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So why is the Riemann Integral not good enough? It is not well behaved
with respect to pointwise limits.

With the Riemann integral, we can have a sequence of functions f, that
converge almost everywhere to f with [|f,|?(z)dz < 1 and have f not be
integrable, even if the f, are smooth.

Example 0.1 (Bad Behavior of Riemann Integral). A function f(z) : [a,b] — R
is Riemann integrable if there exists 2 sequences of increasing/decreasing step
functions p1(x) < po(z) < ... < f(x) < ... <Yp(x) < Yp_1(x) < ... < YPy(x)
such that for some M € R, 3 ¢, 4 €5(@)| < m, sup,epa ) [¥5(@)| < M for all

j and moreover, limy_, o f: vk (x)dr = limg_ o fab Y (z)dz. If two such families
exist, then we get the same limit for any other pair of such families by passing
to a common refinement.

Now we will construct a sequence of nice (in fact, smooth) functions which
18 decreasing, converges pointwise, but whose limit s not Riemann integrable.
First we construct an auziliary sequence of functions Fy(x), k =1,... as follows.
Define Fyi(x) to be the function from [0,1] — R such that for x not in a ball of
diameter ¢, Fi(z) = 1 and that decreases to 0 and back to 1 linearly on the
ball.

Define Fy(x) such that around 1/4,3/4 we have balls of diameter ca where
2¢co + ¢1 < 1 and the three balls do not overlap such that on each co diameter
ball, Fy looks like Fy, and is constant in the middle. Continue inductively like
this. By smoothing out the kinks, we can achieve that each F;(x) is C* and
0 < Fi(z) <1 for alli.

We ensure that, upon putting |ci| = lg, 1 < i < k—1, Y 00 2k < 1.
Then fn(z) = [1h_y Fr(z) is a decreasing sequence of bounded functions, so
limy,— 00 fr(X) = f(x) exists for all z € [0,1].

Letting C = U, U?k:_ll Ci, then f(z) =1 on I\ C and furthermore it is
discontinuous everywhere on I\ C.

Claim: f is not Riemann Integrable. This is due to the following theorem:

Theorem 0.1. If a function f : I — R is Riemann Integrable, then its set of
discontinuities has measure 0.

Proof. Let f : I — R be Riemann Integrable, in particular, bounded. For
c € I, r sufficiently small, define osc(f,c,r) = sup, yer, () [f(¥) — f(y)| where
I.(c¢) is the interval of length r centered at ¢. Further, define osc(f,c) =
lim, g 0sc(f, c,r). Then the set of discontinuities of f is {z € I|osc(f,x) > 0}.



Denoting A, = {x € I|osc(f,z) > €}, then note that A, is closed, and the
set of discontinuities of f is Up2;A;/,. We will show that each A/, satisfies
|A1/n| =0, so | U Al/n| =0.

Pick a set Ay/,. Further, given ¢ > 0, pick a lower and upper bounding
step function ¢(x) < f(z) < ¢(z) subordinate [p(z),¥(x) are constant on
I}, for all k] to the cover I = Up_, I and 0 < [, ¢(z)dz — [, ¢(z)dz < €/n
implies S = ZlgﬂAl/n;éw |Ix| < e. This is because e/k > [} ((x) — ¢(x))dx >
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1 Measure Theory: Lebesgue Measure on R"

First, we will define Lebesgue measure on rectangles:

Definition 1.1 (Rectangle, Measure of a Rectangle). A closed rectangle on R™
is a set of the form [a1,b1] X [az,ba] X ... [an, by] with a; < b; for all i.
We define |R| =[], (b; — a;).

This definition is compatible with decomposition of rectangles into smaller
rectangles.

Lemma 1.1. Let R = Ujj‘ile be an almost disjoint cover. This means that

only the boundaries may intersect. Then |R| = Zjvil |R;|.

Proof. Refine the rectangles R; by introducing a suitable Rj such that R =
U;V:le and each R; = Ujep, I75, again with the R; almost disjoint. Now the

statemeny |R| = 3" |R;| follows from the distribution law for the reals, and
similarly [Ry| = .05, |R;| follows from distribution. As teh Ay partition the
set {1,..., N}, we have that |R| = Yo", |Ry|. O

Lemma 1.2. If R C UR;, then |R| < Y10, |Ry].

Proof. Basically the same, but the index sets Ay are no longer necessarily dis-
joint. O

Theorem 1.3. Fvery open set O C R™ can be written as a union of almost
disjoint closed cubes.

Proof. For each point z € O, pick the largest dyadic cube (cube on 2KZ", k € 7Z)
still in O containing x. This gives the disjoint cubes. O

This uses the fact that if you have two dyadic cubes, Q1, @2, then if Q3NQS #
(), then either Q1 C Q2 or Q2 C Q1.
Now we need to define measurable sets.

Definition 1.2 (Outer Measure). Let E C R™ be any subset, then we define
m.(E) = infpcux, @, |Q;] where the Q; are cubes. In particular, m.(E) €
[0, <.



It is important to allow countable unions here. If one restricts to only finitely
many cubes, this is claled the outer Jordan content, j.(E) # m.(E). For
instance, I NQ has j,(INQ) =1 and m,(INQ) = 0.

Some facts concerning m,:

1. my(pt) =0
2. For a rectangle R, m.(R) = |R|

Proof of (2): Assume R C Uj2;Q;. Choose open cubes Q‘; D Q;. By
compactness of R, we can choose a finite collection of Q;’ which still covers R.
Then by the lemmas, > |Q;’| > |R|. Let € > 0, then assume that Z;’il 1Q;] <
ms(E) + €, and also [Q3] < (1 + €)|Q;].

Then (1+¢€)(e+m.(R)) > |R|, so now letting e — 0, get m.(R) > |R|. Next
we prove the reverse. Construct a grid of cubes of side length 1/k for k large
and let {Q);},;ea be those (finitely many) cubes intersecting R. Then subdivide
A into AU B, where A = {j € A|Q; C R} and B = {j € A|Q; ¢ R}. Then
check directly that there is a constant ¢ = ¢(d, R) such that #B < ck?!, if
R C R

Further, >, 4 |Q;| < |R| by lemma 2. Hence, |R| + ck=t > > jen @yl so
now letting k — oo, we get m.(R) < |R|. So |R| = m.(R).

Remark 1.1. This allows us to replace cubes by rectangles in the definition of
s

2 Lecture 2

Last time, we constructed the outer measure for any set £ C R™.
The following are fundamental properties of m. (E):

1. If R is a rectangle, then m.(R) = |R| (showed last time)
2. Monotonicity: if Eq C E3 then my(E1) < m.(Es)
3. Countable sub-additivity: If E = U5, E; then m.(E) <Y m.(E;)

4. Approximation by open sets: m.(E) = info5 gopen M (O).

Proof. Given a covering & C UQ; by closed cubes, choose a small open
thickening of each. O

5. Additivity of m, for well separated sets: We call F1, E5 well-separated
proved that d(Ey, Es) = infyep, yer, | —y| > 0. Then if Ey, E, are
well-separated, then m,(E1 U FEy) = m.(F1) + m.(Fs).

Remark: It is not enough that F; and F3 be disjoint for this to hole.



Proof. By sub additivity, we have m.(E1 U Es) < m.(E1) + m«(E2). So
we need the other direction.

Choose a covering by cubes {Q;}72; such that > [Q;| < m.(E1UE2) +e€
by subdividing these cubes into smaller ones, we can ensure that they
have sidelength at most %d(El7 E5) > 0, so no cube intersects both sets.
Then, we can partition {Q;} into {Q,};ca and {Q;};ep where j € A
iff @ NE; # 0 and j € B else. But necessarily, By C U;caQ; and
By C UjepQy. and so ma(Ey) < ¥, 1Q,] and ma(E2) < 3, [Q)f
and so my(E1) + m.(E2) < Y |Q;| < my(E1, Es) + €. Taking € — 0, we
get my(E1) + mu(Es) < my(E; U Ey), and so equality holds. O

6. Countable Additivity for well-behaved decomposition: If E' = U2, @Q; and
Q; are almost disjoint, then m, (E) = >_ Q]

Proof. This is a consequence of the preceding properties: we're trying to
reduce this assertion to additivity of m, on well-separated sets. Shrink
each cube a bit. That is, we replace it by smaller, concentric cubes Qj C
Qj, but such that d(@j, Qk) > 0 for ¢ # k. Then for any finite collection,
applying the preceding property inductively gives us that m*(Uj]Vile) =
Zi]\il \Q]| By letting the smaller cubes approach the original cubes, we
conclude that m,(F) > ZJM:1 |Q;| for every finite M. Now, letting M —
00, my(E) > > |Q;, and the other direction is provided by sub-additivity.

O

The problem of m, is that it fails additivity for disjoint sets E7, Fs. We'll
restrict E to a class of sets in whcih m, is countably additive.

Definition 2.1 (Lebesgue Measurable). We call a set E C R™ Lebesgue mea-

surable proveded that Ye > 0, there ezists open O D E with the property that
m.(O\ E) <e.

In particular, open sets are Lebesgue measurable and sets of outer measure
0 are Lebesgue measurable.

Remark 2.1. Alternatively, can characterize measurable sets as follows: for all
€ > 0, there exists closed C C E such that m.(E \ C) < €. This will be shown
by checking that measurability is preserved under taking complements.

Our goal now is to establish that the measurable sets in R™ constiture a
o-algebra.

Proposition 2.1. A countable union of measurable sets is measurable.

Proof. Choose € > 0 and for each measurable set E; choose an open set O; such
that m.(0; \ E;) < ¢/27.

Then, O = UO; satisfies m,(O \ UE;) < >~ m.(O; \ E;) < € by countable
additivity. O



The hard part is showing that complementation preserves measurability.
Proposition 2.2. Closed sets are measurable.

Proof. Let F C R™ closed. Intersect F with balls By (0) with radius & > 1.
Then F' = U2 | (FNBg(0)), each of which is compact. It we have measurability
for F'N By, for all k, then by the previous prop, we have measurability of F. Fix
k > 1. Choose an open set O such that m.(O) < m.(F N By) + € where € > 0
is fixed.

We want to show that m.(O\ (FNBy)) < e. Note that O\ (F'NBy) is open.
Hence, we can write it as a union of almost disjoint dyadic cubes. Also, be an
earlier obervation, m.(O \ (F N Byg)) = >_|Q,|, the dyadic cubes. Now pick a
finite subset of these cubes @1, ..., Q. Then Uj]‘/ile is a compact set, and so
is F'N By, hence d(UjI‘/ile, FnNByg) > 0. And so by additivity for well-separated
sets, we have m,(0) > m.(UL,Q; U F N By) = m.(UML,Q;) + m.(F N By) =
Z;w:l |Q;] + m.(F N By), and so subtracting m.(F N By) from each side and
recalling that m..(O) —m.(FNBy) < €, we get Zﬁl |Q;|M < €, and now letting
M — 00, 37721 1Q;| < ¢, and so m.(O\ FN By) < ¢, so we get measurability of
F N By for all £ > 1, and so F is measurable. O

Proposition 2.3. Measurability is preserved under taking complements.

Proof. Let E C R™ be measurable. For all n > 1 integer, choose O,, D E such
that m. (O, \ E) < 1/n, and S = UOS C E°, which is measurable. Further,
Ec\S C O, \ E for all n > 1. Hense, by monotonicity, m.(E*\ S) < 1/n for
all n, and so m,(E°\ S) =0. Adn E€ = E°\ SUS is measurable, and so E€ is
measurable. O

Corollary 2.4. Countable intersections of measurable sets are measurable.

Proposition 2.5 (Countable Additivity). Let F1,...,... be measurable and
disjoint, then m(U, E;) = 372 m(Ej).

Proof. Again uses compactness trick. First, reduce to bounded measurable sets
by introducing E; ; = E;NQk\ Qr—1. It is easy to see that countable additivity
for Ej ;, implies the result for £;, hence, we may assume that each E; is bounded.

By measurability, for all j, there exists F; C E; with F} closed such that
m.(E; \ F;) < €/27 for a given € > 0. Now the F; are disjoint and compact,
hence, d(F;, F;) > 0 for ¢ # j and by the additivity of m. on well-separated
sets, we have m, (UM, F}) = 200 mo (Fy) > 200 (m(E;) — &), so m(E) >
> ey m(E;) as M — oo and € — 0, and also m(E) < Y- m(E;) by countable
subadditivity. O

Further consequences in the same vein:

Proposition 2.6. Let Fq, ... be an increasing sequence of measurable sets, that
is, By, C Exq1 for all k, and E = UEy, then one writes Ey /' E, and similarly
if Ex41 C Ey, and E = NEy, then Ex \, E. Then we have:



1. If B, /' E, then m(E) = limy_.oco m(EN)

2. If By, \\ E, then m(E) = limy_..o m(EN) provided that m(E)) < oo for
some k.

Proof. 1. Put Gy, = Ex \ Ex—1, and G; = FEj. These are measurable and
disjoint, and F' = U2, Gy, and so

) N
m(E) =Y m(Gy) = A}LmooZm(Gk): Jim_m(Ey)
k=1 k=1

2. same idea.
O

Lemma 2.7 (Borel-Cantelli Lemma). Let {Ej}i>1 be a collection of measurable
sets in R™ with Y po , m(Ey) < oo, then letting E = {x € R"|x € Ey for
infinitely many k} is measurable indeed, m(E) = 0.

Proof. If x € E, then for each i € N there exists £ > i such that z € Fj.
Translating into set theoretic notations, £ = N2, (U, Ey) (define the inside
to be F). Note that m(U2, Ex) < S50, m(Ey) < oo implies that m(F;) < oo.

Also, F; N\, E and so be the preceding prop, m(F;) = m(Ug>;Er) <

3 Lecture 3

Today we will develop basic integration theory in a general setting.

Proposition 3.1. Let E C R™ be measurable. Then

1. Ve > 0, there exists an open set O O E such that mO \ E) < e.
2. There exists F' closed such that F C E, m(E\ F) <
3. If m(E) < oo, then there exists a compact K C E such that m(E\ K) < €

4. If m(E) finite, then there exists F = U;-V:le with the Q; closed cubes,
such that m(E\ F)+m(F\ E) <e

Proof. 1. Straight from definition of measurability.

2. From 1 and complementation.

3. Choose a ball By, closed for k € N such that m(E N By) > m(E) — ¢/2.
Prossible, since EN By " E. Then by 2, choose a closed set F' C EN By,
such that m(E N By \ F) < ¢/2. Then F is compact as desired.



4. Choose a family of closed cubes {Q;};>1 such that £ C U2,Q; and
3521 1Q)] < m(E) 4+ ¢/2 < co. Then we can always find N such that

Z?.;NJrl Q5] < e/2.
Then put F = U;VZIQj and m(E \ F) + m(F \ E) < m(U5Zy,,Q;) +

Z;i1 Q] —m(E) < e.
O

Examples of Lebesgue measurable sets F, = U2, C; where C; are closed,
Gs =N2,0; where O; are open. So F,5 = U2, F; where the G; are G5 sets.

Proposition 3.2. A subset E C R" is Lebesgue measurable
1. iff E differs from a set in Gs by a set of measure zero

2. iff E differs from a set in F, by a set of measure zero.

Proof. 1. For all n > 1 choose O,, D E open and m(O,, \ F) < 1/n. Then
NO, D E, and so 0 =m(N5L,0, \ E) < 1/k for all k > 1.

2. Follows from 1 by complementation.
O

Definition 3.1 (c-algebra). Let X be a set. A collection S of subsets of X is
called a o-algebra provided that

1. 0es
2. S is closed under complementation

3. S is closed under countable unions.

Examples: All subspts of X, {, X}, the Lebesgue measureabe subsets of
R™.
Another possible candidate: the Borel algebra.

Definition 3.2 (Borel Algebra). The Borel o-algebra is the smallest o-algebra
containing all open subsets of R™.

We denote by Z&» th eLebesgue measurable sets, Bgn the Borel o-algebra,
and note that Bgn is the intersection of all o-algebras containing the open sets.

Theorem 3.3. Bgrn C Zn C oR" That is, there exists a Lebesque Measurable
set that is not Borel, and there exists a non-measurable set.

The proof is contingent on the axiom of choice.

Lemma 3.4. Let E C R! be Lebesgue measurable of positive measure. Then
there exists a subset N C E which is not LEbesgue measurable.



Proof. First, we reduce to E bounded, because £ = U2, B, N E. Then at
least one k > 1 must satisfy m(E N Bg) > 0. By dilating, we can assume that
E C [0,1]. Define an equivalence relation on E.

