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So why is the Riemann Integral not good enough? It is not well behaved
with respect to pointwise limits.

With the Riemann integral, we can have a sequence of functions fn that
converge almost everywhere to f with

∫
|fn|2(x)dx ≤ 1 and have f not be

integrable, even if the fn are smooth.

Example 0.1 (Bad Behavior of Riemann Integral). A function f(x) : [a, b]→ R
is Riemann integrable if there exists 2 sequences of increasing/decreasing step
functions ϕ1(x) ≤ ϕ2(x) ≤ . . . ≤ f(x) ≤ . . . ≤ ψn(x) ≤ ψn−1(x) ≤ . . . ≤ ψ1(x)
such that for some M ∈ R,

∑
x∈[a,b] |ϕj(x)| ≤ m, supx∈[a,b] |ψj(x)| ≤M for all

j and moreover, limk→∞
∫ b
a
ϕk(x)dx = limk→∞

∫ b
a
ψk(x)dx. If two such families

exist, then we get the same limit for any other pair of such families by passing
to a common refinement.

Now we will construct a sequence of nice (in fact, smooth) functions which
is decreasing, converges pointwise, but whose limit is not Riemann integrable.
First we construct an auxiliary sequence of functions Fk(x), k = 1, . . . as follows.
Define F1(x) to be the function from [0, 1]→ R such that for x not in a ball of
diameter c1, F1(x) = 1 and that decreases to 0 and back to 1 linearly on the
ball.

Define F2(x) such that around 1/4, 3/4 we have balls of diameter c2 where
2c2 + c1 < 1 and the three balls do not overlap such that on each c2 diameter
ball, F2 looks like F1, and is constant in the middle. Continue inductively like
this. By smoothing out the kinks, we can achieve that each Fi(x) is C∞ and
0 ≤ Fi(x) ≤ 1 for all i.

We ensure that, upon putting |cik| = `k, 1 ≤ i ≤ k − 1,
∑∞
k=1 2k−1`k < 1.

Then fn(x) =
∏n
k=1 Fk(x) is a decreasing sequence of bounded functions, so

limn→∞ fn(X) = f(x) exists for all x ∈ [0, 1].
Letting Ĉ = ∪∞k=1 ∪2k−1

j=1 Cik, then f(x) = 1 on I \ Ĉ and furthermore it is
discontinuous everywhere on I \ Ĉ.

Claim: f is not Riemann Integrable. This is due to the following theorem:

Theorem 0.1. If a function f : I → R is Riemann Integrable, then its set of
discontinuities has measure 0.

Proof. Let f : I → R be Riemann Integrable, in particular, bounded. For
c ∈ I, r sufficiently small, define osc(f, c, r) = supx,y∈Ir(c) |f(x) − f(y)| where
Ir(c) is the interval of length r centered at c. Further, define osc(f, c) =
limr→0 osc(f, c, r). Then the set of discontinuities of f is {x ∈ I|osc(f, x) > 0}.
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Denoting Aε = {x ∈ I|osc(f, x) ≥ ε}, then note that Aε is closed, and the
set of discontinuities of f is ∪∞n=1A1/n. We will show that each A1/n satisfies
|A1/n| = 0, so | ∪A1/n| = 0.

Pick a set A1/n. Further, given ε > 0, pick a lower and upper bounding
step function ϕ(x) ≤ f(x) ≤ ψ(x) subordinate [ϕ(x), ψ(x) are constant on
Ik for all k] to the cover I = ∪Nk=1Ik and 0 ≤

∫
I
ψ(x)dx −

∫
I
ϕ(x)dx < ε/n

implies S =
∑
I◦k∩A1/n 6=∅ |Ik| < ε. This is because ε/k ≥

∫
I
(ψ(x) − ϕ(x))dx ≥∑

I◦k∩A1/n 6=∅ |In|
1
n = 1

nS

1 Measure Theory: Lebesgue Measure on Rn

First, we will define Lebesgue measure on rectangles:

Definition 1.1 (Rectangle, Measure of a Rectangle). A closed rectangle on Rn
is a set of the form [a1, b1]× [a2, b2]× . . . [an, bn] with ai < bi for all i.

We define |R| =
∏n
i=1(bi − ai).

This definition is compatible with decomposition of rectangles into smaller
rectangles.

Lemma 1.1. Let R = ∪Mj=1Rj be an almost disjoint cover. This means that
only the boundaries may intersect. Then |R| =

∑M
j=1 |Rj |.

Proof. Refine the rectangles Rj by introducing a suitable R̃j such that R =
∪Nj=1R̃j and each Rj = ∪j∈ΛkR̃j , again with the R̃j almost disjoint. Now the
statemeny |R| =

∑
|R̃j | follows from the distribution law for the reals, and

similarly |Rk| =
∑
j∈Λk

|R̃j | follows from distribution. As teh Λk partition the
set {1, . . . , N}, we have that |R| =

∑M
k=1 |Rk|.

Lemma 1.2. If R ⊂ ∪Rj, then |R| ≤
∑M
j=1 |Rj |.

Proof. Basically the same, but the index sets Λk are no longer necessarily dis-
joint.

Theorem 1.3. Every open set O ⊂ Rn can be written as a union of almost
disjoint closed cubes.

Proof. For each point x ∈ O, pick the largest dyadic cube (cube on 2kZn, k ∈ Z)
still in O containing x. This gives the disjoint cubes.

This uses the fact that if you have two dyadic cubes, Q1, Q2, then ifQ◦1∩Q◦2 6=
∅, then either Q1 ⊂ Q2 or Q2 ⊂ Q1.

Now we need to define measurable sets.

Definition 1.2 (Outer Measure). Let E ⊂ Rn be any subset, then we define
m∗(E) = infE⊂∪∞j=1Qj

|Qj | where the Qj are cubes. In particular, m∗(E) ∈
[0,∞].
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It is important to allow countable unions here. If one restricts to only finitely
many cubes, this is claled the outer Jordan content, j∗(E) 6= m∗(E). For
instance, I ∩Q has j∗(I ∩Q) = 1 and m∗(I ∩Q) = 0.

Some facts concerning m∗:

1. m∗(pt) = 0

2. For a rectangle R, m∗(R) = |R|

Proof of (2): Assume R ⊂ ∪∞j=1Qj . Choose open cubes Q̃◦j ⊃ Qj . By
compactness of R, we can choose a finite collection of Q̃◦j which still covers R.
Then by the lemmas,

∑
|Q̃◦j | ≥ |R|. Let ε > 0, then assume that

∑∞
j=1 |Qj | ≤

m∗(E) + ε, and also |Q̃◦j | ≤ (1 + ε)|Qj |.
Then (1+ ε)(ε+m∗(R)) ≥ |R|, so now letting ε→ 0, get m∗(R) ≥ |R|. Next

we prove the reverse. Construct a grid of cubes of side length 1/k for k large
and let {Qj}j∈Λ be those (finitely many) cubes intersecting R. Then subdivide
Λ into A ∪ B, where A = {j ∈ Λ|Qj ⊂ R} and B = {j ∈ Λ|Qj 6⊂ R}. Then
check directly that there is a constant c = c(d,R) such that #B ≤ ckd−1, if
R ⊂ Rd.

Further,
∑
j∈A |Qj | ≤ |R| by lemma 2. Hence, |R| + ck−1 ≥

∑
j∈Λ |Qj |, so

now letting k →∞, we get m∗(R) ≤ |R|. So |R| = m∗(R).

Remark 1.1. This allows us to replace cubes by rectangles in the definition of
m∗

2 Lecture 2

Last time, we constructed the outer measure for any set E ⊂ Rn.
The following are fundamental properties of m∗(E):

1. If R is a rectangle, then m∗(R) = |R| (showed last time)

2. Monotonicity: if E1 ⊂ E2 then m∗(E1) ≤ m∗(E2)

3. Countable sub-additivity: If E = ∪∞i=1Ei then m∗(E) ≤
∑
m∗(Ei)

4. Approximation by open sets: m∗(E) = infO⊃Eopenm∗(O).

Proof. Given a covering E ⊂ ∪Qj by closed cubes, choose a small open
thickening of each.

5. Additivity of m∗ for well separated sets: We call E1, E2 well-separated
proved that d(E1, E2) = infx∈E1,y∈E2 |x − y| > 0. Then if E1, E2 are
well-separated, then m∗(E1 ∪ E2) = m∗(E1) +m∗(E2).

Remark: It is not enough that E1 and E2 be disjoint for this to hole.
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Proof. By sub additivity, we have m∗(E1 ∪ E2) ≤ m∗(E1) + m∗(E2). So
we need the other direction.

Choose a covering by cubes {Qj}∞j=1 such that
∑
|Qj | < m∗(E1 ∪E2) + ε

by subdividing these cubes into smaller ones, we can ensure that they
have sidelength at most 1

2d(E1, E2) > 0, so no cube intersects both sets.
Then, we can partition {Qj} into {Qj}j∈A and {Qj}j∈B where j ∈ A
iff Qj ∩ E1 6= ∅ and j ∈ B else. But necessarily, E1 ⊂ ∪j∈AQj and
E2 ⊂ ∪j∈BQj , and so m∗(E1) ≤

∑
j∈A |Qj | and m∗(E2) ≤

∑
j∈B |Qj |

and so m∗(E1) + m∗(E2) ≤
∑
|Qj | ≤ m∗(E1, E2) + ε. Taking ε → 0, we

get m∗(E1) +m∗(E2) ≤ m∗(E1 ∪ E2), and so equality holds.

6. Countable Additivity for well-behaved decomposition: If E = ∪∞j=1Qj and
Qj are almost disjoint, then m∗(E) =

∑
|Qj |

Proof. This is a consequence of the preceding properties: we’re trying to
reduce this assertion to additivity of m∗ on well-separated sets. Shrink
each cube a bit. That is, we replace it by smaller, concentric cubes Q̃j ⊂
Qj , but such that d(Q̃j , Q̃k) > 0 for i 6= k. Then for any finite collection,
applying the preceding property inductively gives us that m∗(∪Mj=1Q̃j) =∑M
i=1 |Q̃j |. By letting the smaller cubes approach the original cubes, we

conclude that m∗(E) ≥
∑M
j=1 |Qj | for every finite M . Now, letting M →

∞, m∗(E) ≥
∑
|Qj , and the other direction is provided by sub-additivity.

The problem of m∗ is that it fails additivity for disjoint sets E1, E2. We’ll
restrict E to a class of sets in whcih m∗ is countably additive.

