed as being a map M →M × C by x 7→ (x, f(x)). To get something like a
function, we can change M × C to something that is only locally this product,
that is, a line bundle.

Definition 1.8 (Line Bundle). A holomorphic line bundle is E π→ M where
M And E are complex manifolds and π is holomorphic such that the fiber over
each point is isomorrphic to C and it is locally biholomorphic to Uα × C.

Taking a trivializing open cover Uα, we get maps Uα ∩ Uβ → GL(1,C) (or
n in the case of more general vector bundles) which we will call gαβ , and they
will satisfy gαβgβγ = gαγ , these are called the gluing data.

We can get another bundle using tg−1
αβ , and these will give the dual bundle,

whose fibers are naturally the dual of the original, and call it E∗. Similarly, we
can take E,F and put the transition functions in blocks, and we get E ⊕ F .
For line bundles, the transition functions are numbers, not matrices, so their
product is another invertible function, so we get a line bundle E ⊗ F .

Example 1.9 (Universal Line over Pn). We set T = {([z], v)|v ∈ [z]} ⊂ Pn ×
Cn+1} and its projection map to Pn makes it a line bundle with transition maps
zi/zj.

So, we replace the notion of a global function with a global section of a line
bundle E →M , which is a map M → E such that x ∈ Ex. This means that on
each Uα we have a function fα and fα = gαβfβ .

Let P (x0, . . . , zn) be a homogeneous polynomial of degree k. Then on Ui,
set fi = P/zki , these form a global section of (T ∗)k. But, if we remove the dual,
there are no global sections.
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Example 1.16 and A.1
In mathematics, we often try to reduce problems to linear algebra, because

linear algebra is something that we understand very well.

If we set gαβ = D(φα◦φ−1
β ) ∈ GL(n,R). In fact, we get

{(
A −B
B A

)
∈ GL(2n,R)

}
,

and these are the changes of coordinates preserving the matrix
(

0 −I
I 0

)
.

On a complex manifold M , it is possible to define a linear map Jp : TpM →
TpM by Jp( ∂

∂xi
= ∂

∂yi
and Jp( ∂

∂yi
) = − ∂

∂xi
.
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Then J2
p = −id and so J2 + I = 0.

Now, take [TpM ]C = TpM ⊗R C = TpM ⊕ iTpM . Call T ′p and T ′′p , the parts
with eigenvalue i and −i.

We can actually, for a complex manifold M , make TpM into a complex
vector space, by defining (a+ ib) ∗ v = av + bJpv. And then, this vector space
is isomorphic to T ′pM by taking v to v − iJv.

So what is the tangent bundle of Pn? Let L(t) ∈ Pn a curve. Fix v ∈ L(p) =
L. So the curves don’t depend on motion inside the line, thus we end up with
T (Pn) = homC(T ,Cn+1/T ), and by changing the lines to subspaces, the same
is true of Grassmannians.

Now, we write [T ∗pM ]C = T 1,0
p (M)⊕T 0,1

p (M) where the first has basis dzi =
dxi+idyi and the second has basis dz̄i = dxi−idyi. Then, df =

∑
j df( ∂

∂zj
)dzj+∑

j df( ∂
∂z̄j

dz̄j .
We now set Ap,q(M) to be the space of forms whose terms have dzI ∧ dz̄J̄

where |I| = p and |J̄ | = q. Then the exterior derivative maps d : Ap,q(M) →
Ap+1,q(M)⊕ Ap,q+1(M). So d = ∂ + ∂̄, both of which square to zero, and also
∂∂̄ + ∂̄∂ = 0.

We then have that Ak(M,C) = ⊕p+q=kAp,q(M). The Dolbeault cohomol-
ogy, then, is Hp,q

∂̄
(M) is the cohomology of ∂̄.

Inside of Ap,0(M) is Ωp(M), which is the collection of the forms with holo-
morphic, not merely C∞, coefficients.

Now we note that the Dolbealt cohomology is NOT diffeomorphism invari-
ant. It depends on the complex structure of the manifold in question.
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Let V be a real vector space along with an operator J2 = −I. This makes it a
complex vector space. We can also say VC = V ⊕ iV = V ′⊕ V ′′ where V ′ is the
i-eigenspace and V ′′ the −i-eigenspace. We write V ∗C = V 1,0 ⊕ V 0,1 along with
J∗, which are the i and −i eigenspaces. Then

∧r
V ∗C =

⊕∧p,q with p+ q = r.
So
∧2

V ∗C =
∧2,0⊕

∧1,1⊕
∧0,2, which are −1, 1,−1 eigenspaces respectively.

So now, we have d : Ap,q(M) → Ap+1,q ⊕ Ap,q+1 and for each p we get a
complex 0→ Ωp(U)→ Ap,0(U)→ Ap,1 → . . . which is exact for a small enough
U (more precisely, exact as a complex of sheaves.