Say that x ~ y iff —y € Q. For each z € E, denote E,, = {y € Elz—y € Q}.
Choose a maximal set N of inequivalent elements in £. We calim that N is
not Lebesgue measurable. We have E C UN_, (N 4+ 1) C [—1,2] where {r)} are
an enumeration of the rationals in [—1,1]. Assume for contradiction that N is
measurable. Then so are all the N + ry, and m(N + r;) = m(N) > 0. By the
disjointedness of the N + ry, if m(N) > 0, then m(U(N + 7)) = oo, while if
m(N) =0, m(UN + ri) = 0, neither of which can occur. O

Now we will prove that Brrn C Zgn.

Lemma 3.5. Let ¢ : R™® — R™ be continuous and E a Borel set. Then ¢~ 1(E)
1s also a Borel set.

Proof. Define Bgn = {E C R"|¢~(E) is a Borel set}. By the continuity of ¢,
this contains all the open sets, and for purely set theoretic reasons, Bgn is a
o-algebra, so it contains the Borel algebra. O

Lemma 3.6. Let C' and C be two Cantor type sets inside I = [0,1] as in the
first lecture, but (using the same notation as in the first lecture) where we also
allow 2211 2k=1¢, = 1. Then, there is a strictly monotonic continuous map

@ : I — I such that p(C) C C.

Proof. ¢ is obtained as the limit of a bunch of approximations piecewise linear.
Now leave ¢ unchanged on C} adn continue iteratively, obtaining piecewise
linear maps ;, with sup,¢(o 17 [#n (%) —@n+1(z)| < 1/27, so that the ¢, converge
rapidly. Then the limit of the ¢, is a strictly increasing function with ¢(C') ¢ C.

@, by continuity and injectivity, is a homeomorphism of I. O

Now we conclude as follows: first arrange that m(C) > 0 but m(C) = 0,
this is done by requiring > 28714, < 1 and > £;2F~1 = 1.

Now, choose a subset N of C' which is not Lebesgue measurable. We claim
that ¢(N) is not Borel, but is Lebesgue measurable.

It must be Lebesgue measurable with m(¢(N)) = 0. So if we assume that
©(N) is Borel, then so is ¢~ !(¢(N)) = N by injectivity, but this is Borel, and
so measurable, contradiction, so the inclusions are all proper.

Definition 3.3 (Abstract Measure Space). Let X be a set and S a o-algebra
of subsets of X. Then if m : S — [0,00] is a countably additive function with
m(0) = 0 we call the triple (X, S,m) a measure space.

Example: (R™, %&n, m), Lebesgue measure.

If we restrict to Borel sets, we get a measure space also.

Now we will develop an integration tehory in this abstract context. Which
functions can we integrate? The analogues of step functions, the simple func-
tions, are the correct choices.



At the end of the day, integrable functions are essentially pointwise limits of
simple functions.

Definition 3.4 (Measurable). A function f : X — [—o0, 00| is called measur-
able iff f~1((a, 0]) is in the o-algebra of measurable sets for o € R.

Remark: Using elementary set theory and o-algebra properties of S, we
can conclude that the above property implies f~!(a, 3) is measurable and that
f~ ([, B]) is measureable, as is f~1((a, B])

Lemma 3.7 (Simple Technical Lemma). Let f,, n > 1 be measurable, then so
are sup fp, and limsup f,.

Proof. For sup, let g = sup fn,. Then g~ !((a,00]) = U, f 1 ((a, 0]), and
so done. Note that inf f,, = —sup(—f,). Then for limsup f,, note that it is
inf sup f,. O

Corollary 3.8. Letting f1 = max{f,0} and f- = min{f,0}, then [ is mea-
surable iff f+ is measurable.

Definition 3.5 (Simple). A function f : X — [0,00) is called simple provided
that it attains only finitely many values.

In particular, we can write f(z) = Y., aixa,(z) if f is also measurable
and A; is measurable, and x4, (z) is the characteristic function of A;.

Lemma 3.9. Let f : X — [0,00] be measurable. Then there exist simple
measurable functions s, on X such that 0 < s1 < s9 < ... < f and f(z) =
lim s, (x).

Conversely, if f is defined by such a limit, by the preceding lemma, f is
measurable.

Proof. Choose n > 1 and for 1 < i < n2" define E,; = f~'([5, 5=]) and
F, = f~([n,0]). Then define s,, = 1 =XE,. + nXF,.
To check the monotonicity of {sk}, note that passing from n to n+1 we splie

: —1 —1 2i—1
each E, ; into 2 halves and replace ‘S5 XE, ; bY 55 XEpi10io1 T 57T XEngr 20 =

g

—1
on XEn,-

Further, it is easy to check that s, (z) — f(z) pointwise (if f(z) < oo, then
sn(x) > f(z) —27" and if f(z) = oo, then s, (z) > n for n large enough in both
cases) O

4 Lecture 4

Integration theory on general measure spaces (X, S, pu). Last time we defined
measurable functions.

Definition 4.1 (Integral). Let f be a simple function. Then

N
[ fan=>" (e
E i=1



From here, we can define the integral of a nonnegative measurable function
f: X —[0,00] as follows:

/ g Jdu=sup,; / g Sdj. To pass from nonnegative measurable functions to
general function f : X — [—o0,00], set [, fdu = [, f+dp — [}, f—dp provided
that one of the two integrals on the right is finite.

Then, if f is complex valued, we define | p fdp in a real and imaginary part.

The core of integration theory consists of three theorems:

1. Monotone Convergence Tehorem
2. Fatou’s Theorem

3. Lebesgue Dominated Convergence Theorem

Theorem 4.1 (Monotone Convergence). Suppose that 0 < fi(z) < fo(z) <
... < o0 such that lim, o frn(z) = f(x) for all x € X, then

n—oo

i [ fule)d = /X f()dp

Remark: Nonnegativity is cruciall

Proof. By monotonicity, the limit lim,, fX fo(x)dp = A exists in [0, o0].
Further, f is measurable, and by the monotonicity of [ « fdp with respect to f,
A < [ fdp. We need to get the other inequality.

Now choose a simple measurable function s, 0 < s < f and choose a number
6 € (0,1) which we eventually let go to 1. Then introduce the sets E,, = {z €
X|fn(X) > 0s(z)}. Then By C E5 C ... and U2, E, = X.

So now [y fadp > [ dndp > [ 0s(z)dp and now let n — co. We get
Jg, 0s(@)dp — [ Os(x)dp. Now, since 6 < 1 was arbitrary, A > [ s(z)du. O

Theorem 4.2 (Fatou). Let f, : X — [0, 00] measurable, then [y liminf f,dyu <
liminf [, fn(x)dp.

Proof. This follows from Monotone Convergence. liminf, o fr, = limg_,o inf1>5 fi =

limg o0 gk
Then 0 < g1 < g2 < ... and hence by monotone convergence, we have
fX liminf f,dp = limg_ o fX grdp. As gr < fi, we have < lim inf fX fndp. O

Definition 4.2 (L'). Let (X,S,u) be a measure space. Then L'(du) denotes
the set of all measurable functions such that [ |f|(x)dp < oo

For this to make sense, need the following:

Lemma 4.3. Let f : X — [—00, 00| be measurable and ¢ : [—00, 00] — [—00, 0]
continuous. Then ¢ o f is measurable.

Proof. Need to check that (¢of)~!((«, 0o]) is measurable, that is, f~1 (o~ ((c, 00])
is. (v, 00] = U(a,n) and ¢(a,n) is open, by continuity. O
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Theorem 4.4 (Dominated Convergence). Assume that f, : X — [—o0,00] is
measurable and |f,|(z) < g(z) for all x € X where g € L'(du). Then if f, — f
pointwise, then limy, . [ |fn — fldp = 0. One says that f, — f in L'.

In particular, lim,, o fX fndp = fX fdu.
Proof. Application of Fatou, by triangle inequality. |f,, — f| < 2g. So [ 2gdu <
liminf [(2g — |fn — fl)du = [y 2gdp + liminf [ —[f, — fldp = [ 2gdu —

limsup [y |fn — fldp.
Hence, 0 < limsup [y [fn — fldp <0, and so lim, .o [ |fn — fldu = 0.

| [xx Fadp [ fdu| < [x |fa = Fldu — 0. 0

Simple Application

Theorem 4.5. Let f : I — R be Riemann Integrable. Then f is measurable
and fRiemann f(x)dx = f[ f(X)d/J’

Proof. By definition of Riemann integrability, there exist sequences of functions
4, 1 step functions the ¢; increasing from —M to f and the 1; decreasing from
f to M. To apply the LDCT, put g = Mx;. Then g € L'(du) and |¢;] < g
and |¢;] < g, and as the ¢, — f pointwise and 1, — f pointwise, we have
[ f(x)dz =lim, o [ @n(x)de =lim, .o [ on(z)dp = [ f(z)dp O

Let (X, S, 1) be a measure space and f a function. Then fX fdu € R, and
it is well-defined in f € L!(du) and it is linear, so Jx dp is a vector space
homomorphism from L*(du) — R.

Can one go the other way around? Given a homomorphism, find p?

Let (X,S,u) = (R", Bgn, ). Then L'(R™) contains the continuous, com-
pactly supported functions.

Theorem 4.6 (Riesz Representation Theorem). Let A : C.(R™) — C be a
homormophism from compactly supported continuous functions to C. Assume
that if f > 0 then Af > 0. Then there exists a unique Borel measure u (a
measure defined on a o-algebra containing the Borel sets) such that

L Af = fy, fdp
2. u(K) < oo for all K C R™ compact

3. w is almost reqular in the following sense: For E € Brn, u(E) = inf{u(V)|E C
V,V open } = sup{u(K)|K C Ecompact} provided that u(E) < oo or E
open.

We will need two lemmas.

Lemma 4.7 (Urysohn’s Lemma). Let A C R™ compact and B C R™ closed
with AN B = 0. Then there exists a function f € C.(R™) with f =1 on A and
f=0onB.

Proof. d(A,B) > 0. Find a cont. function ¢ : [0,00] — [0,1] such that ¢ =1
if 0 < o < d(A,B)/2 and ¢(x) = 0 for z > 2d(A, B). Then put f(z) =
p(d(z, A)) O
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Lemma 4.8 (Partition of Unity). Let K C R™ a compact set, and UN,V; D K a
finite open covering. Then there exist cont. functions h; such that supp h; C V;
and vazl h;=1.

Proof. Choose U; C V; such that U; C V; and UU; D K. Then apply Urysohn
to find h; such that ?Lz =1 on U; and 0 outsice of V;.

Now we define h; such that h; = le, he = (1 — iLl)iLQ, etcetera. Then the
sum is 1 on K. O

5 Lecture 5

Theorem 5.1 (Riesz Representation Theorem). Let A : C.(R") — C be a
linear functional such that A(f) > 0 if f > 0 then there exists a unique Borel
measure m such that

1 Af = [, fdm
2. m(K) < oo if U is compact

3. Partial Regularity: m(E) = inf{m(V)|E CV open } and m(E) = sup{m(K)|E D
K compact} if m(E) < oo or E is open.

Proof. First we will prove uniqueness. Assume that mq and mo both satisfy the
conditions. If suffices to show that mi(K) = mq(K) for all K compact by partial
regularity. We know that these numbers are finite, and we also know that for
all € > 0, there exists V' D K open such that ma(V) < ma(K)+e. By Urysohn,
there exists a function f which is compactly supported and continuous such
that V D supp f and f = 1 on K. Then my(K) + € > mo(V) = [p. xvdma >
[ fdma = Af = [ fdmy > [, xxdmy = my(K), so for all € > 0, my(K) 4 € >
m1(K), and so ma(K) > m1(K) and symmetry gives us mq(K) = mq(K).

Now we will show existence. Given V open, m(V) = [xvdm. Define
m(V) = supsec, rny Af over 0 < f <1andsuppf CV.

Define something like the outer measure, E C R™ any subset, let m(E) =
infy5gm(V) for V open.

First goal is to show that m is well-behaved on compact sets.

We must show sub-additivity. {E;}°, C R", we want to show that m(UE;) <

We may assume that m(FE;) < 0o, and so given € > 0, there exist open sets
Vi D E; such that m(V;) < m(E;) + €/2¢, and UV; D UE;.

So m(UV;) < m(UE;) + €, and so we apply the construction of m on oepn
sets and pick f € C.(R™) with supp f C UV;, which gives us a finite collection
fi,---, fn such that supp f C Uf\LlVi. Now we apply a partition of unity to
K = supp f and get h; € C.(R™) with supph; CV;, 0 < h; <land > hi|x = 1.

So then Af = SN A(hif) < N, m(V;) < 322, m(V;), so we take the
supremum over all f and then m(UV;) < > m(V;) < > m(E;) + e. Letting
e — 0, we get m(UE;) < > m(E;).
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So m behaves like an outer measure so far. We need to find a o-algebra of
sets containing the Borel sets, on which it is a measure.

S = {E C R"m(E) < oo,m(E) = supgcp{m(K)}}. We will show that
this is an algebra and contains all open sets of finite measure and all compact
sets.

Then we take S = {E C R*|ENK € S for all K compact}.

Main Assertion: S is a o-algebra containing Br» and m is a measure on S,
and Af = [ fdm for f € C.(R™).

If K is compact, then K € S and m(K) = inf{Af|f =1 on K}. We prove
this by choosing f toeb 1 on K and 0 < f < 1, f € C.(R™). We can do this
by Urysohn. Then Af > m(K). Fix 0 < 0 < 1 and Vy = {z|f(z) > 0} D K.
If g € C.(R™), suppg C Vp, 0 < g < 1 then g < f and m(K) < m(Vy) =
sup{Ag|suppg C V5,0 < g < 1} = sup{f~1Afg} < 6~'Af. Now we let 6 — 1
and get m(K) < Af and so m(K) < oo.

By outer regularity, we have Ve > 0, there exists an open set V such that
m(K) +e>m(V). BY Urysohn, f € C.(R"), f=1on K, suppf CV.

m(K) < Af <m(K)+ e, and so m(K) = ffIKEI Af.

Now we must show finite additivity on compact sets. It suffices to let
K1, Ky C R compact and disjoint. Then m(K;)+m(Kz2) = m(K; U Ky). This
is because there is an f € C.(R") that is 1 on K1 UKy and Af < m(K;UK3)+e,
by Urysohn, there exist hy, hy € C.(R™) such that h; =1 on K; and h; =0 on
K, i# j. Then Af = A(fh1) + A(fhs) Then for all e > 0, m(K; UKs) +€ >
m (K1) +m(Kz), but m(K;UK>) < m(K;)+m(K3), and so they must be equal.

From here, we need to get countable additivity on S. Assume E = UE; are
disjoint and E; € S. Then we claim that m(E) = Y. m(E;) and if m(E) < oo
then E € S.

We use inner regularity of m on S. For all € > 0, choose H; C E; and
m(E;) < m(H;) + ¢/2¢ for all i. Then by te last part, each finite sum is equal.
Then m(E) > m(UX, H;) = Zil m(H;) > > m(E;) —e.

Now let N — oo and we get m(E) > > m(FE;) — € and letting ¢ — 0 get
m(E) > > m(E;). Subadditivity gives equality.

Now we need to show that m is well behaved on open sets. If £ C R" is
open, then m(E) = sup{m(K)|K C Ecompact}. In partiacular, E is open and
m(E) < oo imply E € S.

Choose a number 6 < m(FE). Then there exists f € C.(R"™) with supp f C E
and 0 < Af. Then let K = supp f. We want to show that m(K) > 0. m(K) =
inf{m(W)} for W D K, then m(W) > Af.

Refined version of regularity of m: if E € S then there exists K C E and
V D E such that m(V\ K) <e.

By outer regularity, there exists V'O K such that m(K) + ¢ > m(V). By
inner regularity, there exists K C E compact such that m(E) < m(K) + ¢, and
so m(V') < oo implies that V' € Sand K € K,s0V \K € S. By the additivity
of mon S, m(K)+m(V\K)=m(V) <m(E)+eand so m(V \ K) < 2e.

We must now show that S is an algebra.

Let A,B € S. By the last step, there exist K1 C AC Vy and Ko C BC Vs
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such that m(V1 \ K1) < € and m(Va \ K3) < e. Then A\ B C V1 \ Ky C
i\ K1 UK \VaUVWy\ Ko, and so m(A\ B) < 2¢ + m(K; \ V2). Now,
K1\ Vo C A\ B is a compact subset, and since ¢ — 0 arbitrary, we get inner
regularity, and so m(A \ B) < oo implies that A\ B € S.

AUB=A\BUBcS,and ANB=A\(A\DB).