Definition 2.1 (Lebesgue Measurable). We call a set E ⊂ Rn Lebesgue mea-
surable proveded that ∀ε > 0, there exists open O ⊃ E with the property that
m∗(O \ E) < ε.

In particular, open sets are Lebesgue measurable and sets of outer measure
0 are Lebesgue measurable.

Remark 2.1. Alternatively, can characterize measurable sets as follows: for all
ε > 0, there exists closed C ⊂ E such that m∗(E \ C) < ε. This will be shown
by checking that measurability is preserved under taking complements.

Our goal now is to establish that the measurable sets in Rn constiture a
σ-algebra.

Proposition 2.1. A countable union of measurable sets is measurable.

Proof. Choose ε > 0 and for each measurable set Ej choose an open set Oj such
that m∗(Oj \ Ej) < ε/2j .

Then, O = ∪Oj satisfies m∗(O \ ∪Ej) ≤
∑
m∗(Oj \ Ej) < ε by countable

additivity.
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The hard part is showing that complementation preserves measurability.

Proposition 2.2. Closed sets are measurable.

Proof. Let F ⊂ Rn closed. Intersect F with balls Bk(0) with radius k ≥ 1.
Then F = ∪∞k=1(F ∩Bk(0)), each of which is compact. It we have measurability
for F ∩Bk for all k, then by the previous prop, we have measurability of F . Fix
k ≥ 1. Choose an open set O such that m∗(O) ≤ m∗(F ∩ Bk) + ε where ε > 0
is fixed.

We want to show that m∗(O \ (F ∩Bk)) < ε. Note that O \ (F ∩Bk) is open.
Hence, we can write it as a union of almost disjoint dyadic cubes. Also, be an
earlier obervation, m∗(O \ (F ∩ Bk)) =

∑
|Qj |, the dyadic cubes. Now pick a

finite subset of these cubes Q1, . . . , QM . Then ∪Mj=1Qj is a compact set, and so
is F ∩Bk, hence d(∪Mj=1Qj , F ∩Bk) > 0. And so by additivity for well-separated
sets, we have m∗(O) ≥ m∗(∪Mj=1Qj ∪ F ∩ Bk) = m∗(∪Mj=1Qj) + m∗(F ∩ Bk) =∑M
j=1 |Qj | + m∗(F ∩ Bk), and so subtracting m∗(F ∩ Bk) from each side and

recalling that m∗(O)−m∗(F∩Bk) < ε, we get
∑M
j=1 |Qj |M < ε, and now letting

M →∞,
∑∞
j=1 |Qj | ≤ ε, and so m∗(O \F ∩Bk) ≤ ε, so we get measurability of

F ∩Bk for all k ≥ 1, and so F is measurable.

Proposition 2.3. Measurability is preserved under taking complements.

Proof. Let E ⊂ Rn be measurable. For all n ≥ 1 integer, choose On ⊃ E such
that m∗(On \ E) < 1/n, and S = ∪Ocn ⊂ Ec, which is measurable. Further,
Ec \ S ⊂ On \ E for all n ≥ 1. Hense, by monotonicity, m∗(E∗ \ S) < 1/n for
all n, and so m∗(Ec \ S) = 0. Adn Ec = Ec \ S ∪ S is measurable, and so Ec is
measurable.

Corollary 2.4. Countable intersections of measurable sets are measurable.

Proposition 2.5 (Countable Additivity). Let E1, . . . , . . . be measurable and
disjoint, then m(∪∞j=1Ej) =

∑∞
j=1m(Ej).

Proof. Again uses compactness trick. First, reduce to bounded measurable sets
by introducing Ej,k = Ej ∩Qk \Qk−1. It is easy to see that countable additivity
for Ej,k implies the result for Ei, hence, we may assume that each Ei is bounded.

By measurability, for all j, there exists Fj ⊂ Ej with Fj closed such that
m∗(Ej \ Fj) < ε/2j for a given ε > 0. Now the Fj are disjoint and compact,
hence, d(Fi, Fj) > 0 for i 6= j and by the additivity of m∗ on well-separated
sets, we have m∗(∪Mj=1Fj) =

∑M
j=1m∗(Fj) ≥

∑M
j=1(m(Ej) − ε

2j ), so m(E) ≥∑∞
j=1m(Ej) as M → ∞ and ε → 0, and also m(E) ≤

∑
m(Ej) by countable

subadditivity.

Further consequences in the same vein:

Proposition 2.6. Let E1, . . . be an increasing sequence of measurable sets, that
is, Ek ⊂ Ek+1 for all k, and E = ∪Ek, then one writes Ek ↗ E, and similarly
if Ek+1 ⊂ Ek and E = ∩Ek, then Ek ↘ E. Then we have:
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1. If Ek ↗ E, then m(E) = limN→∞m(EN )

2. If Ek ↘ E, then m(E) = limN→∞m(EN ) provided that m(Ek) < ∞ for
some k.

Proof. 1. Put Gk = Ek \ Ek−1, and G1 = E1. These are measurable and
disjoint, and E = ∪∞k=1Gk, and so

m(E) =
∞∑
k=1

m(Gk) = lim
N→∞

N∑
k=1

m(Gk) = lim
N→∞

m(EN )

2. same idea.

Lemma 2.7 (Borel-Cantelli Lemma). Let {Ek}k≥1 be a collection of measurable
sets in Rn with

∑∞
k=1m(Ek) < ∞, then letting E = {x ∈ Rn|x ∈ Ek for

infinitely many k} is measurable indeed, m(E) = 0.

Proof. If x ∈ E, then for each i ∈ N there exists k ≥ i such that x ∈ Ek.
Translating into set theoretic notations, E = ∩∞i=1(∪∞k≥iEk) (define the inside
to be Fi). Note that m(∪∞k=1Ek) ≤

∑∞
k=1m(Ek) <∞ implies that m(Fi) <∞.

Also, Fi ↘ E and so be the preceding prop, m(Fi) = m(∪k≥iEk) ≤∑∞
k=im(Ek)→ 0.

3 Lecture 3

Today we will develop basic integration theory in a general setting.

Proposition 3.1. Let E ⊂ Rn be measurable. Then

1. ∀ε > 0, there exists an open set O ⊃ E such that m(O \ E) < ε.

2. There exists F closed such that F ⊂ E, m(E \ F ) < ε

3. If m(E) <∞, then there exists a compact K ⊂ E such that m(E \K) < ε

4. If m(E) finite, then there exists F = ∪Nj=1Qj with the Qj closed cubes,
such that m(E \ F ) +m(F \ E) < ε

Proof. 1. Straight from definition of measurability.

2. From 1 and complementation.

3. Choose a ball Bk closed for k ∈ N such that m(E ∩ Bk) > m(E) − ε/2.
Prossible, since E ∩Bk ↗ E. Then by 2, choose a closed set F ⊂ E ∩Bk
such that m(E ∩Bk \ F ) < ε/2. Then F is compact as desired.
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4. Choose a family of closed cubes {Qj}j≥1 such that E ⊂ ∪∞j=1Qj and∑∞
j=1 |Qj | < m(E) + ε/2 < ∞. Then we can always find N such that∑∞
j=N+1 |Qj | < ε/2.

Then put F = ∪Nj=1Qj and m(E \ F ) + m(F \ E) ≤ m(∪∞j=N+1Qj) +∑∞
j=1 |Qj | −m(E) < ε.

Examples of Lebesgue measurable sets Fσ = ∪∞i=1Ci where Ci are closed,
Gδ = ∩∞i=1Oi where Oi are open. So Fσδ = ∪∞i=1Fi where the Gi are Gδ sets.

Proposition 3.2. A subset E ⊂ Rn is Lebesgue measurable

1. iff E differs from a set in Gδ by a set of measure zero

2. iff E differs from a set in Fσ by a set of measure zero.

Proof. 1. For all n ≥ 1 choose On ⊃ E open and m(On \ E) < 1/n. Then
∩On ⊃ E, and so 0 = m(∩∞n=1On \ E) < 1/k for all k ≥ 1.

2. Follows from 1 by complementation.

Definition 3.1 (σ-algebra). Let X be a set. A collection S of subsets of X is
called a σ-algebra provided that

1. ∅ ∈ S

2. S is closed under complementation

3. S is closed under countable unions.

Examples: All subspts of X, {∅, X}, the Lebesgue measureabe subsets of
Rn.

Another possible candidate: the Borel algebra.

Definition 3.2 (Borel Algebra). The Borel σ-algebra is the smallest σ-algebra
containing all open subsets of Rn.

We denote by LRn th eLebesgue measurable sets, BRn the Borel σ-algebra,
and note that BRn is the intersection of all σ-algebras containing the open sets.

Theorem 3.3. BRn ( LRn ( 2Rn . That is, there exists a Lebesgue Measurable
set that is not Borel, and there exists a non-measurable set.

The proof is contingent on the axiom of choice.

Lemma 3.4. Let E ⊂ R1 be Lebesgue measurable of positive measure. Then
there exists a subset N ⊂ E which is not LEbesgue measurable.
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Proof. First, we reduce to E bounded, because E = ∪∞k=1Bk ∩ E. Then at
least one k ≥ 1 must satisfy m(E ∩ Bk) > 0. By dilating, we can assume that
E ⊂ [0, 1]. Define an equivalence relation on E.

Say that x ∼ y iff x−y ∈ Q. For each x ∈ E, denote Ex = {y ∈ E|x−y ∈ Q}.
Choose a maximal set N of inequivalent elements in E. We calim that N is
not Lebesgue measurable. We have E ⊂ ∪Nk=1(N + rk) ⊂ [−1, 2] where {rk} are
an enumeration of the rationals in [−1, 1]. Assume for contradiction that N is
measurable. Then so are all the N + rk, and m(N + rk) = m(N) ≥ 0. By the
disjointedness of the N + rk, if m(N) > 0, then m(∪(N + rk)) = ∞, while if
m(N) = 0, m(∪N + rk) = 0, neither of which can occur.

Now we will prove that BRn ( LRn .

Lemma 3.5. Let ϕ : Rn → Rn be continuous and E a Borel set. Then ϕ−1(E)
is also a Borel set.

Proof. Define B̂Rn = {E ⊂ Rn|ϕ−1(E) is a Borel set}. By the continuity of ϕ,
this contains all the open sets, and for purely set theoretic reasons, B̂Rn is a
σ-algebra, so it contains the Borel algebra.