For p = n = dimM , then Ωn(U) = fdz1 ∧ . . . ∧ dzn with f holomorphic.

Proposition 3.1. The Following are equivalent

1. A symmetric bilinear form B : V ×V → R such that B(Ju, Jv) = B(u, v)

2. An alternating form ω : V × V → Rsuch that ω(Ju, Jv) = ω(u, v)

3. A hermitian form H : (V, J)× (V, J)→ C with H(Jv, Ju) = H(v, u).

Now, we move to manifolds. Every complex manifold has a positive definite
Hermitian structure on the holomorphic tangent bundle, which is equivalent to
every complex manifold has a Riemannian metric compatible with J .
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By this, we mean that on (U, z1, . . . , zn), we have that hjk = H( ∂
∂xj

, ∂
∂xk

)
and ω = 1

2

∑
j,k hjkdzj ∧ dz̄k.

We define a hermitian structure on M to be Kahler if dω = 0. This implies
that hjk(z) = δjk +O(|z|2).

3.1 Symplectic and Kähler Manifolds

A symplectic manifold is a pair (M,ω) where dω = 0 and ωn 6= 0, with ω a
2-form. We’ll assume that M is compact. Then M being Kähler implies that
M is symplectic, because

∫
M
ωn 6= 0, and so 0 6= [ω]n ∈ H2n(M), so each [ωk]

is nonzero.

Example 3.2. Calabi and Eckmann proved that for n,m ≥ 1, there was a
complex structure on S2n+1 × S2m+1, and these can never be Kähler.

In fact, any compact symplectic manifold has an almost complex structure.

Example 3.3. Cn is Kähler with metric i
2

∑
i,j δijdzi ∧ dz̄j.

Example 3.4. Pn has a Kähler structure, by taking on each Uj the sunftion
ρj([z]) =

P
|zi|2
|zj |2 > 0. On Uj ∩ Uk, we have |zj |2ρj = |z2

k|ρk, we then take
logs and apply ∂∂̄, and we find that ∂∂̄ log(ρj) = ∂∂̄ log(ρk). So we set ωj =
− 1

2πi∂∂̄ log(ρj(z)), and the metric we construct is the Fubini-Study metric.

Let N ⊂ M . Then for all p ∈ N , there exist coordinates (U, z1, . . . , zn) on
M around p Such that N ∩U is described by z1 = . . . = zk = 0. If M is Kähler
and N ⊂M is a submanifold, then N is Kähler.

Thus, if M is a submanifold of Pn, then M is Kähler. Thus, [ω] ∈ H2(M)∩
H2(M,Z) is necessary.
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Let’s look at the real, smooth case. Let M be a compact oriented Riemannian
manifold.

If V is a real vector space which is oriented with an inner product, then∧k(V ∗) has an inner product as well.

Exercise 4.1. Show that 〈α1 ∧ . . . ∧ αr, β1 ∧ . . . ∧ βr〉 = det(〈αi, βj〉).

Volume element Ω ∈
∧n(V ∗) given by ξ1 ∧ . . . ∧ ξn, where the ξi form an

orthonormal basis.
We have a map ∗ :

∧k(V ∗)→
∧n−k(V ∗), and ∗(ξi1∧. . .∧ξir ) = sign(I, J)ξj1∧

. . . ∧ ξjn−r
. So then α ∧ ∗β = 〈α, β〉Ω.

Now, ∗ is an isomorphism, and it satisfies ∗2 = (−1)r(n−r).
Back to the manifold M . We can define an inner product on forms α, β by∫

M
α ∧ ∗β. This is a positive definite bilinear form.
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Now, we define δ = (−1)nr+1 ∗ d∗, and it takes r-forms to r− 1-forms, using
this ∗ operator. We claim that d and δ are adjoints, that is, (dα, β) = (α, δβ).∫

M
dα∧∗β =

∫
M
d(α∧∗β)−(−1)rα∧d∗β, but this will just be −(−1)r

∫
M
α∧

d ∗ β, up to sign, we can just insert a ∗2 in front of d, and the signs work out.
Now, if dα = 0, then ∗α may not be closed, but it is if and only if δα = 0.

Proposition 4.2. dα = δα = 0 if and only if (dδ + δd)α = 0.

One direction is simple, for the other, we have 0 = 〈(dδ + δd)α, α〉, which
using the adjoint property proves the result.

We call this operator ∆, the Laplace-Beltrami operator, or the Laplacian,
and we call any form α with ∆α = 0 a harmonic form.

Exercise 4.3. ∗∆ = ∆∗.

Why should we hope that every cohomology class has a harmonic form in
it?

Heuristically, start with dα = 0. Then [α] is the set of forms of the form
α+ dβ. Then ‖α+ tdβ‖2 = 〈α, α〉+ 2t〈α, dβ〉+ t2‖dβ‖2. Now, suppose ‖α‖2 is
a maximum. Then for all β we’ll have that 〈α, dβ〉 = 0 and 〈δα, β〉 = 0, so we
can assume that δα = 0.