Now we show that S is a o-algebra containing the Borel sets.

If Ae Sthen ANK € S for all K compact, AN K = K \ (K \ A°) =
K\ (KNA)eS. Hence A° € S.

Next let A; € S, we must shw that UA; € S. ANK = A;NKU (43N
K)\ (Ay N K)U... and by inductively applying the algebraic properties of
S, we see that each of the sets in the union are in S’, and are disjoint. Also,
m(ANK) < m(K) < oo, and so countable additivity of m on S gives us that
ANK €S

Claim: S = {E € S|m(E) < oo}.

Clearly S C S, now assume that F € S and has finite measure. Choose
V D E open with m(E)+e > m(V). Then choose K C V such that m(V\K) < e
by the inner regularity of m. Then EN K € S and so K; € EN K such that
m(ENK) < m(K;)+e Finally, E C ENK U ((V\K). Ad so m(E) <
m(ENK)+m(V\K)<m(K;)+ 2. And so E € S.

Now we must show that m is a measure on S.

If E = UE; disjoint, then if m(E;) = oo for some 4, then m(E) = oo =
S™m(E;), hence assume m(E;) < oo for all i, then E; € S and so m is countably
additive on S.

All that remains is to show that m represents A. O

6 Lecture 6

We will finish the proof of the Riesz Representation Theorem.

We have A : C.(R™) — C with Af > 0 whenever f > 0 when f is a function
into R.

If £ is open, then m(E) = supy,,, ;cg{Af} and fr £ in general, we have
m(E) = inf m(V') where V O E open.

S = {E c R"m(FE) < oo,m(E) = supm(K) where K C E compact}. So
we expand to S = {E C R*|ENK € S for all K compact}. We showed that
m|s is a measure and that S is a o-algebra.

Lemma 6.1. Af = [, fdm for all f € C.(R™)

Proof. Suffices to show that Af < [, fdm for all f, and then also A(—f) <
Jgn (= f)dm gives us Af > [, fdm.

Approximate Af be a ”"Riemann Sum”, choose [a,b] D range(f) and choose
wiby po<a < <...<@,=>bwith p; — ;1 <€ E; = f 1 ((pi_1,9i]) N
supp f is a Borel set. Then V; D E;, m(V;) < m(E;) + €/n.

f(z) < ¢; +€ Vo € V;. By the partition of unity lemma, we can find
h; € C.(R™) supported inside V; which sum to 1 on the support of f. And so
m(supp f) < A3 hy).
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Af =5 A(fhi) <2 A(hie +€)) = 2o(pi + €)hi = 3 ()i + € + lal)Ah; —
la] 22 A(hi).

So we have A(h;) < m(V;) < m(E;) + €/n, so we have < > (Ja|] + ¢; +
€)(m(Ei) + €/n) — alm(suppf) = 3 (i — e)m(E;) + 2em(supp f) + ¢/n 3 (e +
|a| + ¢;). The first term is less than f]R" fdm, and so when we let € — 0, we are
done. O

LP spaces. Let (X,S,m) be a measure space.

Let f: X — C mearuable and 1 < p < co. Then |f|P € L'(dm) tells us that
f € LP(dm), and put || f]lLr = ([x |f|pdm)1/p. If f € LP, and g differs from f
on a set of measure 0, then g € LP, and fX |f — g|Pdm = 0, so what we really
want in LP are equivalence classes of functions such that f ~ g iff f —g =10
almost everywhere.

Definition 6.1 (LP). LP(dm) is teh set of equivalence classes of functions.

Definition 6.2 (L°°). L>°(dm) is the set of all equivalence classes of measurable
functions f : X — C such that inf g x m(z)=0 SUpx\ g | f] < 00.
In particular, there exists a set E of measure 0 such that SUP x\ /2 |f] < 0.

Theorem 6.2. LP(dm) is a vector space for 1 < p < co.

Proof. Clear if p =1, c0.

For the other cases, it follows immediately from Minkowski Inequality, which
says that if f,g € LP(dm) then | f 4+ g[| < |[f[| + [lg] in L” norm. This follows
from Holder’s Inequality, which says that if 1 < p, ¢ < oo with % + % =1, then
1l < flles lglir-

We assume that p, g not 1, co. Then we use the elementary inequality a,b € C
then |ab| < |a|?/p + |b]?/q. We assume that a,b € Ry, then we get log(ab) =
5 log(a?) + 7 log(b?) < log(a”/p +b9/q).

Given f € LP(dm), g € L1(dm), neither equal to zero, then |fg| < |f|"/p +
/9] /4. Then dividing by normas, we gat | /|1 £[1, ¢/ lglll < £ /pll FIP+1g|* /allgl.

This gives us that || fg]| /Il e lgllLe < [1f[Pdm/pll 7. + [ |917/allgll7. = 1.
So now we prove Minkowski: 1 < p < oo, [ [f+g[Pdm < [(|f]+|g])Pdm =

S A1+ Lo~ dm = [ 191171+ lgldm.“Apply Hilder io cach for p,q =
S Then [ IFI(F]+ lghPdm < |fllss (J[(F]+ gl P/o=Ym)" " =

p—1"
—1 — P
1£1lze (fx (1F] + lgl)Pdm)? ™ = || flle + 1 £+ 1g]|%5", and similarly for g. So

-1
then [[[f[ +lgllZe < (Ifllze + lgllo) 11+ lgllZe O

Corollary 6.3. LP(dm) is a metric space with distance function d(f,g) = ||f —
9llrr-

Theorem 6.4. 1 < p < co, LP(dm) is a complete metric space.

Proof. First we will do this for p = co. Let {f,,} be a Cauchy sequence in L.
Then || fo — fmll = |(fn — fm)| for = outside a set By, ,,... GAHSHSHAHASHAS
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Y = UnmBnm UUpA,. Then m(Y) = 0. For z € X \Y, folz) — f, f
measurable. ||f, — f|lp~ — 0.

Remark: f is only defined on X \ Y, but one can extend it arbitrarily on Y.

Now choose a finite p. Let {f,} be a Cauchy sequence in LP. Choose a
subseqence { f,, }x>1 such that || fo, — fu, , | < 5. Take g = Sy | fary, — Fls
9 =121 | fniss — fn.|. By Minkowski, we have that ||g | z» < 1, and so Fatou’s
Lemma tells us that ||g||z» < 1.

In particular, g(z) < oo ae. Then fi(x) + Y ;o1 (fniyy — fn.) converges ae,
and so we can define f(x) to be the limit ae.

By Fatou’s Lemma again, [, |f — fn[Pdm < liminf [, |f,, — f[Pdm. If we
take (f1(x) + Zf:l(fni+1 — fn,) and ny = 1, we have f,, ..

As it is Cauchy, if n — oo, [y |f — fu[Pdm — 0. O

p =2, L*(dm) is special. f,g € L*(dm), then we have [ fgdm = (f,g) has
absolute value ||f|/z2]|gllLz, by Cauchy-Schwartz. Completeness means that L2
is a Hilbert Space, not just a Banach Space.

Definition 6.3 (Hilbert Space). A vector space H over C or R equipped with
a Hermitian inner product (—, =) : H x H — C such that {af,bg) = ab(f,g).
and (f, f) > 0 with (f, f) = 0 iff f =0 is called a Hilbert Space provided it is
complete with respect to the metric d(f,g) = (f — g, f — g)*/?.

Remark: Fact that this is a metric follows from Cauchy-Schwartz inequality.
We still need Fubini’s Theorem:

Theorem 6.5 (Fubini). Write R" = R" x R"2 with n; +ny = n. Assume that
f € LY(R™). In particular, f is measurable. Then for almost every y € R™2
the function f¥(x) = f(x,y) is integrable, and the function y — [, fY(x)dx is
measurable (defined outside a measure zero set). In addition,

/( fU(x)dx)dy = [ f(x,y)dzdy
R™1 JR™1

R

7 Lecture 7

Theorem 7.1 (Fubini). Write R™ = R™ x R"™2 with n; +ny = n. Assume that
f € LYR™). In particular, f is measurable. Then for almost every y € R
the function f¥(x) = f(x,y) is integrable, and the function y — [o., fY(x)dx is
measurable (defined outside a measure zero set). In addition,

/ ([ @y = / f(ay)dudy
R JRm R~

Proof. Start with simple function. Let’s call the set of all functions for which
Fubini holds .%.

1. % is closed under finite linear combinations.
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2. Closed under monotone limits.

By passing to {—fx } >0, if suffices to assume that fj T f. Then fx — fi—f1
along with the first property tell us that we can assume f; > 0. Hence,
we assume fr T f and fr > 0. By Monotone Convergence Theorem,

Jgn fr(x,y)dady — [, f(x,y)dzdy.

For all k > 1, there exists A;, with measure 0 such that f/(x) is integrable
ify ¢ Ap. A = UAg, and m(4) = 0. If y ¢ A, then we can define
9k(y) = Jgn fi(x)dx for each k > 1, and by assumumption [g,, gr(y)dy =
Jon (@, y)dzdy — [g. f(z,y)dzdy...etc

3. Characteristic function of a G set is in .%.

First check this for open cubes E. Then F = Q1 X Q2 C R"™ x R™,

9(W) = Jgn xB(z,y)dz if Q1] if y € Q2 and 0 else. And g(y) = x@,|Q1]-
Then me g(y)dy = |Q1]|Q2| = fR” xedxdy... CONTINUE ON

4. if m(E) =0, then xg € Z.

Choose a Gs set G D E with m(G) = 0. By part 3, xa¢ € Z. [gny @Y [, xa (2, y)de =
fRn Xc(z,y)dxdy = 0 Now EY = {z|(z,y) € E} is contained in G¥, and
m(GY) =0 for ae y € R™, so m(EY) = 0 for ae y € R"2.

Jgns @ Jgn, XB(2,y)dedy =0 =[5, xp(z,y)dzdy.
5. E is measurable, of finite measure implies that yg € .F

6. f € L'(R") then f € Z.

Let 1 < p < o0, look at LP(R™).
Theorem 7.2. C.(R"™) is dense in LP(R™).

Proof. Split f = f1 — f—. Approximate f, f_ by simple meaureable functions
51,82 with 0 < 51 < fy and 0 < sy < f_ such that [, |[f+ — s1|Pdz < € and
Jgn |f= — €lPdz < e.

Etc O
Theorem 7.3. C>°(R") is dence in LP(R™).

Result: D¥(p * f) = D x f € C*°(R™) where D® =product of partials.

Lemma 7.4. Let f € C°(R"™) and ¢, = h™"p(x/h), ¢ as before. Then
limp o @p * f = f uniformly on compact subsets of R™

Proof. ¢nx f = [gn ¢(2)f(x—hz)dz, the function z — f(x — hz) converges uni-
formly toward f(z) for z varying over compact subsets of R™. So limy,_¢ [ ¢(2)f(z—

hz)dz = [g. ¢(2)f(x)dz = f(x)

Moreover, convergence uniform for x confined to compact subsets of R*. [
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We can now prove that C°(R™) is dense in LP. ~

Given f € LP, and € > 0, find § € C¢° such that ||f — flrr <e.

Goal: Show that ¢p * f — hin LP. o ~

lon * f = fllee < llon* (F = Pllee +llon b — fllee +1f = fllze-

First, choose h small enough such that |lon * f — f[|z» < €/2. }

For ¢, x (f — f), we’ll show that it has smaller LP norm than f — f for all
h > 0.

On*g = [pn@(2)g(x —hz)dz = [5, ©/P(2)p (2)g(x — hz)dz where 1/p +
1/¢=1.

By Holder, [n * g7 (2) < (fp. 9(2)d2)"" = [ o(2)lg(w — 2h)|Pdz.

How we integrate over z and use Fubini to interchange the order of integra-
tion, and it follows.

Topics in L?

Fourier Transform: S' = [—m, 7]/ ~and f € C?(S'), then f(n) = = |7 flx)e" " dx,

and f(x) ~ zneZ f(n)ezacn So fA(f) = fR" f(x)e_QW'Lx'gdx.

8 Lecture 8

Today we will talk about the Fourier Transform on R™.

The inspiration is that functions on S* can be written as f(z) = Y, f(n)eine
where f(n) = o= [T f(z)e~ """ da.

The e?** are eigenfunctions for the laplacian on S*.

What is the analogue for R™?

Let f(z) € LY(R™) and €™ corresponds to e'*¢ with & € R™. So define

F(&) = Jon fl@)e™> " da.

Lemma 8.1. .Z(f) = f is a continuous map L'(R™) — CO(R™) N L>(R")
equipped with metric ||f — gl = ||f — gllz-

Proof. Continuity is simple, we show that .% : L' — C° and .# : L' — L.
IFE < Jgn If(2)]dz < 00, f(£) € L.
For continuity, f(¢ + h) — f(€) = [(e2mim(erh) _ e=2miz-&) f()dx. The
dominated convergence theorem |e~ 27 (E+h) _e2mie&| < 9 imy, e 2m@(E+)
e~ 2m7¢ — () pointwise, and so by Lebesgue Dominated COnvergence, the limit

of [(/)(€+h) = f(©) = 0. 0
Question: Is the map surjective?

Lemma 8.2 (Riemann-Lebesgue Lemma). Let f € L'(R™), then lim¢|_ 0 f(6) =
0.

Proof. (Density Argument)
Last time, we showede that C2° C L'(R") is dense.
For all € > 0, there exists g € C°(R™) such that || f —g||z1 < e. This implies
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It suffices to show that lim¢|_o §(§) = 0. Assume that || is very large.
Some |&| > [€]/v/n. Pick such a &. Then [§(¢)| = | [g(x)e 2@ dx| =

N . ~
S (i) glade>m=da] < Cn/J6sl™ < Cn/IE]N.
In particular, §(§) vanishes rapidly at infinity. Therefore lim sup¢|_, o |f(§)| <
€, and is zero as € was arbitrary. O

Remark: Can j({) be compactly supported? [g., e~ 2™l g(g)dx.

The answer is no (this corresponds to the Heisenberg Uncertainty Principle)

A proof of this is given by generalizing to transforming to complex valued
functions, and this gives a holomorphic function, which cannot be of compact
support.

Big Theorems: The Fourier Inversion Theorem, Plancherel’s Theorem (which
allows the extension of .Z to L?)

Schwartz class of functions: S(R"™) = {f € C*°(R")|sup,epn |2|* |8%f(x)’ <
oo for all @ € N and 3 € N*.

Lemma 8.3. % maps S(R") to S(R™).

Proof. §(§) = [ f(a)e > Sd. Then o2 F(€) = (~2m)l*! [ TIj_y " f(a)e2mi" <d.
If 5 € N", then §Bf(§) = (—2mi)lel=18l [ antt 85 T a8 f(x)e~2miv da.
Hence supgcgn |§Ba%f(§)| < Ch,a,3 SUDP ern obv1ous thing. 0

Note that by tdensity of C2°(R™) C L?(R™) we have that S(R™) C L?(R")
is dense.

We establish Fourier Inversion and Plancherel for S and pass to L? by den-
sity.

Lemma 8.4 (easy). Let f,g € S(R™), then |mtf( §)d¢ = [ f(x)

Fubini. [, f(€)9(€)dé = [ [ f(z)e™ ™" <dug(€)dE.
This is then equal to [ fe’Q’”@{g(f)dff Ydx = [ f(z O

Theorem 8.5 (Fourier InverSAion) Let f(z) = [ (&) Q“im'gdf. Then if [ €
S(R™), we have ( f)= f and ( f)= f.

Proof. f= [ [ f(y)e 2™ &dye®™*€de. A physicist would just say [ f(z) [ e> =) Ededy =
[ 6z —y)f(y)dy = f(x) with [ e¢dx = §(¢).
We, however, must justify this better.
The actual proof rezplaces e'@=¥)¢ with a dampened version. Introduct
ff e2minE—el€l” g¢ for € > 0.

Then j‘f 2mz§ e\&\ df _ J"ff —27riy£dy627rix§—e|f|2d£ By Fu-

bini, this givesff ) [ e?rile=yE= <le* d¢dy, we take K. (z—1y) =[e” (Vee—mi(e—y)/ve)® e~ @)’/ ge.

777 O
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Definition 8.1. A family of functions K.(z) indexed by € > 0 which are posi-
tive, integrate to 1, and limy e — OfM>5 (z)dx =0 for any 6 > 0 is called an
approzimate identity.

Lemma 8.6. Assume K. is an approximate identity. Then K. f — f if
feC'(R") N LOO(R”) pointwise and uniformly on compact subsets of R™.