Lemma 3.6. Let Ĉ and C̃ be two Cantor type sets inside I = [0, 1] as in the
first lecture, but (using the same notation as in the first lecture) where we also
allow

∑∞
k=1 2k−1`k = 1. Then, there is a strictly monotonic continuous map

ϕ : I → I such that ϕ(Ĉ) ⊂ C̃.

Proof. ϕ is obtained as the limit of a bunch of approximations piecewise linear.
Now leave ϕ unchanged on Ck adn continue iteratively, obtaining piecewise
linear maps ϕn with supx∈[0,1] |ϕn(x)−ϕn+1(x)| < 1/2n, so that the ϕn converge
rapidly. Then the limit of the ϕn is a strictly increasing function with ϕ(Ĉ) ⊂ C̃.

ϕ, by continuity and injectivity, is a homeomorphism of I.

Now we conclude as follows: first arrange that m(Ĉ) > 0 but m(C̃) = 0,
this is done by requiring

∑
2k−1`k < 1 and

∑ ˜̀
k2k−1 = 1.

Now, choose a subset N of Ĉ which is not Lebesgue measurable. We claim
that ϕ(N) is not Borel, but is Lebesgue measurable.

It must be Lebesgue measurable with m(ϕ(N)) = 0. So if we assume that
ϕ(N) is Borel, then so is ϕ−1(ϕ(N)) = N by injectivity, but this is Borel, and
so measurable, contradiction, so the inclusions are all proper.

Definition 3.3 (Abstract Measure Space). Let X be a set and S a σ-algebra
of subsets of X. Then if m : S → [0,∞] is a countably additive function with
m(∅) = 0 we call the triple (X,S,m) a measure space.

Example: (Rn,LRn ,m), Lebesgue measure.
If we restrict to Borel sets, we get a measure space also.
Now we will develop an integration tehory in this abstract context. Which

functions can we integrate? The analogues of step functions, the simple func-
tions, are the correct choices.
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At the end of the day, integrable functions are essentially pointwise limits of
simple functions.

Definition 3.4 (Measurable). A function f : X → [−∞,∞] is called measur-
able iff f−1((α,∞]) is in the σ-algebra of measurable sets for α ∈ R.

Remark: Using elementary set theory and σ-algebra properties of S, we
can conclude that the above property implies f−1(α, β) is measurable and that
f−1([α, β]) is measureable, as is f−1((α, β])

Lemma 3.7 (Simple Technical Lemma). Let fn, n ≥ 1 be measurable, then so
are sup fn and lim sup fn.

Proof. For sup, let g = sup fn. Then g−1((α,∞]) = ∪∞n=1f
−1
n ((α,∞]), and

so done. Note that inf fn = − sup(−fn). Then for lim sup fn, note that it is
inf sup fn.

Corollary 3.8. Letting f+ = max{f, 0} and f− = min{f, 0}, then f is mea-
surable iff f± is measurable.

Definition 3.5 (Simple). A function f : X → [0,∞) is called simple provided
that it attains only finitely many values.

In particular, we can write f(x) =
∑n
i=1 aiχAi(x) if f is also measurable

and Ai is measurable, and χAi(x) is the characteristic function of Ai.

Lemma 3.9. Let f : X → [0,∞] be measurable. Then there exist simple
measurable functions sn on X such that 0 ≤ s1 ≤ s2 ≤ . . . ≤ f and f(x) =
lim sn(x).

Conversely, if f is defined by such a limit, by the preceding lemma, f is
measurable.

Proof. Choose n ≥ 1 and for 1 ≤ i ≤ n2n define En,i = f−1([ i−1
2n ,

i
2n ]) and

Fn = f−1([n,∞]). Then define sn =
∑n2n

i=1
i−1
2n χEn,i + nχFn .

To check the monotonicity of {sk}, note that passing from n to n+1 we splie
each En,i into 2 halves and replace i−1

2n χEn,i by i−1
2n χEn+1,2i−1 + 2i−1

2n+1χEn+1,2i ≥
i−1
2n χEn,i .

Further, it is easy to check that sn(x)→ f(x) pointwise (if f(x) <∞, then
sn(x) ≥ f(x)−2−n and if f(x) =∞, then sn(x) ≥ n for n large enough in both
cases)

4 Lecture 4

Integration theory on general measure spaces (X,S, µ). Last time we defined
measurable functions.

Definition 4.1 (Integral). Let f be a simple function. Then∫
E

fdµ =
N∑
i=1

aiµ(E ∩Ai)

.
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From here, we can define the integral of a nonnegative measurable function
f : X → [0,∞] as follows:∫

E
fdµ = sups≤f

∫
E
sdµ. To pass from nonnegative measurable functions to

general function f : X → [−∞,∞], set
∫
E
fdµ =

∫
E
f+dµ −

∫
E
f−dµ provided

that one of the two integrals on the right is finite.
Then, if f is complex valued, we define

∫
E
fdµ in a real and imaginary part.

The core of integration theory consists of three theorems:

1. Monotone Convergence Tehorem

2. Fatou’s Theorem

3. Lebesgue Dominated Convergence Theorem

Theorem 4.1 (Monotone Convergence). Suppose that 0 ≤ f1(x) ≤ f2(x) ≤
. . . ≤ ∞ such that limn→∞ fn(x) = f(x) for all x ∈ X, then

lim
n→∞

∫
X

fn(x)dµ =
∫
X

f(x)dµ

Remark: Nonnegativity is crucial!

Proof. By monotonicity, the limit limn→∞
∫
X
fn(x)dµ = A exists in [0,∞].

Further, f is measurable, and by the monotonicity of
∫
X
fdµ with respect to f ,

A ≤
∫
X
fdµ. We need to get the other inequality.

Now choose a simple measurable function s, 0 ≤ s ≤ f and choose a number
θ ∈ (0, 1) which we eventually let go to 1. Then introduce the sets En = {x ∈
X|fn(X) ≥ θs(x)}. Then E1 ⊂ E2 ⊂ . . . and ∪∞n=1En = X.

So now
∫
X
fndµ ≥

∫
E1
dndµ ≥

∫
En
θs(x)dµ and now let n → ∞. We get∫

En
θs(x)dµ→

∫
X
θs(x)dµ. Now, since θ < 1 was arbitrary, A ≥

∫
X
s(x)dµ.

Theorem 4.2 (Fatou). Let fn : X → [0,∞] measurable, then
∫
X

lim inf fndµ ≤
lim inf

∫
X
fn(x)dµ.

Proof. This follows from Monotone Convergence. lim infn→∞ fn = limk→∞ inf1≥k fi =
limk→∞ gk.

Then 0 ≤ g1 ≤ g2 ≤ . . . and hence by monotone convergence, we have∫
X

lim inf fndµ = limk→∞
∫
X
gkdµ. As gk ≤ fk, we have ≤ lim inf

∫
X
fndµ.

Definition 4.2 (L1). Let (X,S, µ) be a measure space. Then L1(dµ) denotes
the set of all measurable functions such that

∫
X
|f |(x)dµ <∞

For this to make sense, need the following:

Lemma 4.3. Let f : X → [−∞,∞] be measurable and ϕ : [−∞,∞]→ [−∞,∞]
continuous. Then ϕ ◦ f is measurable.

Proof. Need to check that (ϕ◦f)−1((α,∞]) is measurable, that is, f−1(ϕ−1((α,∞])
is. (α,∞] = ∪(α, n) and ϕ(α, n) is open, by continuity.
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Theorem 4.4 (Dominated Convergence). Assume that fn : X → [−∞,∞] is
measurable and |fn|(x) ≤ g(x) for all x ∈ X where g ∈ L1(dµ). Then if fn → f
pointwise, then limn→∞

∫
X
|fn − f |dµ = 0. One says that fn → f in L1.

In particular, limn→∞
∫
X
fndµ =

∫
X
fdµ.

Proof. Application of Fatou, by triangle inequality. |fn−f | ≤ 2g. So
∫
X

2gdµ ≤
lim inf

∫
(2g − |fn − f |)dµ =

∫
X

2gdµ + lim inf
∫
X
−|fn − f |dµ =

∫
X

2gdµ −
lim sup

∫
X
|fn − f |dµ.

Hence, 0 ≤ lim sup
∫
X
|fn − f |dµ ≤ 0, and so limn→∞

∫
X
|fn − f |dµ = 0.∣∣∫

X
fndµ

∫
fdµ

∣∣ ≤ ∫
X
|fn − f |dµ→ 0.

Simple Application

Theorem 4.5. Let f : I → R be Riemann Integrable. Then f is measurable
and

∫
Riemann

f(x)dx =
∫
I
f(X)dµ.

Proof. By definition of Riemann integrability, there exist sequences of functions
ϕi, ψi step functions the ϕi increasing from −M to f and the ψi decreasing from
f to M . To apply the LDCT, put g = MχI . Then g ∈ L1(dµ) and |ϕi| ≤ g
and |ψi| ≤ g, and as the ϕn → f pointwise and ψn → f pointwise, we have∫
f(x)dx = limn→∞

∫
ϕn(x)dx = limn→∞

∫
ϕn(x)dµ =

∫
f(x)dµ

Let (X,S, µ) be a measure space and f a function. Then
∫
X
fdµ ∈ R, and

it is well-defined in f ∈ L1(dµ) and it is linear, so
∫
X
dµ is a vector space

homomorphism from L1(dµ)→ R.
Can one go the other way around? Given a homomorphism, find µ?
Let (X,S, µ) = (Rn, BRn , µ). Then L1(Rn) contains the continuous, com-

pactly supported functions.

Theorem 4.6 (Riesz Representation Theorem). Let Λ : Cc(Rn) → C be a
homormophism from compactly supported continuous functions to C. Assume
that if f ≥ 0 then Λf ≥ 0. Then there exists a unique Borel measure µ (a
measure defined on a σ-algebra containing the Borel sets) such that

1. Λf =
∫

Rn fdµ

2. µ(K) <∞ for all K ⊂ Rn compact

3. µ is almost regular in the following sense: For E ∈ BRn , µ(E) = inf{µ(V )|E ⊂
V, V open } = sup{µ(K)|K ⊂ Ecompact} provided that µ(E) < ∞ or E
open.

We will need two lemmas.

Lemma 4.7 (Urysohn’s Lemma). Let A ⊂ Rn compact and B ⊂ Rn closed
with A ∩B = ∅. Then there exists a function f ∈ Cc(Rn) with f ≡ 1 on A and
f ≡ 0 on B.