Theorem 4.4 (Hodge’s Theorem). 1. H k(M), the harmonic forms, is fi-
nite dimensional

2. Ar(M) = H k ⊕∆(Ar(M)).

In particular, every form is a harmonic form, plus d of something plus δ of
something. So then any form is α + dβ + δγ. But if it’s closed, then dδγ = 0,
which implies that δγ = 0, so for any closed form, it is of the form α = η + dβ.

Thus, Hr
dR(M,R) ∼= H r(M).

Take a submanifold Zn−k ⊂ Mn, then for any form in Hn−k(M), we can
restrict it to Z and integrate to get a map to R. By Poincaré duality, this gives
us a class ηZ ∈ Hk(M).

Now, we define everything in a ”hermitian way.” So we take
∫
M
α∧ ∗β̄, and

note that ∗ takes (p, q) to (n− q, n− p).
We define ∂̄∗ = − ∗ ∂∗ and ∂∗ = − ∗ ∂̄∗, and these are of type (0,−1) and

(−1, 0) and match with ∂ and ∂̄. So then we have ∆∂̄ = ∂̄∂̄∗+ ∂̄∗∂̄, and we can
write any form as a sum α = αk,0 + αk−1,1 + . . ..

And, we leave off with the fact that, on a Kähler manifold ∆d = 2∆∂̄ .
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We’ll be working on a compact Kähler manifold. We know that ∆ = 2∆∂̄ .

Corollary 5.1. If α ∈ Ak(M) is harmonic and α =
∑
αp,q, then ∆αp,q = 0.

Let Hp,q(M) be the set of classes in Hp+q(M) such that α has a represen-
tation in bidegree p, q.
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Theorem 5.2. Hk
dR(M,C) ∼= ⊕p+q=kHp,q(M) and Hp,q(M) ∼= H p,q(M) =

Hp,q

∂̄
(M) ∼= Hq(M,Ωp).

We in fact have Hq,p(M) = Hp,q(M).
Now, if k is odd, we have Hk(M) = Hk,0⊕ . . .⊕H0,k, and there is no middle

term, so the dimension of Hk(M) is even when k is odd.
The cup product will actually respect the bigrading: Hp,q∪Hp′,q′ ⊂ Hp+p′,q+q′ .

Voisin has found examples where every condition is satisfied except this prop-
erty.

Why should all of these nice things be true? Let ω ∈ H2(M,R) ∩H1,1(M).
We have a Lefschetz map Lω : A∗ → A∗ by α 7→ ω ∧ α increasing degree by
(1, 1). We have Ln+1

ω = 0. Now, we can define Y : A∗ → A∗ by Y (α) = (n−k)α
for α ∈ Ak, and we have [Y, L] = −2L. Now, define N+ = (−1)k ∗ L∗ on A∗.
This is the adjoint of L, and it satisfies [Y,N+] = 2N+ and [N+, L] = Y , so this
actually gives us a representation of the Lie algebra sl2!

In this representation, L and N+ are shifts, and the eigenvalues of Y are
the degrees of forms, L increases degree and N+ decreases. Then there’s the
Lefschetz Theorem which says, first, that Lkω :

∧n−k(T ∗p ) →
∧n+k(T ∗p ) is an

isomorphism. Moreover, it tells us that there are two types of cohomology classes∧n−k(T ∗p ) = Pn−k ⊕ L(
∧n−k−2). We call this the Lefschetz decomposition for

forms.
We in fact have the following relations:

1. [∂, L] = [∂̄, L] = [∂∗, N+] = [∂̄∗, N+] = 0

2. [∂̄∗, L] = i∂, [∂∗, L] = −i∂̄, [∂̄, N+] = i∂∗, [∂,N+] = −i∂̄∗.

These imply that [∆∂ , L] = [∆∂ , Y ] = [∆∂ , N+] = 0, by just writing it out
and putting L between the partials. This implies that the Lefschetz theorem
holds if we replace forms by cohomology classes. We call this the Hard Lefschetz
Theorem.

This gives another topological restriction: the betti numbers (even and odd
separately) must be increasing to the middle degree.

Now, let us assume dimC M = 1, so we are on a Riemann surface. So then
H1 = H1,0 ⊕H0,1, and by the Dolbeault theorem, H1,0 ∼= H1,0

∂̄
∼= H0(M,Ω1),

the holomorphic 1-forms, that can be written f(z)dz locally, for f holomorphic.
Then there is H0,0 and H1,1, so the Hodge numbers are easy: h0,0 = h1,1 = 1
and h1,0 = h0,1 = g.

On a complex surface, things are slightly more interesting, and H1,1 splits
into H1,1

0 + Cω, where subscript of zero will indicate the primitive cohomology.
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