Proof. Kexf—f)(z) = [ K (x—y)f(y)dy— f(z) = [ Kc(z y) — f(z)]dy.
Given p > 0, choose 0 > 0 such that |f(ac —y) — ( )| < u/2 whenever ly| < 0.
Then choose € > Osuchthatf| 55 Ke(W)dy < pu/2]|fllp~. Then [Kexf—f| <

1o Kl @ =) = F@)dy| + |05 K@) @ =) = f@)ldy| <. O
Completing the Fourier Inversion Proof:
f)= g f(W)Kc(x —y)dy — f(z) by the lemma. )
This is the same as ff(g)eQ"”f*'ngf — [ f(z)e*m=de = ( fYx).
Theorem 8.7 (Plancherel’s Theorem). If f,g € S(R™), then [, F(©)g(&)de =

flR” x)dx.
In partzcumn if f =g, then [|f(&)]2d¢ = [|f(x)?|da.

Proof. §(€) = §(€). Assume that G = h(€), then § = h.

[ feii= [ foneic= [ 1= [ g

Now we can extend .% to a map L? — L?. Given f € L?, by the density of
S(R™) in L%, we find {f,}n>1 such that f,, — f in L? sense.

fn — g by Plancherel and completeness of L?, so g is unique (up to a set of
measure zero), and so we define f =gq.

O

9 Lecture 9

Question: Can .# be defined for f € LP for p # 1,27

The answer is yes by general principle that T : LP0 — [ [P1 — [9 can
by interpolated to T : LP — L9 for 0 < 6 <1 and 1/p = 0/py + (1 — 0)/py and
q satisfying the same.

A consequence is the following:

Theorem 9.1 (Young’s Inequality). f € LP and 1 < p < 2, then f can be
defined in LY for 1/p+1/q=1 and || fllzs < ||f]lLe-

An application of the Fourier Tranform:
The Linear Schodinger EQuation is (i0; + A)u(t, ) = 0. The Cauchy prob-
lem is: if w(0,z) = f(z) in S(R™) find u(t,x).
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Then u(t, z) = [, 4(t,£)e?™*4d¢ by Fourier inversion, and (i0,+A)u(t, z) =
Jin (10 — 4m|E?)a(t, €)e*™ > d€ = 0.

So di(t, &) = e~ 4mitlEl (0, &) = e=4mitlE” £(£). So then u(t, z) = Jzn e2miz€e—amitlel” £(£) ¢
By .Z is an isometry of L?, we have that ||u(t,z)||z2 = || f]lz2-

General Banach Space Theory

First we will look at Fréchet Spaces.

Definition 9.1 (Banach Space). A Banach Space is a vector space over R or C
equipped with a norm | —|: V — Rxq such that |z +y| < |z| + |y|, |zy| = |z||y]
and |z| =0 iff t = 0.

Further, equipping V with distance d(x,y) = |z — y| makes it a complete
metric space.

Definition 9.2 (Frechet Space). Let V' be a vector space with a metric d which is
translation invariant (d(z,y) = d(x —y,0)), and such that scalar multiplication
is continuous and such that (V,d) is complete.

Definition 9.3 (Bounded). Let X be a Frechet space. A subset U C X s
bounded if for every open set 0 € V. C X there is an € > 0 such that Va € F,
la| < € we have U C V

For a Banach Space, this coincides with the usual notion.

Theorem 9.2 (Principle of Uniform Boundedness). Let {T,|a € A} collection
of continuous linear maps X — Y with X,Y Frechet Spaces. Then if Vx €
X, the set {Tqz|la € A} is bounded, then the family is uniformly continuous
(equicontinuous according to Rudin).

Proof. We will use the Baire Category Theorem, in the form that if X = UA,,
where A,, is closed, then at least one A,, has nonempty interior.

Let |y| = d(y,0), we apply the Baire Category Theorem to the following
closed sets: Ay, = {z € X|1|Tu()| + | Tu(—2)| < €/2Va € A}.

By the continuity of T,, these are closed, and so we must check that X =
UAy. For all x € X, sup,ea |Tox| = k(x) < co. Thus, there exists € > 0 such
that forall |a] <€, [aTyz| < 1, and so the union works.

So now Baire implies that for some Ay, it contains a nonempty interval.
And so |1/4T,(x0 + z)| < €/2 for |z| < §, the length of this interval. Then
[1/0T,(x)] < |1/T4(xo + )| + |1/0T,(—x0)| < € for all |z| < 6.

And so the map © — z/¢ for ¢ > 1 is a homeomorphism and hence there
exists dg (0, £) such that |z| < dg = |Ty(z)| < € for all a € A. O

Next: Equivalence of continuity and boundedness.

Theorem 9.3. Let T : X — Y be a linear map between frechet spaces. Then T
s bounded iff T is continuous.

What we mean is that T is bounded iff T(U) bounded whenever U is
bounded. So if X,Y" are Banach Spaces, then 7" bounded iff sup,<; |T'z| < oo.
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Proof. Only if: T cont implies T" bounded. Let U C X be a bounded set and
0 €V CY an open set. aT(U) C V if |a| small enough. By continuity of T,
there exists 0 € V' C X open such that T(V) C V. By the boundedness of U,
there exists € > 0 such that o/ C V for all @ with |a| < e. This implies that
T(aU) =aT(U) C V and so T(U) is bounded.

If: T bounded implies T continuous. Need to show that if x; — 0 then
Tx; — 0. But the |z;| — 0...(zoned out).

Claim: U{k;z;};>1 is bounded. sup |k;z;| < oo and sup |T'(k;z;)| < oo, and
so T(z;) = k%T(kZ:z:z) So because {T'(k;x;)} is bounded, for all V' > 0, there
exists € > 0 such that o{T(k;z;)} C V if |a| <.

We now pause to note that a compact subset of a Frechet Space is a bounded
set.

There exists ¢ > 0, 0niU C X such that fU C V for all 8| < 4.

Also, we have UnU = X, and by compactness of B, B C UnU, hence if
€ =0d/m, then aB C UanU C V for all a with |a] < e. O

10 Lecture 10

There are three important theorems: The Open Mapping Theorem, the Closed
Graph Theorem and the Hahn-Banach Theorem.

Open Mapping Theorem

Motivation: If T : V' — W is a linear map of finite dimensional vector spaces,
then there exists a basis e; for V, f; for W with T'(e;) = f; and T'(e,,) = 0 for
e, not corresponding to f;.

In particular, if we equip V with a norm, and U an open neighborhood of
the origin, then T'(U) is open.

Theorem 10.1 (Banach’s Open Mapping Theorem). Let X, Y be Frechet Spaces
(eg Banach Spaces) and T a continuous surjection. Then T is open.

Corollary 10.2. If T : X — Y is a continuous linear bijection at the set
theoretic level, then T s continuously invertible.

We prove the open mapping theorem:

Proof. Step 1: Let 0 € G C X be open. Then T'G contains an open neighbor-
hood of 0 € Y. This is by the Baire category theorem plus a trick to trnalate
back to the origin. Choose an open neighborhood 0 € M C X such that the
difference set is contained in G. Consequence of continuity of addition and
scalar multiplication is that X = U>2 ;nM, that is, given x € X, 0z = 0 and by
continuty of scalar mult there exists € > 0 such that V|a| < €, ax € M. Then
choose n > 1/e, x € nM.

Now, by the surjectivity of T, Y = UnTM = UnT M. By the Baire category
theorem, one of the nTM O V an open set which is nonempty.

We conclude step 1 by noticing that TG > TM —TM = TM — TM C
ly—1lyso.
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Step 2: Now, we must show that T'G contains an open neighborhood of 0,
B, (0) = {z € X|d(z,0) < €p}.

By the first step, T'(B, (0)) D By, (0) if 7o is sufficiently small.

Given y € By, (0), there exists x1 € B, (0) such that d(y,Tz1) < €/2.

By linearity, we also have T'(B.,/2(0)) D B,,/2(0). Hence there is z3 €
B, /2(0) such that d(y — Tz1, Tx2) < no/4 iff d(y — Ty — T2,0) < 10/4.

PRoceeding inductively, we obtain a sequence of corrections z € B, /ox (0)
such that d(y — T(>_ xx),0) < no/28 1.

By the triangle inequality, z;, = >_ x,, is Cauchy, and by the completeness of
X, there exists « € Ba,(0) such that z; — z. By the continuity of T, Tx = y.

For general open 0 € G C X, find By, (0) C G.

Step 3: Now, given G C X open, x € G, let ¢y > 0 such that x+ Ba,(0) C G.
Then TG D Tx + T(Ba,(0)) D Tx + By, (0). O

Corollary 10.3 (Closed Graph Theorem). Let X,Y be Frechet Spaces and
T:X —Y alinear map. Also, let Ty = {(x,y) € X x Y|y = T} be the graph
of T. Then T is continuous iff I'r is closed.

Proof. (only if): Assume that T is continuous. Consider a sequence {(zg, Tzx)} C
I'7. Assume that this sequence converges to (z,y). By continuity, zx — = im-
plies Txy, — Tz, so (z,y) € T'r.

(if): Now assume that Iz is closed. Then I'r is a vector subspace of X x Y,
and so by closedness, it’s a Frechet space. Look at the projection maps mx, 7y .
Both maps are continuous and 7wy is surjective and invertible at the set theoretic
level, and so w)_(l is continuous by the open mapping theorem. And so T =
Ty © 7T)_(1, which is continuous. O

Hahn-Banach Theorem
This is a machine to generate lots of continuous linear maps.

Definition 10.1 (Normed Linear Space). A normed linear space is defined like
a Banach space, but without the requirement of completeness.

Observation: A subset U C X of a normed linear space is bounded in the
sense of Frechet Spaces iff sup,c; |z| < oo. Alinear map T': X — Y between
normed linear spaces is bounded iff sup, ¢ v, ;< [T2] < oc.

Definition 10.2 (B(X,Y)). Let X,Y be normed linear spaces (ie, F-spaces or
B-spaces) then B(X,Y') denotes the set of all continuous linear maps X — Y.

If Y =R or C, the underlying field, then B(X,Y) = X* is called the dual
space. Furthermor, B(X,Y) is equipped with a norm.

Define |T'| = sup|,|<; [T'%| provided that X, Y normed.

Lemma 10.4. Assume that X,Y are normed and Y is complete. Then so is
B(X,Y).
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Proof. Let {T},}n>1 be a Cauchy sequence in B(X,Y). Then Vz € X, {T,z} C
Y is Cauchy, and since [T,z — Trmx| < [(Tn, — Tim)x| — 0, then lim,, o Thx
exists for all z € X. The map T : x — lim,, ., Ty, is linear and bounded, since
lim, oo |Thz| < liminf, o |Th||z] = C|x|. O

In particular, the dual of a Banach space is a Banach Space.

Theorem 10.5 (Hahn-Banach Theorem). Let X be an R-vector space and
p: X — R a function satisfying p(x +y) < p(x) + p(y) and p(azx) = ap(z) for
a > 0. Further, let Y C X be a subspace and f : Y — R a linear map with
f(x) < p(x) for all z € Y. Then there exists a real linear map F : X — R such
that Fly = f and f(z) < p(x) for allxz € X.

Proof. We implement Zorn’s Lemma. Let S = {(¢,Y)[Y DY,g:Y — R and
gly = f and g(z) < p(z)Vz € Y'}.

We say that h > g if h extends g. Claim: This satisfies the property of the
statement of Zorn’s Lemma

Let E C S be totally ordered. Define gg : UpepY;, — R by 9E|Y’w = h. This
is consistant by the total orderedness of E. Then gy is an upper bound.

By Zorn, we choose a maximal element, g € S. So now we simply need to
show that g is defined on all of X. We argue by contradiction. Assume that
Y C Yg C X. Choose y; € X \ ffg. Define Y = span{yl,)}g} 2 f’g, ify eV,
y = ay; +yo, a € R and yp € Y. Try an ansatz, g1(y) = ca + g(yo) for some
ceR.

Question: Can we arrange that g1(y) < p(y)?

Yes, by algebraic trickery: o, o € Yy, 9(7o) — 9(y0) = 9o — v0) < p(do
Yo) < p(go + y1) + p(—=yo — y1), which implies that —p(—yo — y1) — g(to) <
p(Fo + 1) — 9(%o)-

So we have —oco < SUp, ey, —p(=y0 —y1) — 9(yo) < inf;joe?g p(Go + 1) —
9(g0) < 00, and take ¢ to be in the middle. .

So now p(y + 1) — g(y) = 0 and —p(—y —yo) — g(y) < cfor all y € Yy.

Now, for y» = yo +ay1 €Y, g(y2) = g(yo) + ¢ < p(yo + ay1)?

This is true if @ = 0, a > 0, p(yo +ay1) = ap(yo/a+y1) > ale+g(yo/a)] =
ac+g(yo) or a < 0, p(yo + ay1) = lalp(yo/lal —y1) = —lal(g(=yo/@) + ¢)
9(yo) + ca.

oo

11 Lecture 11

Today we will duscuss applications of Hahn-Banach, in particular, reflexivity of
Banach Spaces.

Theorem 11.1. Let Y C X a normd linear space over R or C. Let y* € Y*,
then there exists x* € X* such that *|y = y* and |x*| = |y*|.

Proof. If we are over R, then we define p(x) = |x||y*|, and y*(z) = p(X). Then
for all x € Y by Hahn-Banach???? Stupid eraser, I hate this class.
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Now we assume that X is a C-vector space. Then we write x*
ifa(y) for f; : Y — R. Then the f; are real linaer and so |f;(y)
ly*||y|, and we apply Hahn-Banach to fi(y).

This gives us F; : X — R and Fi|ly = fi. So |Fi(z)| < |y*||z|. Now we
define a*(z) = Fi(x) — iFy(ix) which is, a priori, just R-linear. But actually
it is C-linear, we just need to check that z*(iz) = iz*(z), which holds because
z*(ix) = Fi(ix) — iF (—x) = iFy(z) + fi(ix) = i(Fi(z) — iF (ix)).

Further, we claim that x*|y = y* = f1(y) + if2(y), this is because y*(iy) =
filiy) +if2(iy) = iy (y) = ifi(y) — f2(y) and so fa(y) = —fi(iy) and fi(y) =
fily) —ifi(iy) for all y € Y, and so Fy(z) — iFy(iz)]y = y*.

We now only need to check that |z*| < |y*| for arbitrary z € X. Write
z*(z) = re? for r > 0 and § € R. Then |z*(z)| = 2* (e ¥2) = Fi(e ") <
ly*lle=" x| = [y*||al. O

Consequences of this theorem: One can use leinear functionals (continuous)
to separate points, or points and closed subspaces.

Lemma 11.2. Let Y C X normed linear over R or C and x € X satisfies 77

Proof. We construct z* first on linear span of z and Y and then extend it via
the preceding theorem to all of X. Let Z = span{z,Y}. Soifz € Z, z = ax+y
for a unique a € F and y € Y. Then define 2*(z) = a.

We need to check that 2 : Z — R or C satisfies teh necessary bound
|z*| = 1/d. |z| = |y + ax| = |a|ly/a + x| > |ad| by the definition of d for all
a # 0. Thus, |2*(2)| < |2]/d = |z*| < 1/d.

To see that |z*| > 1/d, choose y,, € Y such that |z — y,| — d as n — oo.
Then a*(x — y,) < |2*||x — yn| — |2*|d and 2*(x —y,) = 1,80 1 < [2*|d. O

Corollary 11.3. LetY C X a closed linear subspace, X normed. Letx € X\Y,
then there exists ©* : X — F such that *(x) =1 and z*|y = 0.

Proof. Note that fer |z —y| > 0. O

Corollary 11.4. Vz € X,z # 0,3z* € X* with |z*| =1 and «*(z) = |z|.

Proof. Simply use Y = {0}. O
Alternative statement of this: If z; # zo € X, then there is a functional

x* € X* such that «*(z1) # z*(x2).
That is, there are enough continuous linear functions to separate points.

Corollary 11.5. Letx € X anormed linear space. Then |z = sup,. ¢ x« |z+|<1 [27(2)]

The last corollary is important, because of the following relation: (X*)* =
X,
There is a canonical map X — X** giveb by € X maps to & = k(z) € X**.
Then #(y*) = y*(x) for an arbitrary element y* € X*.
This is an element of X** because |Z(y*)| < |y*||z|,  : X* — F is bounded
|an|d linear. On account of the preceding corollary, [Z| = |z, as [£] = supy. ¢ x« |4+ <1 [¥" (2)| =
x|.
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This says that the canonical map « : X — X** is an isometry onto a subspace
of X**.

Issue: When is this map onto? When it is, X ~ X**. This is only possibly
if X is a Banach Space!