Proof. d(A,B) > 0. Find a cont. function ϕ : [0,∞] → [0, 1] such that ϕ ≡ 1
if 0 ≤ x ≤ d(A,B)/2 and ϕ(x) = 0 for x ≥ 2

3d(A,B). Then put f(x) =
ϕ(d(x,A))
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Lemma 4.8 (Partition of Unity). Let K ⊂ Rn a compact set, and ∪Ni=1Vi ⊃ K a
finite open covering. Then there exist cont. functions hi such that supphi ⊂ Vi
and

∑N
i=1 hi ≡ 1.

Proof. Choose Ui ⊂ Vi such that Ūi ⊂ Vi and ∪Ui ⊃ K. Then apply Urysohn
to find h̃i such that h̃i ≡ 1 on Ūi and 0 outsice of Vi.

Now we define hi such that h1 = h̃1, h2 = (1 − h̃1)h̃2, etcetera. Then the
sum is 1 on K.

5 Lecture 5

Theorem 5.1 (Riesz Representation Theorem). Let Λ : Cc(Rn) → C be a
linear functional such that Λ(f) ≥ 0 if f ≥ 0 then there exists a unique Borel
measure m such that

1. Λf =
∫

Rn fdm

2. m(K) <∞ if U is compact

3. Partial Regularity: m(E) = inf{m(V )|E ⊂ V open } and m(E) = sup{m(K)|E ⊃
K compact} if m(E) <∞ or E is open.

Proof. First we will prove uniqueness. Assume that m1 and m2 both satisfy the
conditions. If suffices to show that m1(K) = m2(K) for all K compact by partial
regularity. We know that these numbers are finite, and we also know that for
all ε > 0, there exists V ⊃ K open such that m2(V ) < m2(K) + ε. By Urysohn,
there exists a function f which is compactly supported and continuous such
that V ⊃ supp f and f ≡ 1 on K. Then m2(K) + ε ≥ m2(V ) =

∫
Rn χV dm2 ≥∫

fdm2 = Λf =
∫
fdm1 ≥

∫
Rn χKdm1 = m1(K), so for all ε > 0, m2(K) + ε ≥

m1(K), and so m2(K) ≥ m1(K) and symmetry gives us m1(K) = m2(K).
Now we will show existence. Given V open, m(V ) =

∫
χV dm. Define

m(V ) = supf∈Cc(Rn) Λf over 0 ≤ f ≤ 1 and supp f ⊂ V .
Define something like the outer measure, E ⊂ Rn any subset, let m(E) =

infV⊃Em(V ) for V open.
First goal is to show that m is well-behaved on compact sets.
We must show sub-additivity. {Ei}∞i=1 ⊂ Rn, we want to show thatm(∪Ei) ≤∑
m(Ei).
We may assume that m(Ei) <∞, and so given ε > 0, there exist open sets

Vi ⊃ Ei such that m(Vi) < m(Ei) + ε/2i, and ∪Vi ⊃ ∪Ei.
So m(∪Vi) < m(∪Ei) + ε, and so we apply the construction of m on oepn

sets and pick f ∈ Cc(Rn) with supp f ⊂ ∪Vi, which gives us a finite collection
f1, . . . , fN such that supp f ⊂ ∪Ni=1Vi. Now we apply a partition of unity to
K = supp f and get hi ∈ Cc(Rn) with supphi ⊂ Vi, 0 ≤ hi ≤ 1 and

∑
hi|K = 1.

So then Λf =
∑N
i=1 Λ(hif) ≤

∑N
i=1m(Vi) ≤

∑∞
i=1m(Vi), so we take the

supremum over all f and then m(∪Vi) ≤
∑
m(Vi) ≤

∑
m(Ei) + ε. Letting

ε→ 0, we get m(∪Ei) ≤
∑
m(Ei).
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So m behaves like an outer measure so far. We need to find a σ-algebra of
sets containing the Borel sets, on which it is a measure.

S̃ = {E ⊂ Rn|m(E) < ∞,m(E) = supK⊂E{m(K)}}. We will show that
this is an algebra and contains all open sets of finite measure and all compact
sets.

Then we take S = {E ⊂ Rn|E ∩K ∈ S̃ for all K compact}.
Main Assertion: S is a σ-algebra containing BRn and m is a measure on S,

and Λf =
∫
fdm for f ∈ Cc(Rn).

If K is compact, then K ∈ S̃ and m(K) = inf{Λf |f = 1 on K}. We prove
this by choosing f to eb 1 on K and 0 ≤ f ≤ 1, f ∈ Cc(Rn). We can do this
by Urysohn. Then Λf ≥ m(K). Fix 0 < θ < 1 and Vθ = {x|f(x) > θ} ⊃ K.
If g ∈ Cc(Rn), supp g ⊂ Vθ, 0 ≤ g ≤ 1 then θg < f and m(K) ≤ m(Vθ) =
sup{Λg| supp g ⊂ Vθ, 0 ≤ g ≤ 1} = sup{θ−1Λθg} ≤ θ−1Λf . Now we let θ → 1
and get m(K) ≤ Λf and so m(K) <∞.

By outer regularity, we have ∀ε > 0, there exists an open set V such that
m(K) + ε > m(V ). BY Urysohn, f ∈ Cc(Rn), f ≡ 1 on K, supp f ⊂ V .

m(K) ≤ Λf < m(K) + ε, and so m(K) =
∫
f |K≡1

Λf .
Now we must show finite additivity on compact sets. It suffices to let

K1,K2 ⊂ Rn compact and disjoint. Then m(K1) +m(K2) = m(K1∪K2). This
is because there is an f ∈ Cc(Rn) that is 1 on K1∪K2 and Λf ≤ m(K1∪K2)+ε,
by Urysohn, there exist h1, h2 ∈ Cc(Rn) such that hi ≡ 1 on Ki and hi ≡ 0 on
Kj , i 6= j. Then Λf = Λ(fh1) + Λ(fh2) Then for all ε > 0, m(K1 ∪K2) + ε ≥
m(K1)+m(K2), but m(K1∪K2) ≤ m(K1)+m(K2), and so they must be equal.

From here, we need to get countable additivity on S̃. Assume E = ∪Ei are
disjoint and Ei ∈ S̃. Then we claim that m(E) =

∑
m(Ei) and if m(E) < ∞

then E ∈ S̃.
We use inner regularity of m on S̃. For all ε > 0, choose Hi ⊂ Ei and

m(Ei) < m(Hi) + ε/2i for all i. Then by te last part, each finite sum is equal.
Then m(E) ≥ m(∪Ni=1Hi) =

∑N
i=1m(Hi) >

∑
m(Ei)− ε.

Now let N → ∞ and we get m(E) ≥
∑
m(Ei) − ε and letting ε → 0 get

m(E) ≥
∑
m(Ei). Subadditivity gives equality.

Now we need to show that m is well behaved on open sets. If E ⊂ Rn is
open, then m(E) = sup{m(K)|K ⊂ Ecompact}. In partiacular, E is open and
m(E) <∞ imply E ∈ S̃.

Choose a number θ < m(E). Then there exists f ∈ Cc(Rn) with supp f ⊂ E
and θ < Λf . Then let K = supp f . We want to show that m(K) > θ. m(K) =
inf{m(W )} for W ⊃ K, then m(W ) ≥ Λf .

Refined version of regularity of m: if E ∈ S̃ then there exists K ⊂ E and
V ⊃ E such that m(V \K) < ε.

By outer regularity, there exists V ⊃ K such that m(K) + ε > m(V ). By
inner regularity, there exists K ⊂ E compact such that m(E) < m(K) + ε, and
so m(V ) <∞ implies that V ∈ S̃ and K ∈ K̃, so V \K ∈ S̃. By the additivity
of m on S̃, m(K) +m(V \K) = m(V ) < m(E) + ε and so m(V \K) < 2ε.

We must now show that S̃ is an algebra.
Let A,B ∈ S̃. By the last step, there exist K1 ⊂ A ⊂ V1 and K2 ⊂ B ⊂ V2
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such that m(V1 \ K1) < ε and m(V2 \ K2) < ε. Then A \ B ⊂ V1 \ K2 ⊂
V1 \ K1 ∪ K1 \ V2 ∪ V2 \ K2, and so m(A \ B) ≤ 2ε + m(K1 \ V2). Now,
K1 \ V2 ⊂ A \ B is a compact subset, and since ε → 0 arbitrary, we get inner
regularity, and so m(A \B) <∞ implies that A \B ∈ S̃.

A ∪B = A \B ∪B ∈ S̃, and A ∩B = A \ (A \B).
Now we show that S is a σ-algebra containing the Borel sets.
If A ∈ S then A ∩ K ∈ S̃ for all K compact, Ac ∩ K = K \ (K \ Ac) =

K \ (K ∩A) ∈ S̃. Hence Ac ∈ S.
Next let Ai ∈ S, we must shw that ∪Ai ∈ S. A ∩ K = A1 ∩ K ∪ (A2 ∩

K) \ (A1 ∩ K) ∪ . . . and by inductively applying the algebraic properties of
S̃, we see that each of the sets in the union are in S̃, and are disjoint. Also,
m(A ∩K) ≤ m(K) < ∞, and so countable additivity of m on S̃ gives us that
A ∩K ∈ S̃.

Claim: S̃ = {E ∈ S|m(E) <∞}.
Clearly S̃ ⊂ S, now assume that E ∈ S and has finite measure. Choose

V ⊃ E open withm(E)+ε > m(V ). Then chooseK ⊂ V such thatm(V \K) < ε
by the inner regularity of m. Then E ∩K ∈ S̃ and so K1 ⊂ E ∩K such that
m(E ∩ K) ≤ m(K1) + ε. Finally, E ⊂ E ∩ K ∪ (V \ K). Ad so m(E) ≤
m(E ∩K) +m(V \K) ≤ m(K1) + 2ε. And so E ∈ S̃.

Now we must show that m is a measure on S.
If E = ∪Ei disjoint, then if m(Ei) = ∞ for some i, then m(E) = ∞ =∑
m(Ei), hence assume m(Ei) <∞ for all i, then Ei ∈ S̃ and so m is countably

additive on S.
All that remains is to show that m represents Λ.

6 Lecture 6

We will finish the proof of the Riesz Representation Theorem.
We have Λ : Cc(Rn)→ C with Λf ≥ 0 whenever f ≥ 0 when f is a function

into R.
If E is open, then m(E) = supsupp f⊂E{Λf} and fr E in general, we have

m(E) = inf m(V ) where V ⊃ E open.
S̃ = {E ⊂ Rn|m(E) < ∞,m(E) = supm(K) where K ⊂ E compact}. So

we expand to S = {E ⊂ Rn|E ∩K ∈ S̃ for all K compact}. We showed that
m|S is a measure and that S is a σ-algebra.

Lemma 6.1. Λf =
∫

Rn fdm for all f ∈ Cc(Rn)

Proof. Suffices to show that Λf ≤
∫

Rn fdm for all f , and then also Λ(−f) ≤∫
Rn(−f)dm gives us Λf ≥

∫
Rn fdm.

Approximate Λf be a ”Riemann Sum”, choose [a, b] ⊃ range(f) and choose
ϕi by ϕ0 < a < ϕ1 < . . . < ϕn = b with ϕi − ϕi−1 < ε, Ei = f−1((ϕi−1, ϕi]) ∩
supp f is a Borel set. Then Vi ⊃ Ei, m(Vi) < m(Ei) + ε/n.

f(x) < ϕi + ε, ∀x ∈ Vi. By the partition of unity lemma, we can find
hi ∈ Cc(Rn) supported inside Vi which sum to 1 on the support of f . And so
m(supp f) ≤ Λ(

∑
hi).
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Λf =
∑

Λ(fhi) ≤
∑

Λ(hi(ϕ + ε)) =
∑

(ϕi + ε)hi =
∑

(ϕ)i + ε + |a|)Λhi −
|a|
∑

Λ(hi).
So we have Λ(hi) ≤ m(Vi) < m(Ei) + ε/n, so we have ≤

∑
(|a| + ϕi +

ε)(m(Ei) + ε/n)− |a|m(suppf) =
∑

(ϕi − ε)m(Ei) + 2εm(supp f) + ε/n
∑

(ε+
|a|+ϕi). The first term is less than

∫
Rn fdm, and so when we let ε→ 0, we are

done.

Lp spaces. Let (X,S,m) be a measure space.
Let f : X → C mearuable and 1 ≤ p <∞. Then |f |p ∈ L1(dm) tells us that

f ∈ Lp(dm), and put ‖f‖Lp =
(∫
X
|f |pdm

)1/p. If f ∈ Lp, and g differs from f
on a set of measure 0, then g ∈ Lp, and

∫
X
|f − g|pdm = 0, so what we really

want in Lp are equivalence classes of functions such that f ∼ g iff f − g = 0
almost everywhere.

Definition 6.1 (Lp). Lp(dm) is teh set of equivalence classes of functions.

Definition 6.2 (L∞). L∞(dm) is the set of all equivalence classes of measurable
functions f : X → C such that infE⊂X,m(E)=0 supX\E |f | <∞.

In particular, there exists a set Ẽ of measure 0 such that supX\Ẽ |f | <∞.

Theorem 6.2. Lp(dm) is a vector space for 1 ≤ p ≤ ∞.

Proof. Clear if p = 1,∞.
For the other cases, it follows immediately from Minkowski Inequality, which

says that if f, g ∈ Lp(dm) then ‖f + g‖ ≤ ‖f‖ + ‖g‖ in Lp norm. This follows
from Hölder’s Inequality, which says that if 1 ≤ p, q ≤ ∞ with 1

p + 1
q = 1, then

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lp .
We assume that p, q not 1,∞. Then we use the elementary inequality a, b ∈ C

then |ab| ≤ |a|p/p + |b|q/q. We assume that a, b ∈ R>0, then we get log(ab) =
1
p log(ap) + 1

q log(bq) ≤ log(ap/p+ bq/q).
Given f ∈ Lp(dm), g ∈ Lq(dm), neither equal to zero, then |fg| ≤ |f |p/p+

|g|q/q. Then dividing by normas, we gat |f/‖f‖, g/‖g‖| ≤ |f |p/p‖f‖p+|g|q/q‖g‖q.
This gives us that ‖fg‖L1/‖f‖Lp‖g‖Lq ≤

∫
|f |pdm/p‖f‖pLp +

∫
|g|q/q‖g‖qLq = 1.

So now we prove Minkowski: 1 < p <∞,
∫
X
|f +g|pdm ≤

∫
(|f |+ |g|)pdm =∫

|f |(|f | + |g|)p−1dm +
∫
|g|(|f | + |g|)p−1dm. Apply Hölder to each for p, q =

p
p−1 . Then

∫
|f |(|f | + |g|)p−1dm ≤ ‖f‖Lp

(∫
X

[(|f |+ |g|)p−1]p/p−1dm
)p−1/p

=

‖f‖Lp
(∫
X

(|f |+ |g|)pdm
)p−1/p = ‖f‖Lp + ‖|f |+ |g|‖p−1

Lp , and similarly for g. So
then ‖|f |+ |g|‖pLp ≤ (‖f‖Lp + ‖g‖Lp)‖|f |+ |g|‖p−1

Lp .

Corollary 6.3. Lp(dm) is a metric space with distance function d(f, g) = ‖f −
g‖Lp .

Theorem 6.4. 1 ≤ p ≤ ∞, Lp(dm) is a complete metric space.

Proof. First we will do this for p =∞. Let {fn} be a Cauchy sequence in L∞.
Then ‖fn − fm‖ ≥ |(fn − fm)| for x outside a set Bn,m...GAHSHSHAHASHAS
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Y = ∪n,mBn,m ∪ ∪nAn. Then m(Y ) = 0. For x ∈ X \ Y , fn(x) → f , f
measurable. ‖fn → f‖L∞ → 0.

Remark: f is only defined on X \Y , but one can extend it arbitrarily on Y .
Now choose a finite p. Let {fn} be a Cauchy sequence in Lp. Choose a

subseqence {fnk}k≥1 such that ‖fnk−fnk−1‖ ≤ 1
2k

. Take gk =
∑k
i=1 |fni+1−fni |,

g =
∑∞
i=1 |fni+1 −fni |. By Minkowski, we have that ‖gk‖Lp < 1, and so Fatou’s

Lemma tells us that ‖g‖Lp ≤ 1.
In particular, g(x) < ∞ ae. Then f1(x) +

∑∞
i=1(fni+1 − fni) converges ae,

and so we can define f(x) to be the limit ae.
By Fatou’s Lemma again,

∫
X
|f − fn|pdm ≤ lim inf

∫
X
|fni − f |pdm. If we

take (f1(x) +
∑k
i=1(fni+1 − fni) and n1 = 1, we have fnk+1 .

As it is Cauchy, if n→∞,
∫
X
|f − fn|pdm→ 0.

p = 2, L2(dm) is special. f, g ∈ L2(dm), then we have
∫
fḡdm = 〈f, g〉 has

absolute value ‖f‖L2‖g‖L2 , by Cauchy-Schwartz. Completeness means that L2

is a Hilbert Space, not just a Banach Space.

Definition 6.3 (Hilbert Space). A vector space H over C or R equipped with
a Hermitian inner product 〈−,−〉 : H × H → C such that 〈af, bg〉 = ab̄〈f, g〉.
and 〈f, f〉 ≥ 0 with 〈f, f〉 = 0 iff f = 0 is called a Hilbert Space provided it is
complete with respect to the metric d(f, g) = 〈f − g, f − g〉1/2.

Remark: Fact that this is a metric follows from Cauchy-Schwartz inequality.
We still need Fubini’s Theorem:

Theorem 6.5 (Fubini). Write Rn = Rn1 ×Rn2 with n1 +n2 = n. Assume that
f ∈ L1(Rn). In particular, f is measurable. Then for almost every y ∈ Rn2

the function fy(x) = f(x, y) is integrable, and the function y 7→
∫

Rn1 f
y(x)dx is

measurable (defined outside a measure zero set). In addition,∫
Rn1

(
∫

Rn1

fy(x)dx)dy =
∫

Rn
f(x, y)dxdy

7 Lecture 7

Theorem 7.1 (Fubini). Write Rn = Rn1 ×Rn2 with n1 +n2 = n. Assume that
f ∈ L1(Rn). In particular, f is measurable. Then for almost every y ∈ Rn2

the function fy(x) = f(x, y) is integrable, and the function y 7→
∫

Rn1 f
y(x)dx is

measurable (defined outside a measure zero set). In addition,∫
Rn1

(
∫

Rn1

fy(x)dx)dy =
∫

Rn
f(x, y)dxdy

Proof. Start with simple function. Let’s call the set of all functions for which
Fubini holds F .

1. F is closed under finite linear combinations.
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2. Closed under monotone limits.

By passing to {−fk}≥0, if suffices to assume that fk ↑ f . Then fk 7→ fk−f1

along with the first property tell us that we can assume fk ≥ 0. Hence,
we assume fk ↑ f and fk ≥ 0. By Monotone Convergence Theorem,∫

Rn fk(x, y)dxdy →
∫

Rn f(x, y)dxdy.

For all k ≥ 1, there exists Ak with measure 0 such that fyk (x) is integrable
if y /∈ Ak. A = ∪Ak, and m(A) = 0. If y /∈ A, then we can define
gk(y) =

∫
Rn f

y
k (x)dx for each k ≥ 1, and by assumumption

∫
Rm gk(y)dy =∫

Rn fk(x, y)dxdy →
∫

Rn f(x, y)dxdy...etc

3. Characteristic function of a Gδ set is in F .

First check this for open cubes E. Then E = Q1 × Q2 ⊂ Rn × Rm.
g(y) =

∫
Rn χE(x, y)dx if |Q1| if y ∈ Q2 and 0 else. And g(y) = χQ2 |Q1|.

Then
∫

Rm g(y)dy = |Q1||Q2| =
∫

Rn χEdxdy... CONTINUE ON

4. if m(E) = 0, then χE ∈ F .

Choose aGδ setG ⊃ E withm(G) = 0. By part 3, χG ∈ F .
∫

Rn2 dy
∫

Rn1 χG(x, y)dx =∫
Rn χG(x, y)dxdy = 0 Now Ey = {x|(x, y) ∈ E} is contained in Gy, and
m(Gy) = 0 for ae y ∈ Rn2 , so m(Ey) = 0 for ae y ∈ Rn2 .∫

Rn2 dy
∫

Rn1 χE(x, y)dxdy = 0 =
∫

Rn χE(x, y)dxdy.

5. E is measurable, of finite measure implies that χE ∈ F

6. f ∈ L1(Rn) then f ∈ F .