Important examples where X ~ X**: If X is a Hilbert space, say LP(X) for
1 < p < o are examples that are "reflexive.”

Definition 11.1 (Reflexive). Let X be a Banach space. If k is surjective, then
X s called reflexive.

Why is it important? Reflexive X has certain weak completeness and for
bounded subsets of X, weak compactness properties.

Definition 11.2 (Separable). Let (X, d) be a metric space. It is called separable
if there exists a countable dense subset.

Definition 11.3 (Weakly Convergent). Let X be a normed linear space or a
Frechet space. A sequence {x,} C X is called weakly convergent provided that
there exists © € X such that x*(x) = lim, o0 x*(xy,) for all z* € X*.

If X = L?(R), then look at a travelling compactly supported wave. Let
fn be the wave front starting at n. This converges weakly to zero, but is not
convergent.

If z,, is weakly convergent, and x satisfying the above is called a weak limit.
A subset A C X is called weakly sequentially compact provided that each
sequence x, € A has a weakly convergent subseuqnece. A sequence is called
weakly Cauchy proved that {z*(x,)} € F is a Cauchy sequence for all z* € X*.

Theorem 11.6 (Main Theorem on Reflexive Banach Spaces). A reflexive Ba-
nach space is weakly complete. A subset of a reflexive Banach Space is weakly
sequentially compact iff it is bounded.

We will prove this in a sequence of steps.

Lemma 11.7. A weakly convergent sequence in a normal linaer space has a
unique limit.

Proof. Assume there are two. Contradiction with the point separation property.
O

Lemma 11.8. Let {z,}n>1 a sequence in X a normed reflexive space. Then if
sup |z*(z,)] < 00 for all x* € X*, then sup,, |z,| < oo.

Proof. Consider #yn C X**. By assumption, sup,, |Z,(z*)| < oo for all 2* €
X*. By the principle of uniform boundedness, there exists § > 0 such taht
| (x*)| < 1if |2*| < 4.

Thus, |£,| < 1/ and since the embedding is isomoetric, |z,| < 1/ O

Lemma 11.9. A weakly convergent sequence {n}n>1 in a normed linear space
is bounded, it’s limit x is in the closure of the linear span of the x; and |z| <
liminf |x,|.
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Proof. Boundedness follows from preceding lemma. Assertion about the lin-
ear span follows from Hahn-Banach. For final inequality, we have |z*(z)| =
limy, oo |27 (2)| < liminf [2*[[2,|. Then we use |z[ = sup|,« <1 [2*(z)]. O

Lemma 11.10. If the dual X* of a normed linear space is separable, then so
is X.

Proof. Let {z}}n>1 C X* be a countable dense set and choose =, € X such
that |z,| <1 and |z (x,)] > |z5|/2.

Claim: The set of finite linear combinations L of the x, with rational coef-
ficients is dense in X.

If not, then L # X, by one of the collorlaries of Hahn-Banach, there exists
x* € X*\ {0} such that x*(L) =?. BY density, let x;, — z*, then [2* —z} | >
(@ — 20, )(@0)| = [0, (20,)] = [2,]/2.

Since |z* — x}, | — 0, we have that |z}, | — 0,a nd so z* = 0. O

12 Lecture 12

Reflexivity: Main Theorem: If X is a reflexive Banach Space, then A C X is
weakly sequentially compact iff bounded. Here A needn’t be a subspace.

Last time we proved Lemma -1 which said that a weakly convergent sequence
has a unique limit and lemma 0 which says that if {z,, },,>1 C X a normed linear
space. Assume that sup,, |*(z,)| < oo for all z* € X*, then sup,, |x,| < co. In
particular, if {x, } is weakly convergent or weakly cauchy, then sup,, |z,| < oco.

Lemma 12.1. The limit x of a weakly convergent sequence {x,} is in the
closure of the linear space of the xz,, and |x| < limsup,, |z,|.

Lemma 12.2. If the dual X* of a normed linear space is separable, so is X.
We will now prove the main theorem:

Theorem 12.3. If X is a reflexive Banach Space, then A C X is weakly se-
quentially compact iff bounded.

Strategy for the if part(hard): Given {y,} C A we want a subsequence {yy, }
such that y*(yn, ) converges for all y* € X*. As (Y*)* = Y™ =Y =closure of
the span of the y;’s.

Lemma 12.4. Let X,Y be Banach spaces and T,, : X — Y bounded linear
operators. Then lim, ., Tnx = Tx exists and defines a continuous linear map

iff

1. The limit exists for a fundamental set: ie, one whose linear span is dense

m X.

2. Vx € X, sup,, |Thz| < co.
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Proof. Only if is clear. For if, assume T,z converges for D C X fundamental.
NBy the principle of uniform boundedness, given € > 03§ > 0 such that |T,z| <
e for all z, |z|,d and all n.

Given = € X, choose y € span(D) such that |z — y| < 0. Further choose
ng = no(e, y) such that Vn,m > ng(e,y), |Thy — Tny| < €.

Thus, [T (2) ~ T ()] < [Ty (2)~To () |+ T (4) — Ton ()| + 1 Toa ()~ Ton ()| <
3e by our choices. Hence the sequence T,z is Cauchy for every z € X.

277

Hence T' = lim,, .o, 17, : X — Y is continuous. U

Lemma 12.5 (Inheritance of Reflexivity by Closed Subspaces). A closed sub-
space Y of a reflexive Banach space X 1is also refiexive.

Proof. Let X* C Y*. Then r : X* — Y™ gives rise to r* : (Y*)* — X**. To
define it, given y** € Y**, 777

So we have £ : X — X** an isometric embedding canonically. So x(z)(x*) =
x*(x) for all z* € X*. Assume that we have shown that (N) k= 1(r*(Y**)) C Y.
Let’s conclude the proof from (N). Given y** € Y**. Then r*(y**) € X**.
Further, given an arbitrary element of y* € Y*, we can choose an extension
x* € X* such that r(z*) = y*. THis is possible by a corollary of Hahn-Banach.

Now we have ™ (y*) = 5™ (r(z*)) = r* (y™*)(z") = 2**(2°) = (x)(") by
the reflexivity of X. This is then z*(x) = y*(z). And so y** = k().

So now we must verify (N). That is, k=1 (r*(Y**)) C Y.

Assume not. Then there exists x € x~1(r*(Y**)) \ Y. Now using that
Y C X is closed, by one of the corollaries of Hahn-Banach, there exists x* € X*
such that z*(z) = 1 and z*|y = 0. Thus r(2*) = 0. To get teh contradica-
tion, we write x = x~(r*(y**)) for some y** € Y**. Then 0 = y**(r(z*)) =
r*(y**)(z*) = 2*(z) = 1 contradiction. O

So now we finally prove the main theorem.

Only if: Assume that A C X is a weakly sequentially compact set and that
X is reflexive. Then we need to show that A is bounded. If not, then there
exists a sequence contained in A with |z,| = n for all n > 1. By weak sequential
compactness, we have {z,, } a subsequence that converges weakly. By lemma 1
we have that {z,,} is bounded, which is a contradiction.

If(hard): Use Cantor diagonal trick. Assume that X is reflexive and A C X
bounded. Let {y,} C A and let Y be the closure of the span of the y;. By
lemma 4, Y = Y**. Since (Y*)* ~ Y, and Y is separable, by lemma 2 we have
that Y* is separable. (This is where reflexivity is used).

Hence, choose a dense countable set {y*} C Y*. By the boundedness
of {yf(yn)} C C, we can choose a subsequence {yn;}, {r1;} C N such that
Y5 (Yn,,;) converges. Then choose a subsequence {y2;} such that y3(yn,,) con-
verges. INductively, choose {yn,,} C {¥n,_, .} such that y;(yn,,) converges for
te{l,2,...,0}.

Then the sequence {y,,,} has teh property that {y;(yn,,) C C converges
for all /.
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We can interpret this as saying that {£(yn,, )(y;)} converges for all y,6x. By
lemma 3, we conclude that {£(yn,, )(y*)} C C converges for all y* € Y* and the
limit is defined as an element of Y** ~ Y. So limy—cc £(Yn,, ) = ¥ = k(yo) =
YYnw) — Y¥*(yo) for all y* € Y*. Thus, {yn,, } weakly converges to yo.

Corollary 12.6. A reflexive space is weakly complete.

Proof. If {x,} is a weakly cauchy sequence, then it is bounded. Now apply the
main theorem. O

Examples of reflexive Banach Spaces:
Hilbert Spaces, LP(X) for 1 < p < oo.
Remarks on Hilbert Spaces in the Abstract

Lemma 12.7 (Cauchy-Schwarz Inequality). |(z,y)| < v/(z,2)/(y,9).

Proof. 0 < (z + ay,z + ay) = (z,2) + |a*(y,y) + ay, ) + &(z,y). This is
[z)1? + [a?|ylI* + 2R(a(y, z)) Now set v = —(z,)/[y[|*. O

Lemma 12.8. Let x € H and K C H have the property that %(K +K)CK
That is, K is conver. Choose k; in K such thatlim; . |z —k;| = infrex | —EK|.
Then {k;} converges.

Proof. |k — k|2 = 2|z — k|2 + 2|z — k;[2 — dlz — (k; + k;) /22 5 stuff. O
Lemma 12.9. The orthogonal complement M of a closed linear subspace M C
H is a closed linear subspace, and H = M @& M*.

Proof. Closedness of M~ follwos from Cauchy-Schwartz inequality

Now we must show that M @& M~ is H. Assume that we are given x € H.
We need to show that there exists m € M, m € M~' such that + = m + m.
Choose an m such that |z — m| = inf |z — k| for & € M. This is possibly by the
lemma.

Define 7 =  —m. Need to show that /i L M. To show that m € M1, take
|x—m—amq| > infrens |x—k| = |z—m| for some a € C, m; € M arbitrary. Then
0 <|z—m—am;|®—|z—m|* = |a|?*|m1|? —a(mi,z—m) —a(z—m,m) and set
a = Az —m,m;y) for A € R. Then \2|my|?|(x—m,m1)|> =2X|(x —m,m1)|? = 0.

If (£ — m, mq) # 0, for some m; € M, then choose A small enough. Contra-
diction. U

13 Lecture 13

We are looking at Hilbert Spaces
Last time, we proved the lemma

Lemma 13.1. M C H a subspace which is closed. Then H = M & M~*.
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Theorem 13.2 (Riesz Representation Theorem). For every y* € H*, there
exists a unique y € H such that y*(x) = (x,y) for all x € H.

The map G taking y* — y is a conjugate linear isometric isomorphism
H* — H with |y*| = |y|.

Proof. Introduce M = {zx € H|y*(z) = 0}. Then M is closed by the continuity
of y*, and if y* # 0, it is a proper subspace. Therefore, there exists y; € M.

y*(x — y*(x)y1/y*(y1)) = 0 for all x, and so (x — yy*(écy)ly)l ,y1) = 0, and so
(o) =y (2) ey ]

Replace y; by y = ay, with o = (yyl(zll)) gives us (x,y) = y*(z), so such a y
exists.

For uniquenessm if also y*(z) = (z,§), then (z,y — §) =0 for all z € H, so
Y=y

Now the isometric property: By Cauchy-Schwartz, we have |(x,y)| < |y||z],
and [y*| < Y], but also (y,y) = [ylly| = |y*| = [y|. O

Theorem 13.3. A Hilbert Space H is reflexive. That is, the canonical embed-
ding k : H — H** is onto.

*

Proof. First equip H* iwth teh following Hilbert Space structure (z
(G(y*), G(z*)), and now apply Riesz to H*. Thus, given y** € H** y**(a*
(z*,G(y™)), can call G(y**) = y*. Then y**(z*) = (27,y") = (G(y*), G(z"))
z*(G(y")) and so k(G(y")) = y™*.

YY)
X

O

Example: H = L?(X,du) has H* = L*(X,du).
We want to generalize this. LP(X) for 1 < p < oo has (LP)~L? where
1/p+1/q =1, and so LP is reflexive.

13.1 Radon-Nikodym Theorem

The absolute continuity of measures.

Definition 13.1 (Signed Measure). A signed measure v on a o-algebra M of
subsets of X is a function v: M — R U {oo} satisfying

1. v(E) € (—o0,¢] for all E € M
2. Countably additive.

Example 13.1. Let f be integrable in the extended sense and f~ = min{ f,0} €
LY. Then v(E) = I fdu is a signed measure.

Definition 13.2 (Total Variation). Let v be a signed measure, then the total
variation |v| is given by |v|(E) = SUP e =k, B, disjoint Zjoil [v(E;)]

Theorem 13.4. Total variation is a positive measure satisfying |[v(E)| < |v|(E)
for all E in M.
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Proof. Only countable additivity needs a proof.

Let {E;};j>1 C M disjoint. We check that > .-, [v[(E;) < [v[(E), with
E = UE;. We also will check the converse inequality.

Choose for each j a number a; < |[v|(E;). Hence, by definition, there exists a
disjoint decomposition E; = U;>; Fj; with o <37 [v(Fj;)|, and hence ) a; <
> [v(Fig)|, but B = Uj;Fj, and so 3 ay < [v[(E). Now let a; — |v|(E}) for
all j, and we get 3,5, [v|(E;) < [v](E).

Write £ = UF}, then E; = Uk(Ej ﬂFk), adn Fj = Uj(Fk N E). So
Do [0(ER)l = 200 1 22, v(FRNER)| < 3 [o(FRNES)| < 32, [v|(E;) by switching
order of summation, and so we are done. O

Given an arbitrary signed measure v, we can write v = vt — v~ where
v = (|v| +v) and v~ = 3(|Jv| — v) with v* > 0.

Thus, statements about signed measures can be reduced to statements about
positive measures.

Definition 13.3 (o-finite). A signed measure is called o-finite if |v| is. This
means, X = U2, Ej, |v|(E;) < oco.

If we take v, u with p positive and v signed measure, we want to decompose
v into ’atomic part’ singular with respect to p and an absolutely continuous
part with v, (E) = 0if p(E) = 0. v(E) = [}, fdu + 6o(E). If X = R and dy is
lebesgue measure, then f will be an L' function.

Definition 13.4 (Mutually Singular). Two signed measures v, i are called mu-
tually singular if there exist disjoint sets A, B € M with v(E) = v(E N A) and
p(E) = p(E N B). We write this as v L p

Definition 13.5 (Absolutely continuous). v a signed measure, p positive, then
v is absolutely continuous with respect to u proved that v(E) = 0 whenever
w(E) = 0. This is written v << p.

Remark 13.1. If v L p and v << p, then v = 0.

Example 13.2. v given by v(E) = fE fdu for f= € L'(dp) is absolutely
continuous with respect to p.

Lemma 13.5. Let |v| finite and v << p. Then Ye > 0, 3§ > 0 such that (x)
w(E) < o= |v|(E) <e.

Proof. Assume that (*) fails. Then Je > 0 such that Vn > 1, there exists E,
with p(E,) < 27" but |v|(E,) > e. Then consider E* = limsup,, ., E, =
Moy Uksn B

1(UrnBr) < psy, t(Bx) < 27" and so p(E*) = limy, oo p(Up>n Er) =
0, and so |v|(Ug>nEk) > €.

[v](E*) = limy—oo [|(Uk>nEx) > |€], and we need |v|(X) < oo for this. O

Theorem 13.6 (Radon-Nikodym). Let p be a o-finite positive measure on M
and v a o-finite signed measure, then there exist unique signed measures vq, vy
on M such that vy, << u, vs L p and v = vy + vs. Furthermore, we have
va(E) = [ fdp for some extended p-integrable function f.
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Proof. Stepwise: first we assume that both u, v are finite and positive. The stat-
egy, due to von Neumann, is to use Riesz Representation Theorem for Hilbert
spaces.

Deﬁne p = v+ p, and now introduce a functional L?(X,dp) given by £(¢) =

Jx ¢ ) for ¢ €: L2(X,dp). We calim that ¢ is a continuous functional.
\E | § f |p|2dp)*/?( fdp 1/2 = ||¢||Lz( (X))/2. Hence, by Riesz, there is
age Lz(dp) such that £(¢) = [y ¢( Ydp(x).

Claim: 0<g<1 ahnost everywhere To check this, use smart test functions
for ¢. That is, let E € M, ¢ = xpg. Then l(xg) = [y xpdv = v(E) =

S 9(@)dp, s0 V(E)/p(E) = L282% and it |{alg(x) > 1}] # 0, then B =

{z|g(x) > 1} so we have this ratio is greater than 1, contradiction.