Let 1 ≤ p ≤ ∞, look at Lp(Rn).

Theorem 7.2. Cc(Rn) is dense in Lp(Rn).

Proof. Split f = f+− f−. Approximate f+, f− by simple meaureable functions
s1, s2 with 0 ≤ s1 ≤ f+ and 0 ≤ s2 ≤ f− such that

∫
Rn |f+ − s1|pdx < ε and∫

Rn |f− − ε|
pdx < ε.

Etc

Theorem 7.3. C∞c (Rn) is dence in Lp(Rn).

Result: Dα(ϕ ∗ f) = Dαϕ ∗ f ∈ C∞(Rn) where Dα =product of partials.

Lemma 7.4. Let f ∈ C0(Rn) and ϕh = h−nϕ(x/h), ϕ as before. Then
limh→0 ϕh ∗ f = f uniformly on compact subsets of Rn

Proof. ϕh ∗f =
∫

Rn ϕ(z)f(x−hz)dz, the function z → f(x−hz) converges uni-
formly toward f(x) for x varying over compact subsets of Rn. So limh→0

∫
ϕ(z)f(x−

hz)dz =
∫

Rn ϕ(z)f(x)dz = f(x)
Moreover, convergence uniform for x confined to compact subsets of Rn.
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We can now prove that C∞c (Rn) is dense in Lp.
Given f ∈ Lp, and ε > 0, find g̃ ∈ C∞c such that ‖f − f̃‖Lp < ε.
Goal: Show that ϕh ∗ f → h in Lp.
‖ϕh ∗ f − f‖Lp ≤ ‖ϕh ∗ (f − f̃)‖Lp + ‖ϕh ∗ h̃− f̃‖Lp + ‖f − f̃‖Lp .
First, choose h small enough such that ‖ϕh ∗ f̃ − f̃‖Lp < ε/2.
For ϕh ∗ (f − f̃), we’ll show that it has smaller Lp norm than f − f̃ for all

h > 0.
ϕh ∗ g =

∫
Rn ϕ(z)g(x− hz)dz =

∫
Rn ϕ

1/p(z)ϕ1/q(z)g(x− hz)dz where 1/p+
1/q = 1.

By Hölder, |ϕh ∗ g|p(x) ≤
(∫

Rn ϕ(z)dz
)p/q =

∫
ϕ(z)|g(x− zh)|pdz.

How we integrate over x and use Fubini to interchange the order of integra-
tion, and it follows.

Topics in L2

Fourier Transform: S1 = [−π, π]/ ∼ and f ∈ C2(S1), then f̂(n) = 1
2π

∫ π
−π f(x)e−ixndx,

and f(x) ∼
∑
n∈Z f̂(n)eixn. So f̂(ξ) =

∫
Rn f(x)e−2πix·ξdx.

8 Lecture 8

Today we will talk about the Fourier Transform on Rn.
The inspiration is that functions on S1 can be written as f(x) =

∑
n∈Z f̂(n)einx

where f̂(n) = 1
2π

∫ π
−π f(x)e−inxdx.

The eixu are eigenfunctions for the laplacian on S1.
What is the analogue for Rn?
Let f(x) ∈ L1(Rn) and eixu corresponds to eix·ξ with ξ ∈ Rn. So define

f̂(ξ) =
∫

Rn f(x)e−2πix·ξdx.

Lemma 8.1. F (f) = f̂ is a continuous map L1(Rn) → C0(Rn) ∩ L∞(Rn)
equipped with metric ‖f − g‖ = ‖f − g‖L∞ .

Proof. Continuity is simple, we show that F : L1 → C0 and F : L1 → L∞.
|f̂(ξ)| ≤

∫
Rn |f(x)|dx <∞, f̂(ξ) ∈ L∞.

For continuity, f̂(ξ + h) − f̂(ξ) =
∫

(e−2πix(ξ+h) − e−2πix·ξ)f(x)dx. The
dominated convergence theorem |e−2πix(ξ+h)−e2πix·ξ| ≤ 2, limh→0 e

−2πix(ξ+h)−
e−2πix·ξ = 0 pointwise, and so by Lebesgue Dominated COnvergence, the limit
of |̂(f)(ξ + h)− f̂(ξ)| → 0.

Question: Is the map surjective?

Lemma 8.2 (Riemann-Lebesgue Lemma). Let f ∈ L1(Rn), then lim|ξ|→∞ f̂(ξ) =
0.

Proof. (Density Argument)
Last time, we showede that C∞c ⊂ L1(Rn) is dense.
For all ε > 0, there exists g ∈ C∞c (Rn) such that ‖f−g‖L1 < ε. This implies

that ‖f̂ − ĝ‖L∞ < ε.
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It suffices to show that lim|ξ|→∞ ĝ(ξ) = 0. Assume that |ξ| is very large.
Some |ξk| > |ξ|/

√
n. Pick such a ξk. Then |ĝ(ξ)| = |

∫
g(x)e−2πix·ξdx| =

|
∫ (

1
2πiξk

∂
∂xk

)N
g(x)e−2πix·ξdx| ≤ CN/|ξk|N ≤ C̃N/|ξ|N .

In particular, ĝ(ξ) vanishes rapidly at infinity. Therefore lim sup|ξ|→∞ |f̂(ξ)| <
ε, and is zero as ε was arbitrary.

Remark: Can ĝ(ξ) be compactly supported?
∫

Rn e
−2πix·ξg(x)dx.

The answer is no (this corresponds to the Heisenberg Uncertainty Principle)
A proof of this is given by generalizing to transforming to complex valued

functions, and this gives a holomorphic function, which cannot be of compact
support.

Big Theorems: The Fourier Inversion Theorem, Plancherel’s Theorem (which
allows the extension of F to L2)

Schwartz class of functions: S(Rn) = {f ∈ C∞(Rn)| supx∈Rn |x|α
∣∣ ∂
∂xβ

f(x)
∣∣ <

∞ for all α ∈ N and β ∈ Nk.

Lemma 8.3. F maps S(Rn) to S(Rn).

Proof. f̂(ξ) =
∫
f(x)e−2πix·ξdx. Then ∂

∂ξα f̂(ξ) = (−2πi)|α|
∫ ∏n

`=1 x
α`
` f(x)e−2πix·ξdx.

If β ∈ Nn, then ξβ f̂(ξ) = (−2πi)|α|−|β|
∫
xn+1 ∂β

∂xβ

∏
xα`` f(x)e−2πix·ξdx.

Hence supξ∈Rn |ξβ ∂
∂ξα f̂(ξ)| ≤ Cn,α,β supx∈Rn obvious thing.

Note that by tdensity of C∞c (Rn) ⊂ L2(Rn) we have that S(Rn) ⊂ L2(Rn)
is dense.

We establish Fourier Inversion and Plancherel for S and pass to L2 by den-
sity.

Lemma 8.4 (easy). Let f, g ∈ S(Rn), then |intf̂(ξ)g(ξ)dξ =
∫
f(x)ĝ(x)dx.

Fubini.
∫

Rn f̂(ξ)g(ξ)dξ =
∫ ∫

f(x)e−2πix·ξdxg(ξ)dξ.
This is then equal to

∫ ∫
e−2πix·ξg(ξ)dξf(x)dx =

∫
f(x)ĝ(x)dx.

Theorem 8.5 (Fourier Inversion). Let f̌(x) =
∫
f(ξ)e2πix·ξdξ. Then if f ∈

S(Rn), we have ˇ( ˆ )f = f and ˆ( ˇ )f = f .

Proof. ˇ̂
f =

∫ ∫
f(y)e−2πiy·ξdye2πix·ξdξ. A physicist would just say

∫
f(x)

∫
e2πi(x−y)·ξdξdy =∫

δ(x− y)f(y)dy = f(x) with
∫
eixξdx = δ(ξ).

We, however, must justify this better.
The actual proof replaces ei(x−y)·ξ with a dampened version. Introduct

(̌f)ε =
∫
f(ξ)e2πix·ξ−ε|ξ|2dξ for ε > 0.

Then ˇ( ˆ )fε =
∫
f̂(ξ)e2πix·ξ−ε|ξ|2dξ =

∫ ∫
f(y)e−2πiyξdye2πixξ−ε|ξ|2dξ. By Fu-

bini, this gives
∫
f(y)

∫
e2πi(x−y)ξ−ε|ξ|2dξdy, we takeKε(x−y) =

∫
e−(√εξ−πi(x−y)/

√
ε)2

e−π
2(x−y)2/ε2dξ.

???
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Definition 8.1. A family of functions Kε(x) indexed by ε > 0 which are posi-
tive, integrate to 1, and lim) ε→ 0

∫
M>δ

Kε(x)dx = 0 for any δ > 0 is called an
approximate identity.

Lemma 8.6. Assume Kε is an approximate identity. Then Kε ∗ f → f if
f ∈ C0(Rn) ∩ L∞(Rn) pointwise and uniformly on compact subsets of Rn.

Proof. Kε ∗f −f)(x) =
∫
Kε(x−y)f(y)dy−f(x) =

∫
Kε(x)[f(x−y)−f(x)]dy.

Given µ > 0, choose δ > 0 such that |f(x− y)− f(x)| < µ/2 whenever |y| < δ.
Then choose ε > 0 such that

∫
|y|≥δKε(y)dy < µ/2‖f‖L∞ . Then |Kε∗f−f | ≤∣∣∣∫|y|<δKε(y)[f(x− y)− f(x)]dy
∣∣∣+
∣∣∣∫|y|≥δKε(y)[f(x− y)− f(x)]dy

∣∣∣ < µ.

Completing the Fourier Inversion Proof:
ˇ( ˆ )fε =

∫
Rn f(y)Kε(x− y)dy → f(x) by the lemma.

This is the same as
∫
f̂(ξ)e2πix·ξ−ε|ξ|2dξ →

∫
f̂(x)e2πix·ξdξ = ˇ( ˆ )f(x).

Theorem 8.7 (Plancherel’s Theorem). If f, g ∈ S(Rn), then
∫

Rn f̂(ξ)¯̂g(ξ)dξ =∫
Rn f(x)ḡ(x)dx.

In particular, if f = g, then
∫
|f̂(ξ)|2dξ =

∫
|f(x)2|dx.

Proof. ¯̂g(ξ) = ˇ̄g(ξ). Assume that Ḡ = ĥ(ξ), then ˇ̄g = h.