Hneee by Riesz, there existsg E L?(X, dp with fX fX
Jx d(x)g(x)(dv + dp)(z), [y (o l—g( = fX z)du(z ), and
A= {w\g( ) < 1}, B = {;E|g( = 1} Then we define Va(E> =v(ENA)
and vs(E) = v(E N B).

Claim: v, is absolutely continuous.

O(x) = xpra(l+ 9+ 9% + ..+ g")(@), and 50 [ (z)(1 — g(x))du(z) =
Jpaa1— ”*1( ))dl/( ), and taking n — oo, we get [, , dv(z) = v (E).

I o( = [paa9(1+g+...+¢")du as n — oo, by monotonic-
ity, th1s is fEﬂA 1fgd,u7 and in particular, ﬁXA € LY(du). So v.(E) =
i} 5 ﬁ Xadyp = v, (E) absolutely continuous, and so we have the desired repre-
sentation. O

14 Lecture 14

Radon-Nikodym Theorem:
Step 1: Assume that v, positive ﬁnite and set p = v+ p > ,u Then
0<g<1 Jx f( = [y g(@)du(z) for all f € L*(dp). iff [, f(z)(1—
=Jxf du( )-
{m € X|g < 1} and B = {z € X|g = 1}, then u(B) = 0, and
Ua(E) =v(ENA)and vs(E) =v(ENB)

Now vo(E) = [ 14;du where g/(1 — g) € L' (du).

Step 2: Assume that v, u are positive, o-finite. X = UE; such that v(E;) +
p(E;) < oo. Then using step 1, we write v;(E) = v(ENE;) = v; o(E) +v; 5(E).
Define v, = > v; 4 and vs = Y v; 5, we have v = vy + .

E) = [, > fi(x)du(x) where each f; is produced for v; o by step 1. Take
f=>_ fi, integrable in the extended sense.

Step 3: If v is signed, then v = v — v~

Theorem 14.1 (Vitali’s Theorem). Let (X, M, i) be a measure space, p positive
and if A,B € M, then set d(A, B) = arctan(A\ BU B\ A). Then M/ ~ with
A~ B <= d(A,B) =0 is a metric space. (Ezercise)

Lemma 14.2. M/ ~ is a complete metric space.
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Proof. {E,}n>1 is a Cauchy sequence, then choose a subsequence {E,,,} such
that d(E,, E,,) < 27¢ for n > n;.
Exercise: Show that E, — F, where Fyx = U; Nj>; Ey;. O

Definition 14.1 (p-continuous). A scalar valued set function A : M — C is
called p-continuous if Ve > 0, there exists § > 0 such that [MN(E)| < € if u(E) < 6.

Observation: Such a function descends to a function A : M/ ~— C proved
that A is additive.

Indeed, it becomes a continuous function on M/ ~. To see it, E,, — E in
M/ ~ implies that u(E,\E) — 0 and u(E\ E,,) — 0 and so A(E\ (E,NE,,)) —
0and M(E\ (E,NE,)) —0

And so A(E) = MNE,,) = AXE\E,NE)=-ANE,\E,.NE)— 0.

Lemma 14.3. The set operation A,B — AU B, AN B, AAB are well-defined
and continuous on (M/ ~,d)

Proof. Exercise O

Theorem 14.4. Let (X, M, ) be a measure space and {\,} be p-continuous
additive set functions on M. If lim, o, A\, (E) exists for all E € M, then
lim,,(gy—o An(E) = 0 uniformly in n.

That is, for all € > 0, there exists § > 0 such that |\, (E)| < € if u(E) < 6
for alln

Proof. Application of Baire.

An discends to a continuous function on (M/ ~,d) for all n, and hence for
all € > 0, the sets Ay, = {E € M|, | M (E) — A (E)| < €} are closed, as well as
Ap = m1’L,m2p‘4n,m

Since lim, o0 A (E) exists, for all E € M, we have M/ ~= U,>14,. By
Baire, at least one of the A, has nonempty interior. So there exists ¢ € N and
r > 0 such that |A,(E) — A (E)| < € provided p(EAA) < r for some A € M,
n,m>gq.

Now, choose 6 with 0 < ¢ < r such that |\, (B)| < € whenever u(B) < § for
n=12,...,q.

Claim: If B € M, then u(B) < § implies that A\, (B) < 3¢ for all n.

For n > ¢:

An(B)l = [Aq(B) 4+ An(B) — Aq(B)|

= [Ag(B) +A(AUB) = Ag(AUB) — [Au(A\ B) = Ag(A\ B)]
Ag(B)| + |lambda, (AU B) — X\y(AU B)| + |An(A\ B) — X\y(A\ B)|
3e

A IA

O

Theorem 14.5 (Vitali). Let1 < p < oo, (X, M, ) a measure space and {f,} C
LP(dp) such that f, — [ pointwise almost everywhere. Then f is in LP and
|fn— flor — 0 if and only if
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1. lim,(g)—o fE | frn(2)|Pd = O uniformly in n

2. Ve > 0, there exists E. € M such that p(E.) < 00, [ |falPdp < € for all
n.

Proof. If: First show that for all e > 0, there exists A, such that f,
uniformly and [ f,|ac||z» < € and p(Ac) < oo.
Proof with hint will be exercise. O

Theorem 14.6 (Structure of the dual of LP(du)). . Let1 < p < oo, 1/p+1/q =
1, then there z's an isometrz’c isomorphism between (LP(du))* and L(du) via the
relation z*(f) = [ g(x)g(x)dp for all f € LP(du) with g(x) € LI(dpu).

Proof. Fairly easy to check that each g € L(du) defines an x* € (LP(du))* via
this map, because continuity of x* is equivalent to boundedness of z*, and by
Holder’s Inequality, | [ g(z)f(z)dp| < ||g||Le||f]lz». Challenge: Show that each
x* is given by a suitable g € LY(dpu).

Step 1: Assume that u(X) < oo. Given z* € (LP(du))*, we'll introduce a
signed measure, apply Radon-Nikodym.

E € M maps to z*(xg). If E = UE;, with E; disjoint, then xg = Y x&,,
in LP.

v*(xp) = @ (xg,) = Iy 2* (T, X5,) = limyoce Yot 2 (X5) =
> (x,).

This implies that F — x*(xg) is a signed measure. Further, since ||xg| r» —
0 as M(E) — 0, by Radon-Nikodym, there exists a g € L' such that z*(yg) =
Jx 9(Xxs(@)du.

Then 1t is clear that also x*(f) = f) Xg(x)f(z)dp for all f a p-simple func-
tion. Given a general f € LP(dp), there exists f, € LP(du), p-simple functions
such that f, — f almost everywhere and in LP(du). Then also gf, — g¢f almost
everywhere.

We want to use Vitali to conclude that gf, — g¢f in the L! sense. By
finiteness of pu(X), the 2nd condition of Vitali is trivially satisfied. We need to
check that lim,gy_o [ 9(x) fr(2)dp =0 umformly in n.

To see this, introduce the set functions \,(F) = fE gfndu. Note that
lim A\, (F) exists for all E € M.

So gfn — gf in L' norm. As gf € L' and lim,, oo [y 9fndp = [ gfdp, we
have lim,, .o *(fn) = 2*(f).

All that remains is to conclude that g € L?. We use the ”"bootstrapping”
procedure:

The function taking z — e for z # 0 (that is, z/|z|) and taking 0 — 0.
Take Arg(z) to be theta and g; = |g(—)|"/? Arg(g(—)). This is in LP.

Sox*(g1) = [ lgI" T /Pdp < |a*||girr = |2*| ([ lgldu) " = |27| (2" (Arg g))*/? <
|x*\1+1/f’(,u(X))1/p and so g € Li+/p L1+1/p+1/p2 - O
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15 Lecture 15

(LP(dp))*
Our tools are as follows:

Theorem 15.1 (Vitali-Hahn-Saks). Let (X, M, u) be a measure space and {\,}
a set of p-continuous additive set functions. If lim, .o A\n(FE) exists for all
E € M, then lim,(gy—o A (E) = 0 uniformly in n if and only if Ve > 0, there
exists § > 0, such that if p(E) < then | A\ (E)| < € for alln > 1.

Theorem 15.2 (Vitali). Let 1 < p < oo and (X, M, ) a measure space with
{fn} C LP(dp) and f, — [ pointwise. Then f € L? and f, — f in LP sense iff

1. limygy—o 5 | fnlPdp = 0 uniformly in n

2. Ve >0, 3E. € M with p(E.) < oo such that [,

fulPdu < € for all n.

Theorem 15.3 (Main Theorem: Structure of (LP(du))*). Let 1 < p < oo and
1/p+1/q=1. Then there is an isametric isomorphz’sm between (LP(du))* and
Li(dp) via the relation z*(f) = [ g(z)f(z)dp for all f € LP(dp) and some
g € L(dp) and |x*| = ||9||L<1

Proof. Step 1: Assume that p(X) < oco. Let z* € (LP(du))*. We define a
signed measure via v(F) = 2*(xg). This is well defined, because ||xg|lrr <
I1x|/zr = (u(X))'/P. To check that v(E) is a measure, assume that £ = [[ E
then >~ xg, = xg in L? sense, and so it works out.

We claim that v is p-continuous or v << p. I/(E) § (u( ))l/p\x*| :> v(E) =
0if u(E) =0, and Radon—NikOdym says x*(xg) = = [y 9z x)dp for
some g € L'(du). So x* fX g(x) f(z)du for any u sunple functlon

Now let’s assume that f e Lp(du) Then choose a sequence {f,} of u-
simple functions with f, — f almost everywhere and with rebpect to LP.
By continuity of z*, z*(f,) — z*(f). And z*(fn) = [y 9(2)fn(z)dp. So
g() fn(z) — g(z)f(z) a.e. and want to show that this convergence is also in
the L'-sense.

Here we use the technical theorem that [, g(x)fn(z)dp = z*(xpfn) —
x*(xgf) for all E € M.

Now we introduce a family of set functions v, (E) = |, g9 x)du, and
lim,, o v, (E) exists for all E € M and so by Vitali- Hahn Saks, hmM(E)éo f vn(E)dp =
0.

And so, we apply Vitali’s Tehorem to {g( ) ( )} and so We have g(x) fr(z) —
g(z)f(x) in L*. So gf € L'(du) and z* [ g(z)f(z)dp. Make judi-
cious choice for f and define g1(z) = |g(z )|1/p Arg( (x)) Wthh is in LP. Now

= [ g VPdp < |z*|||gll Lo = |2*| (f |g(gc)|du)1/p7 which is less than or
equal to [z7|(J]*u(X))"/P = |2~ FH/P(u(X)V/P.

Thus, g € L't'/?. Now we define gy = |g|1+1/P)/P Arg(g).

Now lgallze = (fx la(@)|"F/Pdp)""" < a2 19 (u(X)) /7 and so [ |g(a)[ /71" dp =
J 9(@)lgl V17 Arg(g(a))dp = 2(g2) < o [lgalle = o [FF/r+12 (u(X)) Vo,
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Now proceed inductively to define g, = |g|'/P++1/P" Arg(g(2)). [y |g|* T /P dp <

[ (X))

Note that > 2, # = ¢, and so by Fatou’s Lemma, as |g|*t+1/P" — |g|9,
we have [ [g|9du < |2*]9 = ||g||r« < |2*|, and by Hélder’s Inequality, we also
have [2*| < ||g L4, and so |2*| = ||g]| -

Step 2: Now assume that u(X) = co. Define My = {E € M|u(E) < oo}
(note, not a o-algebra, but it is an algebra). For E € M, denote LP(E) = {f €
12(dp)| f|- = 0}.

Then z3, = 2*|s(p), and by what we've shown, for all E € M, there
exists gg € LY(E) such that 23(f) = [y ge(x)f(x)dp for all f € LP(du). And
SO ||gEHL‘1 < ‘.’B*| Further, if FEqi,Ey € My, then gE1|E1ﬂE2 = gE2|ElﬂE2 d
fElﬁE2 9, fdp = fElﬂEQ 9E, fdp.

Thus, v(E) = ||gE||qu(E) < |z*|? increasing set function. Hence there exists
an increasing sequence E,, € M; such that |2}, | — supgeny, |25] < |27

Since gg, = 9gE,., for all k > 0, almost everywhere with respet to u on F,,
and so g(z) = limy, o0 gn(x) defined almost everywhere on U2, E,,.

By the monotone convergence theorem, ||g||zs = lim, . ||9E, [|Lr = supgeypy, 25| <

B
Our claim now is that g is the desired representative, fX fgdu =a*(f)Vf €
LP(dp).
To see this, first assume E € My, ENF = () (where F = UE,,). |lgrur, |1 =
lgellte + 9, }1s = gr = 0 almost everywhere.

Hence, if f € LP(E) and E € M arbitrary, then z*(f) = x5(f) = [ 9e(z)f(z)fu

fE\F ge(z) f(x)dp + fEnF ge(z) f(x)dp = [y g(x)f(x)dp. We conclude by ob-
serving that Ugear, LP(E) is dense in LP(dp). O

Corollary 15.4. For 1 < p < oo the space LP(du) is reflexive, and hence
bounded subsets are weakly sequentially compact.

Proof. Let x** € (LP)** = (L79)*. Hence there exists y* € (L(dp))* such that
x*x (x*) = y*(g) if «* is represented as 2*(f) = [y g(x)f(x)dp. But then there
is h € L such that y*(g9) = [y h(2)g(x)dp = 2*(h), and so z** = k(h). O

Remark: It is true, provided that (X, M, u) is o-finite, that (L')* = L*°,
however, (L>)* # L!.

15.1 Distribution Theory

How to make sense of things like Au without assuming that u € C2.

If ¢ € C§°(R™), then (Au, ¢) = (u, Ag). So in a sense, distributions are in
the dual of C§°(R™) (but not really, because it’s not a Banach space) There are
so many distributions because C§° is a VERY restricted space.

Definition 15.1 (Distribution). Let X C R™ open. Then a distribution u is a
linear functional on C§°(X) with the property that for every K C X compact
with nonempty interior (written K << R™), there exist C € R,k € N such that

[U(6)] < €3y 5D [0°6] for all ¢ € C5°(K).
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Example 15.1. Let u € L?*(R™). Define Au by its action on C§°(R™) via
(Au, @) = (u, Ag). We claim that Au is a distribution.

Pick a K << R™ and let ¢ € CF(K). Then [(Au,d)| < ||u||L2||A¢||L2 <
lull 2 Y2 1026 ]| o< (m(K))'/2. Then k =2 and C = [[ul| 2 (m(K))"/?

Example 15.2. ¢, is defined by (0x,,9) = ¢(x0), and derivatives of d, by
(— D)0z, 0%9).

Other examples: every f € LP for some 1 < p < oo is a distribution.

Definition 15.2 (Finite Order). A distribution is of finite order if the k from
the definition of the distribution is independent of K.

16 Lecture 16

References: LP(dp) stuff: Chapter in Dunford-Schwarz ”Linear Operators Vol
]:77

Riesz Representation for Functions on C°(R") in Rudin "Real and Complex
Analysis”

Distribution Theory Hormander ”Partial Differentail Operators Vol I”

Last time, we introduced distributions.

The space of distributions is denoted D’(X).

Theorem 16.1. Let u € D'(X), X € R™ open. Assume u(¢) > 0 whenever
¢ € C§°(X) is nonnegative. Then u 5 a positive measure w on X such that
p(K) < oo for all K << X by u(¢) = [y o( x) for all ¢ € C§(X). In
particular, u is of order 0.

Strategy, show that u extends to CJ(X) and then use Riesz Representation
Theorem.
We will need the following lemma:

Lemma 16.2 (Smooth Urysohn). Given K C X compact, then there exists
X € C§°(X) such that x =1 on X, 0< x < 1.

Proof. Let inf ek, yGX‘ |x - y| > 4e > 0 for suitable € > 0 (note that X C R").
Then choose x € C§°( ), [X(z)dx =1,0 < x and X = € "X(z/€), then
supp Xe C Be(0) andfxe dw—l

Define x k,. to be the characteristic function of the set Ko, = {y € R"|inf ek |2—
y| < 2€}.

Set x(7) = [XKa. * X (#) = [on XKoo (T — Y)Xe(y)dy.

Then supp x C K3, and 1 > x(x) >0, x € C§°(X). We also have (1 —x) =
(1 - XKZ&) * >~(€'

If x € K, then since y € B.(0) on supp X, so ¢ —y € K. on support of
integrand, so (1 — xk,.))(x —y) = 0if z € U, y € support of integral implies
that yx = 1. O

Now we prove the theorem.
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Proof. Given ¢ € C°(X), let K = supp¢ << X and choose x as inn the
lemma. Then xsup |¢| + ¢ > 0, if ¢ real valued by the positivity of .

u(x supp |¢| £ ¢) > 0 implies that |u(¢)| < u(x)sup|¢|, and so V compact
K C X, there exists C(K) such that for all ¢ € C§°(K) C C§(X) |u(¢)| <
C(K) sup|o].

Next assume that ¢ is complex valued. Then choose § € R such that
eu(¢p) € R. Then eu(¢) = u(e?p) = u(R(e?p)) + iu(I(e??$)) and by pre-
coeding, [u(R(0))| < C(K) sup [e9| = C(K) sup |

Thus, for all K << X, ¢ € C§°(K), there exists C(K) such that |u(¢)| <
C(K) sup o]

By approximating arbitrary functions ¢ € C§(X) by C§°(X) functions (with
support slight, but fixed, englargement of suppose 1) we have that u extends
to a continuous linear function on C§(X). Now conclude via Riesz. O

Topology on D’(X). Use the "weak topology” which has as a basis for open
sets Up,,....pn,ev = {00 € D'(X)  |u(¢;) —v(¢y)| < eforallie {1,...,n}} where
v is a fixed element in D'(X), ¢1,...,¢n € CF(X).

In the weak topology, a set A of distributions is open iff it can be written as
a union of such sets.

Equivalently, a sequence of distributions w; — w iff u;(¢) — u(¢) for all
¢ € C§°(X).

Theorem 16.3 (Weak Completeness Property for D'(X)). If{u;},;>1 C D'(X)
satisfies u(¢p) = lm; oo u;(¢) exists for all ¢ € C§°(X), then v € D'(X) and
u; — u in the sense of distributions.

Proof. We need to check that w satisfies the boundedness requirement for a
distribution. Pick a compact set K << X. We shall equip C§°(K) with the
structure of a Frechet Space. Introduct the semi-norms ||¢||o = supy |0%¢| for
a=(ag,...,q,) a multi-index.

Define |¢| = Y (2n) 1" 1%5)“"0 Now (exercise) check that (C3°(K),|-|) is

complete.

Further, each u; is continuous with respect to the Frechet Space structure.

By the principle of uniform boundedness, for all € > 0, there exists 6 > 0
such that |¢| < § = |u;(¢)| < e for all j > 1.

In particular, also |u(¢)| < €, and so u is a distribution on C§°(K). To
see this, assume not. Then for all £ > 1, there exists ¢ € C§°(K) such that
lu(or)| > 2% |0%¢x| by normalizing, we can require that |u(¢)| = 1 and
so Y 10%x| < 27%, and this implies that |¢| < & for k large enough. Thus
|u(ér)| < €, contradiction. O

te™ >0
Example 16.1. Limit of distributions: u;(x) = { © * and {ug, d) =

0 <0
fo ue@)d(@)ds for ¢ € O (R).
Question: What is lim_.o ui(x) € D'(R)?
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(9) = Ji* te"o(x)da )+ i fy7 e (x)dx = ip(0) — ¢/(0)/t —
Jo 8”¢”< )dz — i$(0) asmoo.

And so limy_, o, te™® = idy.

Important Operations on Distributions:

1. Localization: U — D'(U)

2. Differentiation: U C V', a map D'(V) — D'(U)

Theorem 16.4. If u € D'(X) and every point in X has a neighborhood on
which the restriction of u vanishes, then u =0

Theorem 16.5. Let {X;};,cr arbitrary family of open sets in R™ such that
X =UX;, ifu; € D'(X;) and u; ,Jj, then there exists
a unique u € D'(X) such that u; = ulx,.

Corollary 16.6. The map U — D’'(U) is a sheaf.
We need a lemma

Lemma 16.7. Let X1,..., X, C R"™ open, ¢ € C§°(UX;). Then there exists
¢; € C5°(X;) for each j such that ¢ = ¢;.

Proof. Choose compact sets K; C X; with supp¢ C UK;. By our smooth
Urysohn Lemma, find ¢; € C§°(X;) with 0 <1¢; <1 and ¢; =1 on K. Then
consider ¢1 = g1, P2 = Pp1pa(1 — ) etcetera. Then > ¢; —p = —¢ H?:l(l —
¥;) = 0. O

And now we prove the first theorem:

Proof. Given ¢ € C§°(X), find for each = € supp ¢ a nieghborhood U, C X such
that u|y, = 0. Finitely many of the U, cover supp, and call them Uy, ..., Us.
Then finte ¢y, ..., ¢ and suppose supp ¢; C U;. Then > ¢; = ¢

u(¢) = > u(¢i) =0 L

17 Lecture 17

Now we will prove the second statement.

Proof. The uniqueness follows from the first statement.

Assume that ¢ = > ¢, for ¢; € C5°(X;). Then we necessarily have u(¢) =
> u;i(¢;). We need to show that this canonically defines w.

Equivalently, we need to verify that whenever Zf\il ¢; =0 for ¢; € C§°(X;),
then Z —1ui(¢:) = 0.

Put K = Usupp(¢;) << X. Choose finitely many functions ¢, € C5°(Xx)
such that > g|x = 1.

Then ¢ ¢; € C§° (X, N X;), and by assumption w;(VYr¢;) = uk (Vi di).

D wilPi) = 32 ui(ithn) = 32, p uk(Pithn) = Dop uk(; Yri) = 0. O
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Still need to check that u satisfies the bounds required of a distribution.
Choose L << X compact and let ¢, € C5°(X}) be finitely many k such that
> tklL =1,

If 6 € Cg°(L), then u() = 3, u(td) = Xy we(tx0).

For all k, there exists C¥ and Py, € N, such that |ux(vr0)| < Ck 2 ja|<Py  SUPK [0% (Vrd)],
and so there exists ¢ € R such that |u(u)| < ¢ sup [0%¢|, and so u € D'(X).

There are two very important classes f distributions.

1. Compactly Supported Distributions
2. Tempered distributions

Definition 17.1 (Support). Let u € D'(X). Then suppu = {z € X|3U, > x
such that uly, = 0}°.

Example 17.1. If f € L} _(X), then supp f in the sense of a distribution is

Loc
essetially supp f as a measureable function.

Example 17.2. If u = §y, then suppu = {0}.

u is compactly supported if suppu << X.

Assume that v € D'(R™) is compactly supported. Then u extends canon-
ically to a homomorphism C*°(R") — C. Indeed, given ¢ € C*°(R"™), choose
¢ € C§°(R™) such that ¢|syppw = 1. Then define u(¢) = u(¢yp). This is
independent of the choice of 1, since if ¢ is another, then u(p(y — 1;)) =0.

If K = supp u, then u : C*°(R") — Csatisfies [u(¢)| < €'}, < suppg [0%9].

Conversely, if u : C*°(R™) — C satisfies a relation of this type, it restricts
to a compactly supported distribution D’(R™).

So, if C*°(R™) is equipped with a suitable Frechet space structure, then the
linear functionals that are continuous C*°(R™) — C are exactly the compactly
supported distribution.

To equip C*°(R™) with Frechet space structure, introduce the seminorms
¢ = Pn,a(@) :=supg, |0%¢| where K, is compact for all n and UK,, = R™.

Define |¢| = Zn,a(Qd)_n_la‘%.
Observation: u : (C*(R™),|-|) — C is continuous iff there exists k € N,C €

R, K <<R" such that |u(¢)| < C3_, <) supk [0¢|.

Proof. Only if: If not, then there exist ¢, for all n with |u(¢,)| > 100" 3=, <, supy, .., [0%¢].
Rescaling, we may assume that |u(¢n)] = 1 and so |¢,| < 27" if n large
enough, contradiction. O

The upshot is that compactly supported distributions are the ”dual” of
C>(R™).

Tempered Distributions

REcall that S(R™") = {¢ € C®(R")|supyegn (1 + |2[")]|0%d|(z) < co¥n >
1,a}.

This also comes with a Frechet Space structure, by ¢ — sup| <, SUpgern (1+

|z[")[0%¢| ().
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The dual of S(R™), when restricted to C§°(R™), is the Tempered Distribu-
tions.

What is an application of all this?

An important application is fundamental solutions for constant coefficient
PDEs.

Asa technical tool, we deﬁne a convolution of distributions. If ¢, functions

and ¢ * Y(x fRn —y),¥(y)dy = (Yy,d(x —y)). We generalize this to
the case Where P is a dlstrlbutlon if w € D'(R"), and ¢ € C5°(R™), then

ux ¢ = uy(P(x —y)).

Exercise 17.1. Check that u,(¢(x — y)) is a smooth function of x. Also, it is
compactly supported if u is.

Now, we can define the convolution to two distributions, uy, us if us is com-
pactly supported to be (ug *ug)* @ = ug * (ug * @) for ¢ € C§°(R™). This defines
it uniquely!

Definition 17.2. A constant coefficient linear differential operator on R™ is a
finite linear combination P =) an,0%.

Definition 17.3. A distribution E is called a fundamental solution for P pro-
vided that PE = dy.

Use of this: consider the problem Pu = f.

Claim: E * f solves this. Pu= P(E* f) = (PE)«* f =08y« f = f. This is
also called Green’s Functions in special cases (like the Laplacian).

Important examples:

Laplace equation on R™ and heat equation on R"*™! (n spacial dimensions)

Theorem 17.1. Set E(x) = (2m) ! log |z| for x € R?\{0}, E(x) = L2 - Y

n—2
z € R"\ {0} forn > 3 and ¢, the volume of the unit sphere in R"™. Then 0;E

in the dense of distributions given by I]‘rl ,AE = 6.

Proof. Note that E(x) € L}, .(R"), E(z) € D’ (R"), az E e L}, (R").

We use the Divergence Theorem, which is [ 7(z) - idS = [}, +Vdz.

Let ¢ € C3*(R™), (0, 6) — —(E, aj@ = —limﬁ_,oflmbEE(x)aj(b(.r)dm _
lime o J,,s #(2)0; E(x)da+limeo [, _ E )lfﬁqb(x)dz The first term there
ebcomes [ ¢(2)9; E(x)dz, and we must compute the second term.

Mx\:e E(x)<x1>/|x\ﬁ¢(x)d5|‘ < Celogle] — 0 as e — 0. Hence, indeed,
0;E = xj|z|™"/cn.

Now we must check that this is a fundamental solution.

We will do this by calculation. AFE(x) = 0if x € R"\ {0}. (AE,¢) =
(E,A¢) = lim .o fx|>6 (E§¢p—AE¢)dx = lim._o f;p\>e (E grad ¢p—¢ grad E)dz.

By the divergence theorem, lim,_,¢ fl (pgrad E—FE grad ¢)-ndS, and grad ¢ —

0. Now grad B = —%. Dot this with # and we get —e —(»=1) “and so
lim. o fx‘  pgrad E - iidS = $(0), and this is the same as AE = do. O
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18 Lecture 18

Theorem 18.1. The function E(t,x) = (4nt)~"/? exp(—|z|?/4t) for t > 0 and
E(z,t) = 0 fort < 0 is a fundamental solution to (0; — A)(E(x,t)) = do,
5o € D'(R™H1).

Proof. IF |z| # 0, then check that E(¢,z) is smooth and extends smoothly to
z = 0if t > 0. Then [y, (4mt)""/?exp(—|z|>/4t)dz = 1, and so E(t,z) €
L, .(R™*1) ad hence is a distribution. When ¢ > 0, g—i = —z;/2tE and A E =
—nE/2t + |z|*E/(4t%) = %—If. Thus, supp(E(t,z)) C {0}.
(0:—D)E, ¢) = —(BE, 22+ Ay¢) =lime_g [, —E(t,2)(%2+Ag)dzdt. The
divergence theorem then gives us lim_o [ E(e, z)¢(e, z)dx = lime_q [p. E(1, 2)d(e, /ex)dr =
¢(0,0). O
Theorem 18.2. Every constant coefficient partial linear differential operator
P # 0 admits a fundamental solution E € D'(R™), PE = 9.

18.1 Sobolev Spaces

LEt X C R" open. THen LP(X) C Lj,, by Hélder, and LP(X) C D'(X). Let
u € LP(X), but 0%u ¢ LP(X).

Definition 18.1. LEt k € N and WF?(X) = {u € D'(X)|0%u € LP(X)V|a| <

These can be turned into Banach spaces by using the norm ||u||xp x

1/p
el ) = (f S jar 070l (2)da)

Lemma 18.3. W*P? is a Banach Space.

Proof. Completeness: LEt {u;} by a Cauchy Sequence. THen each 9%u; €
LP(X) is Cauchy. By the completeness of LP(X), 0%u; — uq in LP for |a| > 1
and for all |o| <k, u; — u in LP.

Claim: 0%u = uq.

(0%um, ¢) = (—1)I*1(u, 0%) = lim; 00 (— 1)1 (u;, 09@) = lim; o (0%u;, p) =
(Uey @) = 0% = uq in D'(R™). O

Corollary 18.4. If we embed W*P C o)< LP(X) by u = (0%u)ja)<k, then
the iomage is closed. Hence if 1 < p < oo then WP is reflexive.

If X = R”, and p = 2, then we can use the alternative definition via
Plancherel ||ul|z2gn) = [|%]|L2®n)-

u € WH2(R™) if and only if [5, (1+ [£[*)*|a(£)2dE < oo.

Call Wk2 = H* and check that ||u|y»2 = [|ul gx-

Sobolev Embedding

Definition 18.2. W(f’p(X) is the closure of CF(X) with respect to || - llwee(x)-
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Remark 18.1. If X = R", then Wéc’p(R”) = WFP(R"). These are essentially
the functions with zero boundary value.

Theorem 18.5 (Sobolev Embedding Theorem). Let X C R™ open, then W,
embeds into C™/("=P)(X) if p < n and into L°(X) if p > n.

Moreover, we have that ||u(l,p/(n—p) < C(p,n)||Vul/Lr, p < n and supy |u| <
C(u,z)||Vul|L» for p > n.

Remark 18.2. The reason for the np/(n—p) exponend is scaling comptibility. If
we take u(x) to u(Ax) for X # 0, then [|[u(Ax)|| pnp/n—» = WHUHLw/(n—m,

which means that scaling this gives a multiplication by X=P/("=P) " Scaling Vu
gives the opposite.

Proof. Our choice of I/VO1 P means that it suffices to consider u € C}(X) using
density argument.

First consider p = 1. Then |u(x)| < ff;o

fua)|"/ 1 < (T, S5
Now we apply Holder successively in each variable:

(n—1)/n
( / |u(x)|"/("_1)dx)
B 1/(n—1
i)
n iqJ —o0 8331 ¢

1/(n—1)](r=1/n
d$1d$2 e d$n> ‘|

8%7;“‘ dz; for i = 1,...,n. Thus
)1/(n*1)

ou .
871:@ dﬂfl

llull pnscn—)

(n—1)/n

IN

< |(/

< IVl

ou
al’i

So this settles the case where p = 1.

For the case p > 1, replace u by |u|” where v > 1 is to be chosen. Then what
we’ve proved gives us [||u|” ||,/ (n—p) < v [ |[u[""Vuldz < A|[|Jul"" | L[|Vl L.

Sovyn/(n—1)=(y—1)p/(p—1), and so vy = (n—1)p/(n —p). Then the in-
equality implies that [|ull} ., < ’Y||u||7l;/l(n7p)||Vu||Lp, and 50 [|ul|yp/(n—p) <
YVl e

Now we consider the case p > n. Then use a boot strap technique. u €
C}(X), and also assume that m(X) = 1. Then define @ = #

lzr(x)”
By the preceding steps, 7| < 137l zosos <7 lly > 717l
]|
Now put v = 6% for k=1,... and 6 = n'/p’ > 1.

—k — _ —(k— _ —k —k—1
g < 8% [lal s < 9% gl Dom AT Ao g (07 D=7,

1-1/y
p'(1-v) =
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Iterating, this is less than or equal to 62’“21“%”&””/ < M|Vl <
M|Vl < M =62k,

The proof is concluded by the following lemma;: O
Lemma 18.6. Let X C R™ bounded and u measurable. Then esstlsup y|u| <

. 1 1/p
lim, (W Ix |u|1’dx> .
In particular, the limit exists in [0, c0].

Recall that esstlsuplu| = [y |N|=0 SUPX\N |ul.

19 Lecture 19

19.1 Spectral Theory of Operators on Hilbert Space

Let 47 be Hilbert Space and T : 5 — 5 bounded linear map. Then we can
associate an adjoint with T'

Proposition 19.1. There exists a unique continuous linear map T : 7 — H
such that

1. (Tf,g) = (f,T*qg) for all f,g € H.
21T = 11T~

3 (T*)*=T.

One calls T* the adjoint of T.