∫
f̂(ξ)¯̂g(ξ)dξ =

∫
f̂(ξ)h(ξ)dξ =

∫
f(x)ĥ(x)dx =

∫
f(x)ḡ(x)dx

Now we can extend F to a map L2 → L2. Given f ∈ L2, by the density of
S(Rn) in L2, we find {fn}n≥1 such that fn → f in L2 sense.

f̂n → g by Plancherel and completeness of L2, so g is unique (up to a set of
measure zero), and so we define f̂ = g.

9 Lecture 9

Question: Can F be defined for f ∈ Lp for p 6= 1, 2?
The answer is yes by general principle that T : Lp0 → Lq0 , Lp1 → Lq1 can

by interpolated to T : Lp → Lq for 0 ≤ θ ≤ 1 and 1/p = θ/p0 + (1− θ)/p! and
q satisfying the same.

A consequence is the following:

Theorem 9.1 (Young’s Inequality). f ∈ Lp and 1 ≤ p ≤ 2, then f̂ can be
defined in Lq for 1/p+ 1/q = 1 and ‖f̂‖Lq ≤ ‖f‖Lp .

An application of the Fourier Tranform:
The Linear Schodinger EQuation is (i∂t + ∆)u(t, x) = 0. The Cauchy prob-

lem is: if u(0, x) = f(x) in S(Rn) find u(t, x).
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Then u(t, x) =
∫

Rn û(t, ξ)e2πix·ξdξ by Fourier inversion, and (i∂t+∆)u(t, x) =∫
Rn(i∂t − 4π|ξ|2)û(t, ξ)e2πix·ξdξ = 0.

So û(t, ξ) = e−4πit|ξ|2 û(0, ξ) = e−4πit|ξ|2f(ξ). So then u(t, x) =
∫

Rn e
2πix·ξe−4πit|ξ|2f(ξ)dξ.

By F is an isometry of L2, we have that ‖u(t, x)‖L2 = ‖f‖L2 .
General Banach Space Theory
First we will look at Fréchet Spaces.

Definition 9.1 (Banach Space). A Banach Space is a vector space over R or C
equipped with a norm | − | : V → R≥0 such that |x+ y| ≤ |x|+ |y|, |xy| = |x||y|
and |x| = 0 iff x = 0.

Further, equipping V with distance d(x, y) = |x − y| makes it a complete
metric space.

Definition 9.2 (Frechet Space). Let V be a vector space with a metric d which is
translation invariant (d(x, y) = d(x− y, 0)), and such that scalar multiplication
is continuous and such that (V, d) is complete.

Definition 9.3 (Bounded). Let X be a Frechet space. A subset U ⊂ X is
bounded if for every open set 0 ∈ V ⊂ X there is an ε > 0 such that ∀α ∈ F ,
|a| < ε we have αU ⊂ V

For a Banach Space, this coincides with the usual notion.

Theorem 9.2 (Principle of Uniform Boundedness). Let {Ta|a ∈ A} collection
of continuous linear maps X → Y with X,Y Frechet Spaces. Then if ∀x ∈
X, the set {Tax|a ∈ A} is bounded, then the family is uniformly continuous
(equicontinuous according to Rudin).

Proof. We will use the Baire Category Theorem, in the form that if X = ∪An
where An is closed, then at least one An has nonempty interior.

Let |y| = d(y, 0), we apply the Baire Category Theorem to the following
closed sets: Ak = {x ∈ X| 1k |Ta(x)|+ | 1kTa(−x)| ≤ ε/2∀a ∈ A}.

By the continuity of Ta, these are closed, and so we must check that X =
∪Ak. For all x ∈ X, supa∈A |Tax| = k(x) < ∞. Thus, there exists ε > 0 such
that forall |α| < ε, |αTax| < 1, and so the union works.

So now Baire implies that for some A`, it contains a nonempty interval.
And so |1/`Ta(x0 + x)| ≤ ε/2 for |x| < δ, the length of this interval. Then
|1/`Ta(x)| ≤ |1/`Ta(x0 + x)|+ |1/`Ta(−x0)| ≤ ε for all |x| < δ.

And so the map x → x/` for ` ≥ 1 is a homeomorphism and hence there
exists δ0(δ, `) such that |x| < δ0 ⇒ |Ta(x)| < ε for all a ∈ A.

Next: Equivalence of continuity and boundedness.

Theorem 9.3. Let T : X → Y be a linear map between frechet spaces. Then T
is bounded iff T is continuous.

What we mean is that T is bounded iff T (U) bounded whenever U is
bounded. So if X,Y are Banach Spaces, then T bounded iff sup|x|≤1 |Tx| <∞.

21



Proof. Only if: T cont implies T bounded. Let U ⊂ X be a bounded set and
0 ∈ V ⊂ Y an open set. αT (U) ⊂ V if |α| small enough. By continuity of T ,
there exists 0 ∈ Ṽ ⊂ X open such that T (Ṽ ) ⊂ V . By the boundedness of U ,
there exists ε > 0 such that αU ⊂ Ṽ for all a with |a| < ε. This implies that
T (αU) = αT (U) ⊂ V and so T (U) is bounded.

If: T bounded implies T continuous. Need to show that if xi → 0 then
Txi → 0. But the |xi| → 0...(zoned out).

Claim: U{kixi}i≥1 is bounded. sup |kixi| < ∞ and sup |T (kixi)| < ∞, and
so T (xi) = 1

ki
T (kixi). So because {T (kixi)} is bounded, for all V 3 0, there

exists ε > 0 such that α{T (kixi)} ⊂ V if |α| < ε.
We now pause to note that a compact subset of a Frechet Space is a bounded

set.
There exists δ > 0, 0niU ⊂ X such that βU ⊂ V for all |β| < δ.
Also, we have ∪nU = X, and by compactness of B, B ⊂ ∪nU , hence if

ε = δ/m, then αB ⊂ ∪αnU ⊂ V for all α with |α| < ε.

10 Lecture 10

There are three important theorems: The Open Mapping Theorem, the Closed
Graph Theorem and the Hahn-Banach Theorem.

Open Mapping Theorem
Motivation: If T : V →W is a linear map of finite dimensional vector spaces,

then there exists a basis ei for V , fj for W with T (ei) = fi and T (en) = 0 for
en not corresponding to fj .

In particular, if we equip V with a norm, and U an open neighborhood of
the origin, then T (U) is open.

Theorem 10.1 (Banach’s Open Mapping Theorem). Let X,Y be Frechet Spaces
(eg Banach Spaces) and T a continuous surjection. Then T is open.

Corollary 10.2. If T : X → Y is a continuous linear bijection at the set
theoretic level, then T is continuously invertible.

We prove the open mapping theorem:

Proof. Step 1: Let 0 ∈ G ⊂ X be open. Then ¯TG contains an open neighbor-
hood of 0 ∈ Y . This is by the Baire category theorem plus a trick to trnalate
back to the origin. Choose an open neighborhood 0 ∈ M ⊂ X such that the
difference set is contained in G. Consequence of continuity of addition and
scalar multiplication is that X = ∪∞n=1nM , that is, given x ∈ X, 0x = 0 and by
continuty of scalar mult there exists ε > 0 such that ∀|α| < ε, αx ∈ M . Then
choose n > 1/ε, x ∈ nM .

Now, by the surjectivity of T , Y = ∪nTM = ∪ ¯nTM . By the Baire category
theorem, one of the ¯nTM ⊃ V an open set which is nonempty.

We conclude step 1 by noticing that ¯TG ⊃ ¯TM − TM = ¯TM − ¯TM ⊂
1
nV −

1
nV 3 0.
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Step 2: Now, we must show that TG contains an open neighborhood of 0,
Bε0(0) = {x ∈ X|d(x, 0) < ε0}.

By the first step, T (Bε1(0)) ⊃ Bη0(0) if η0 is sufficiently small.
Given y ∈ Bη0(0), there exists x1 ∈ Bε0(0) such that d(y, Tx1) < ε0/2.
By linearity, we also have T (Bε0/2(0)) ⊃ Bη0/2(0). Hence there is x2 ∈

Bε0/2(0) such that d(y − Tx1, Tx2) < η0/4 iff d(y − Tx1 − Tx2, 0) < η0/4.
PRoceeding inductively, we obtain a sequence of corrections xk ∈ Bε0/2k(0)

such that d(y − T (
∑
xk), 0) < η0/2k+1.

By the triangle inequality, zk =
∑
xn is Cauchy, and by the completeness of

X, there exists x ∈ B2ε0(0) such that zk → x. By the continuity of T , Tx = y.
For general open 0 ∈ G ⊂ X, find B2ε0(0) ⊂ G.
Step 3: Now, given G ⊂ X open, x ∈ G, let ε0 > 0 such that x+B2ε0(0) ⊂ G.

Then TG ⊃ Tx+ T (B2ε0(0)) ⊃ Tx+Bη0(0).

Corollary 10.3 (Closed Graph Theorem). Let X,Y be Frechet Spaces and
T : X → Y a linear map. Also, let ΓT = {(x, y) ∈ X × Y |y = Tx} be the graph
of T . Then T is continuous iff ΓT is closed.

Proof. (only if): Assume that T is continuous. Consider a sequence {(xk, Txk)} ⊂
ΓT . Assume that this sequence converges to (x, y). By continuity, xk → x im-
plies Txk → Tx, so (x, y) ∈ ΓT .

(if): Now assume that ΓT is closed. Then ΓT is a vector subspace of X ×Y ,
and so by closedness, it’s a Frechet space. Look at the projection maps πX , πY .
Both maps are continuous and πX is surjective and invertible at the set theoretic
level, and so π−1

X is continuous by the open mapping theorem. And so T =
πY ◦ π−1

X , which is continuous.

Hahn-Banach Theorem
This is a machine to generate lots of continuous linear maps.

Definition 10.1 (Normed Linear Space). A normed linear space is defined like
a Banach space, but without the requirement of completeness.

Observation: A subset U ⊂ X of a normed linear space is bounded in the
sense of Frechet Spaces iff supx∈U |x| < ∞. Alinear map T : X → Y between
normed linear spaces is bounded iff supx∈X,|x|≤1 |Tx| <∞.

Definition 10.2 (B(X,Y )). Let X,Y be normed linear spaces (ie, F-spaces or
B-spaces) then B(X,Y ) denotes the set of all continuous linear maps X → Y .

If Y = R or C, the underlying field, then B(X,Y ) = X∗ is called the dual
space. Furthermor, B(X,Y ) is equipped with a norm.