Proof. Fix g € H. Then define a linear functional g : H — C by g(f) = (T'f, g).
This is bounded, and so by Riesz Representation Theorem, there exists an
element named T*¢g such that g(f) = (f,7*g). Then clearly T*g depends
linearly on g.

lgll = sup{|(TF, )|, [/l < L llgll < 1} = sup{[(f, T*g)|, [ /Il < L,[lgll <
1} = ||T*||. And finally 3 follows by conjugation. O

Definition 19.1 (Symmetric). A continuous linear operator T : H — H s
called symmetric (self-adjoint) if T* =T.

Remark 19.1. In general, symmetric and self-adjoint are not the same.

Definition 19.2 (Compact). A continuous linear operator T : H — H is called
compact if T(B1(0)) C H is compact.

Theorem 19.2 (Spectral Theorem for Compact Symmetric Operators). Let
T : H — H be compact symmetric. Then there exists an orthonormal basis
{dr} of H consisting of eigenvectors for T, that is, Top = M\pdx for A\p € R and
H = span{¢y}.

Furthermore, A\, — 0 as k — oo. If A # 0, then the dimension of the
eigenspace Ey is finite.
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Remark 19.2. The numbers {\;} are called the spectrum of T. If X # 0
and X ¢ {\,}, then (T — XI)~! is bounded on Ej for each k and is given by
(=A+ )~

Hence |[(T — M) 7Yz = sup{(A — \x) 71} = max{(A — \p) 7!} < o0

Lemma 19.3. Let T be as in the theorem. Then

1. If X is an eigenvalue, then A € R.

2. If f1, f2 are eigenvectors belonging to different eigenvalues, then (fi, fo) =
0.

Proof. 1. If Tf = \f, ten X(f, f) = (Tf, f) = (f,Tf) = X, f), and since

(L) #0, A=A

2. If Tfl = )\zfz for 1 = 1,2 and )\1 7’5 )\2, then Al(fl,fg) = (Tfl,fg) =

(f1,Tf2) = Xa(f1, f2), and so (f1, f2) = 0.
O

Lemma 19.4. Same assumptions as in theorem. Then for A # 0, the eigensapce
E is finite dimensional. The eigenvalues of T for an at most denumerable set.

Proof. For first assertion, assume E is infinite dimensional. Then there exists
a countably infinite orthonormal set {¢r} C FE) with T'¢r = A¢g. By com-
pactness, there exists a subsequence T'¢y,, which converges. This can’t be, as
165, = Gt I” = Pk, |12 + [0k, I = 2.

For second assertion, we’ll show that for x4 > 0, there are only finitely many
eigenvalues A with |A] > p. Then the eigenvalues are the union of the ones
greater than %, and so are denumerable.

Assume that there are infinitely many A with |[A| > p. Then we choose at
least countably many of their eigenvectors {¢} with T'¢r = A\p¢i orthonormal.

Then a subsequence T'¢y., converges, ||\, dk, — Mk, Pk, |2 = | Ak, |2+ Ak, [2 >
22, contradiction.

Lemma 19.5 (Existence of Eigenvalues). Same assumptions. Then either || T|
or —||T| is an eigenvalue.

Proof. Claim: ||T|| = supy =1 [(T'f, f)|. By Cauchy-Schwartz, |(Tf, f)| < [|T'[|.

Conversely, we use the following algebriac trick: (T'f,g) = 1 [(T(f +9). f +9) — (T(f — 9). f — 9) + i(T(f -

and so (Tf,f) = (f,Tf) = (Tf,f), and so (Tf,f) € R. Thus R(Tf,g) =
(T +9),f+9) = (T(f—9),f - 9)]

And so [R(TF,g)| < Lsupy et T, AIIF + gl + 1 — glPl. And so
sup|ri<1,igli<1 1R(Tf9)| < supy g <1 [(Tf, f)I- To get rid of R, for arbitrary
fyg € H with ||f|,[lg]l <1, choose 6 € R such that (T'(e??f),g) € R.

Then |(Tf,g)| = le9(T(e?f), )l = [(T(?1),g)| = IRT( 1), )] <
sup|ri<1 |(T'f, f)], and so the claim is established.

Now we know that ||T'|| = supy ¢ =1 [(T'f, f)I, and so either || T = supy s =1 (T'f, f)
or —||T|| = inf} s =1 (T f, f) or both.
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Assume the first case. Pick a sequence {f,} C H with (Tfy, fn) — [|T|
and ||fn|| = 1. By compactness, we can choose a subsequence (which we will
again label f,,) such that Tf,, — g € H. We claim that ¢ is an eigenvector with
eigenvalue ||7T||.

1T fu— T £l — 0. Tndeed, |7 fu—{[TIful? = T fulPHITIP 20T (T fun f2) —
0. Since T'f, — g, then ||T||fn — g, and so |T||Tf, — ||T|lg and to T'g, and so
Tg=|Tllg. O

We now finish the proof of the Spectral Theorem.

Proof. Denote the closure of the span of the eigenvectors of T on H by S,
S # {0}. We calim that S = H. If not, then H = S @& S+. Check that
T:S8 — S and S+ — St. Then by the last lemma, there exists an eigenvector
v € S+, contradiction. O

Example 19.1 (Hilbert-Schmidt Operators). H = L*(R"), Tf = [5. k(z,y)f(y)dy
and k(x,y) € L*>(R"™ x R") is the Hilbert-Schmidt Kernel.

Theorem 19.6. T is a compact operator on L*(R™). Its adjoint is also Hilbert-
Schmidt, with kernel k(x,y).

Remark 19.3. In particular, if k(z,y) = k(z,y), then the spectral theorem
applies.

Proof. First note that [ k(z,y)f(y)dy is well defined for almost every z € R”
by Fubini’s theorem. By C-S, k(x,y)f(y) € L*(R") for almost every x.

Cm—; says that [ k(z,y)f (y)dy < ([ |k(w,y)2dy)""” (f |f(@)Pdy)""* < [] 1k, y)*dydal| {2, <
1

NOLW we check compactness. Choose an orthonormal basis {¢,} for L?(R™).

Then the set of functions {¢, ()¢, (y)} on R™ x R™ is orthonormal. We calim

it’s a basis for L2(R™ x R™). To see this, assume that (g(z,y), dn(2)Pn(y)) =0

for all n,m.

Then ([ g(z,y)dm (y)dy, pnx)) =0, so [ g(x,y)dm(y)dy = 0 for almost ev-
ery z, and so g(,y) = 0 for almost every z,y. Sok(z,y) = >_,, ;.51 @nm®Pn(T)dm (y)
where anm = (k(z,y), 0n(2)dm (y)).

Now we define the operator Ty for £ > 1. T,f = [ke(x,y)f(y)dy, where
ke(z,y) = Zﬁ me1 Anm®n(2)®m(y). Note that the image of T; has dimension
< oo. Tyis cé)mpact. Further, T, — T.

Lemma 19.7. Assume Ty : H — H is compact and Ty — T as £ — oco. Then
T is compact.

Proof. Given {f,} C H with ||f,]| < 1, choose a subsequence {f,,} such that
Ty f, converges. Then choose a subsequence fa,, such that T5 fo, converges.
Continue interatively. Let g,, be the diagonal sequence.

Claim: {Tg,} converges. Given ¢ > 0, choose ¢ large enough such that
|7 —T|| < €/3. Then choose k large enough such that ||Tyg,, — Tegm| < €/3 for
alln,m > k. Then |79, —Tgm|| < ||Tegn—Tegml|l+|(T=Te)gull+I(T=T2) gl <
€ and so we are done. O
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20 Lecture 20

Au = f, A on a bounded domain Q C R". L?(Q) = ®Ey, wieth Alg, = \iIg,
for B, C C*°(Q).

Theorem 20.1 (Rellich-Kondrakor Compactness Theorem). Let @ C R" a
bounded open set. Then Wy'P () embeds compactly into L(Y) for any q < e

if p<n.

Proof. Fll“bt we establish the compactness of the embedding W P(Q) c LY(Q).
LEt A C W,"* ¢ W,?(Q) bounded by scaling, we may assume that ||u||W01,p(Q) <
1 for all u € A.

By using density, we may assume that AcCCiHQ).

Let p > 0, p € ¢g°(B1(0)), [gnp(x)dz = 1. up =[5, pu(z — y)u(y)dy,
pn(x) =h""p(z/h), h > 0. And so Ap, = {up|u € A}.

fun(@)] < Ch™", € = Clsupye [ullyrr. Q). [Vu(@)] = | [ Von(a—y)uly)dy
Ch~"~! and so we now use the Arzela-Ascoli theorem to see that A is compact
in C°(Q), and so Ay, is compact in L'(Q).

Theorem 20.2 (Arzela-Ascoli). Let K C R™ compact, tehn a closed subset
A C C°K) is compact if and only if it is bounded and equicontinuous.

IN

To conclude, we need to compare uy, up. |u(x) —up(z)| < fl <1 p(z)|u(x) —
u(mfhz)|dz:fl |<1p |fh| ' D,u (z — rw)|drdz where w = z/|z|.
And so, [|u(z) — up(z)|dz < ffl <1 P(2) |f0‘ i Dyu(zr — rw)|drdzdr <

f| - e hl lfgzD u(z — rw)|dzdrdz < ||Vul|pih < ||Vul| Lo hC().

This 1mp11es compactness of A: let {x,} C A be given. Tjem cjppse {u1n}
a subsequence such that it converges in L!(Q2). Then choose a subseqeunce us,
which converges in L!(???) Then inductively choose u;, that converges. Then
consider u,,, then this converges in L'(Q). And so Wy € L*(€2) compactly.
In fact, this is to LI(Q), as ||u]l], = [, [u|%dz = [, |u|*|u|’dz for a + b= q.

Jo [ul®|ulbdaz < ( fQ [u|*Prdz) /P ([, |u\bp2dw)1/p2 Where 1/p1+1/ps = 1. If
ap1 = 1 and bpy = —£, and denote a = A, we get /\ = n”—_’;) and we can solve
this for A.

And 50 if {u,,,, } converges in L1 (Q), then ||w, —um||1a < HunfumHaL/l%Q) [latr—
U ||, and so {u,} converges in LI(Q). O

Note now that Au = f, everything on a bounded domain and u € W&’Q(Q),
then we can interpret this equation weakly!

0;(0;f) = f summed over the repeated index, and this holds if and only if
(8;u, Biv) = (f,v) for all v € W, *(Q).

ZL(u,v) = —(8;u,d;v) is a bilinear form on Wy2(Q) x Wy?(). Define
Ls(u,v) = —((“)Z-uﬁiv) — 6(u,v) for § > 0 arbitrary.

47



Terminology: Let H over R be a Hilbert Space and B : H x H — R bilinear.
We call B coercice provided that B(u,u) > M||ul|? for some A\ > 0.
Clearly, %5 (u, u) > min{0, 1}||u||€v1,2(m. General fact about coercive linear
0

forms:

Theorem 20.3 (Lax-Milgram). Let B : H x H — R bounded, coercice and
bilinear. Then for every F' € H*, there exists a unique element f € H such that
B(z, f) = F(x) for allx € H.

Proof. By Riesz Representation Theorem, there exists a map T : H — H such
that B(z, f) = (x,Tf), with T linear and bounded. B(T'f, f) = (T'f,Tf) <
CITfHIfN, and so Cf]| = ITf]-

NIFIP < BU,£) = (£T6) < IIITS], and so Alfl| < |Tf] and so T is
1-1, and T~ ! is bounded on the rage, and T has closed range. We need to show
that T is onto.

Assume that T is not onto. By the closedness of the image, there exists
z2#0, (2,Tf) =0 for all f € H. Then put f = z, and so (z,7z) = 0 and so
B(z, z) =0, by coercivity, z = 0, contradiction. O

%5 is coercive and bounded on Wy*() x W, %(Q). hy': (W2 (Q)* —
W, (), F(u) = Ls(u, by .F) for all F e (Wy?(Q))*.

L2(Q) © (Wy ()% if v € L2(Q), then v(u) = (u,v) > for u € Wy,

And so hyt: L2 — Wy — L2

If K = iﬁjm o hy!, where i is the inclusion W,* C L?, then we must check
that K is sylonmetric and compact. Then the spectral theorem applies, and

so there is a countable set {A\r} oand corresponding finite dimensional spaces
Ejy C L? such that hy'|p, = A\, id|g,.

And so L? = @F}, and to translate back to the level of the Laplacian,
hg'¢ = A¢ implis that Z5(v, ¢) = (v, ¢), and so —\ [, Givd;pdz — XS [vedx =
(v, ¢), if and only if (A—J)¢ = A\~1¢ in the weak sense, and so Agp = (6+171)¢.

21 Lecture 21

MISSED

22 Lecture 22

MISSED

23 Lecture 23

Schrodinger Equation —Ay + V(x) = Ev. We will construct the ground state
solution.

) = Jan

V2 (z)dz + [V (z) [y dz.
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Theorem 23.1. If V € L"? + L>, for all a > 0, |{|V(z)| > a}| < oo and

[ e(¥) = Ey < 0 on the unit sphere, then there exists a minimzer 1y € H for

e(v) which satisfies the Schrodinger Equation, in the distributional sense.
Further, if V€ C°(R"™), then so is .

Strategy:

1. Show coercivity: that is, [ |[Vi[2dz < Ce(¢)+D||¢||2. where C, D depend
on V, and here we only need that V e L™/2 + L.

2. SHow the weak continuity of €(1)).

3. Use the first two parts to construct .

Part 1 was last time.
For part 2, we need that

Proposition 23.2. Let V be as in the main theorem. Then if v; — ¢ in H,
then [V (z)|;?de — [V (z)[y|*dz.

1
Proof. Replace V with V® which is bounded, by defining V°(z) = Viz) V(@) < /5.

0 else
Then replace R™ by a set A of bounded measure. Here we use the fact that
{|v|(z) > a}| < oo for all @ > 0. We reduced to the following lemma: O

Lemma 23.3 (Weak Convergence implies Strong Convergence). Let; € H'(R")
such that Vip; — v. Then v = Vi for some suitable ¢ in H'(R™), and for every
A CP" of bounded measure, x a; — xa¥ with respect to LP for 2 < p < %

Proof. By the principle of uniform boundedness, [|Vi);|j2 < C for all j. We
may assume that C' = 1. By Sobolev embedding, ||¢;|| p2n/n-2 < C for all j. By
reflexivity, there is a subsequence {1, } such that vy, — 1, with |y, || < D,
and so ||| < D.

We claim that the full sequence ¢; — 1. If not, then some other subsequence
goes to P # 1.

¢ € CR"), — [Ydigpdr = limj_oo — [y, 0;¢dx = lim;j_.o [ Dithy, pd,
and similary for ©. And so everything is equal, and so 1) = .

Furthermore, Vi = v. This establishes the first part of the lemma. Now we
use this to show strong local convergence. 1; — . The idea is to regularize

the 1. ¥ > 1; = et (x) = (4mt) /2 Jgn e"””_y‘z/(‘“)wj (y)dy.
So now [[; — e Ay]|2 = [ | |2(€)(1 — e 471" ) 24,

Some inequalities follow.
I'm lost. O

And so now we finish the proof of the main theorem.
Choose a minimizing sequence ¢; € H' with ||¢;|| = 1. That is, e(¢;) —

[ () = Ey.
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By part 1, [ |V4;[?dz < Ce(1;) + D|[¢;]|> = Ce(¢) + D, and so ||oh;|| < M
in H' norm.

By reflexivity of H’, a subsequence again denoted by %, converges weakly
to some . Vio; — v, and so [V (x)|¢;|de — [V (z)|Yo]*dz, and [ |Av;|?da
is decreasing.

Thus, €(¢o) < liminf;e(p;) = Eo. So [[¢ollrz < 1, so Ey > €(hg) >
llo|| L2 Eo, by definition, and so ||¢g]] = 1 and €(¢pg) = Fo, and so ¢y # 0 works.
We must just show that it satisfies Schrodinger in the distributional sense.

o + en for n € C(R™ and € € R.

Let Le = €(¢o + €n) > €(z)o) (note, all things are normalized). This holds
for all €, 7.

Then % le=o = 0, and so (mess inequalities and equations) we get the result,
that —Awo + V(J?)wo = Eowo in D/(Rn)

In addition to all the requirements, we also assume that V is smooth of
compact support. Claim is that ¥y € C*°(R™). Then we claim that (-A —
Eo)o = Vo € H'.

o = (—=A — Eg) "1 (Vbg), which is in H’. So then we have ...gibberish.

I don’t understand this. I'm fucked on Thursday.

24 Lecture 24
25 Lecture 25
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