Define |T | = sup|x|≤1 |Tx| provided that X,Y normed.

Lemma 10.4. Assume that X,Y are normed and Y is complete. Then so is
B(X,Y ).
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Proof. Let {Tn}n≥1 be a Cauchy sequence in B(X,Y ). Then ∀x ∈ X, {Tnx} ⊂
Y is Cauchy, and since |Tnx − Tmx| ≤ |(Tn − Tm)x| → 0, then limn→∞ Tnx
exists for all x ∈ X. The map T : x→ limn→∞ Tnx is linear and bounded, since
limn→∞ |Tnx| ≤ lim infn→∞ |Tn||x| = C|x|.

In particular, the dual of a Banach space is a Banach Space.

Theorem 10.5 (Hahn-Banach Theorem). Let X be an R-vector space and
p : X → R a function satisfying p(x+ y) ≤ p(x) + p(y) and p(αx) = αp(x) for
α ≥ 0. Further, let Y ⊂ X be a subspace and f : Y → R a linear map with
f(x) ≤ p(x) for all x ∈ Y . Then there exists a real linear map F : X → R such
that F |Y = f and f(x) ≤ p(x) for all x ∈ X.

Proof. We implement Zorn’s Lemma. Let S = {(g, Ỹ )|Ỹ ⊃ Y, g : Ỹ → R and
g|Y = f and g(x) ≤ p(x)∀x ∈ Ỹ }.

We say that h ≥ g if h extends g. Claim: This satisfies the property of the
statement of Zorn’s Lemma

Let E ⊂ S be totally ordered. Define gE : ∪n∈E Ỹn → R by gE |Ỹn = h. This
is consistant by the total orderedness of E. Then gE is an upper bound.

By Zorn, we choose a maximal element, g ∈ S. So now we simply need to
show that g is defined on all of X. We argue by contradiction. Assume that
Y ⊂ Ỹg ( X. Choose y1 ∈ X \ Ỹg. Define Ỹ = span{y1, Ỹg} ) Ỹg, if y ∈ Ỹ ,
y = αy1 + y0, α ∈ R and y0 ∈ Ỹg. Try an ansatz, g1(y) = cα + g(y0) for some
c ∈ R.

Question: Can we arrange that g1(y) ≤ p(y)?
Yes, by algebraic trickery: y0, ỹ0 ∈ Ỹg, g(ỹ0) − g(y0) = g(ỹ0 − y0) ≤ p(ỹ0 −

y0) ≤ p(ỹ0 + y1) + p(−y0 − y1), which implies that −p(−y0 − y1) − g(t0) ≤
p(ỹ0 + y1)− g(ỹ0).

So we have −∞ ≤ supy0∈Ỹg −p(−y0 − y1) − g(y0) ≤ inf ỹ0∈Ỹg p(ỹ0 + y1) −
g(ỹ0) <∞, and take c to be in the middle.

So now p(y + y1)− g(y) ≥ 0 and −p(−y − y0)− g(y) ≤ c for all y ∈ Ỹg.
Now, for y2 = y0 + αy1 ∈ Ỹ , g(y2) = g(y0) + αc ≤ p(y0 + αy1)?
This is true if α = 0, α > 0, p(y0 +αy1) = αp(y0/α+ y1) ≥ α[c+ g(y0/α)] =

αc + g(y0) or α < 0, p(y0 + αy1) = |α|p(y0/|α| − y1) ≥ −|α|(g(−y0/α) + c) =
g(y0) + cα.

11 Lecture 11

Today we will duscuss applications of Hahn-Banach, in particular, reflexivity of
Banach Spaces.

Theorem 11.1. Let Y ⊂ X a normd linear space over R or C. Let y∗ ∈ Y ∗,
then there exists x∗ ∈ X∗ such that x∗|Y = y∗ and |x∗| = |y∗|.

Proof. If we are over R, then we define p(x) = |x||y∗|, and y∗(x) = p(X). Then
for all x ∈ Y by Hahn-Banach???? Stupid eraser, I hate this class.
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Now we assume that X is a C-vector space. Then we write x∗(y) = f1(y) +
if2(y) for fi : Y → R. Then the fi are real linaer and so |f1(y)| ≤ |x∗(y)| ≤
|y∗||y|, and we apply Hahn-Banach to f1(y).

This gives us F1 : X → R and F1|Y = f1. So |F1(x)| ≤ |y∗||x|. Now we
define x∗(x) = F1(x) − iF1(ix) which is, a priori, just R-linear. But actually
it is C-linear, we just need to check that x∗(ix) = ix∗(x), which holds because
x∗(ix) = F1(ix)− iF1(−x) = iF1(x) + f1(ix) = i(F1(x)− iF1(ix)).

Further, we claim that x∗|Y = y∗ = f1(y) + if2(y), this is because y∗(iy) =
f1(iy) + if2(iy) = iy∗(y) = if1(y) − f2(y) and so f2(y) = −f1(iy) and f∗(y) =
f1(y)− if1(iy) for all y ∈ Y , and so F1(x)− iF1(ix)|Y = y∗.

We now only need to check that |x∗| ≤ |y∗| for arbitrary x ∈ X. Write
x∗(x) = reiθ for r > 0 and θ ∈ R. Then |x∗(x)| = x∗(e−iθx) = F1(e−iθx) ≤
|y∗||e−iθx| = |y∗||x|.

Consequences of this theorem: One can use leinear functionals (continuous)
to separate points, or points and closed subspaces.

Lemma 11.2. Let Y ⊂ X normed linear over R or C and x ∈ X satisfies ???

Proof. We construct x∗ first on linear span of x and Y and then extend it via
the preceding theorem to all of X. Let Z = span{x, Y }. So if z ∈ Z, z = αx+y
for a unique α ∈ F and y ∈ Y . Then define x∗(z) = α.

We need to check that x∗ : Z → R or C satisfies teh necessary bound
|x∗| = 1/d. |z| = |y + αx| = |α||y/α + x| ≥ |αd| by the definition of d for all
α 6= 0. Thus, |x∗(z)| ≤ |z|/d⇒ |x∗| ≤ 1/d.

To see that |x∗| ≥ 1/d, choose yn ∈ Y such that |x − yn| → d as n → ∞.
Then x∗(x− yn) ≤ |x∗||x− yn| → |x∗|d and x∗(x− yn) = 1, so 1 ≤ |x∗|d.

Corollary 11.3. Let Y ⊂ X a closed linear subspace, X normed. Let x ∈ X\Y ,
then there exists x∗ : X → F such that x∗(x) = 1 and x∗|Y = 0.

Proof. Note that
∫
y∈Y |x− y| > 0.

Corollary 11.4. ∀x ∈ X,x 6= 0,∃x∗ ∈ X∗ with |x∗| = 1 and x∗(x) = |x|.

Proof. Simply use Y = {0}.

Alternative statement of this: If x1 6= x2 ∈ X, then there is a functional
x∗ ∈ X∗ such that x∗(x1) 6= x∗(x2).

That is, there are enough continuous linear functions to separate points.

Corollary 11.5. Let x ∈ X a normed linear space. Then |x| = supx∗∈X∗,|x∗|≤1 |x∗(x)|.

The last corollary is important, because of the following relation: (X∗)∗ =
X∗∗.

There is a canonical map X → X∗∗ giveb by x ∈ X maps to x̂ = κ(x) ∈ X∗∗.
Then x̂(y∗) = y∗(x) for an arbitrary element y∗ ∈ X∗.

This is an element of X∗∗ because |x̂(y∗)| ≤ |y∗||x|, x̂ : X∗ → F is bounded
and linear. On account of the preceding corollary, |x̂| = |x|, as |x̂| = supy∗∈X∗,|y∗|≤1 |y∗(x)| =
|x|.
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This says that the canonical map κ : X → X∗∗ is an isometry onto a subspace
of X∗∗.

Issue: When is this map onto? When it is, X ' X∗∗. This is only possibly
if X is a Banach Space!

Important examples where X ' X∗∗: If X is a Hilbert space, say Lp(X) for
1 ≤ p ≤ ∞ are examples that are ”reflexive.”

Definition 11.1 (Reflexive). Let X be a Banach space. If κ is surjective, then
X is called reflexive.

Why is it important? Reflexive X has certain weak completeness and for
bounded subsets of X, weak compactness properties.

Definition 11.2 (Separable). Let (X, d) be a metric space. It is called separable
if there exists a countable dense subset.

Definition 11.3 (Weakly Convergent). Let X be a normed linear space or a
Frechet space. A sequence {xn} ⊂ X is called weakly convergent provided that
there exists x ∈ X such that x∗(x) = limn→∞ x∗(xn) for all x∗ ∈ X∗.

If X = L2(R), then look at a travelling compactly supported wave. Let
fn be the wave front starting at n. This converges weakly to zero, but is not
convergent.

If xn is weakly convergent, and x satisfying the above is called a weak limit.
A subset A ⊂ X is called weakly sequentially compact provided that each
sequence xn ∈ A has a weakly convergent subseuqnece. A sequence is called
weakly Cauchy proved that {x∗(xn)} ∈ F is a Cauchy sequence for all x∗ ∈ X∗.

Theorem 11.6 (Main Theorem on Reflexive Banach Spaces). A reflexive Ba-
nach space is weakly complete. A subset of a reflexive Banach Space is weakly
sequentially compact iff it is bounded.

We will prove this in a sequence of steps.

Lemma 11.7. A weakly convergent sequence in a normal linaer space has a
unique limit.

Proof. Assume there are two. Contradiction with the point separation property.

Lemma 11.8. Let {xn}n≥1 a sequence in Xa normed reflexive space. Then if
sup |x∗(xn)| <∞ for all x∗ ∈ X∗, then supn |xn| <∞.

Proof. Consider x̂)n ⊂ X∗∗. By assumption, supn |x̂n(x∗)| < ∞ for all x∗ ∈
X∗. By the principle of uniform boundedness, there exists δ > 0 such taht
|x̂n(x∗)| < 1 if |x∗| < δ.

Thus, |x̂n| < 1/δ and since the embedding is isomoetric, |xn| < 1/δ

Lemma 11.9. A weakly convergent sequence {xn}n≥1 in a normed linear space
is bounded, it’s limit x is in the closure of the linear span of the xi and |x| ≤
lim inf |xn|.
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Proof. Boundedness follows from preceding lemma. Assertion about the lin-
ear span follows from Hahn-Banach. For final inequality, we have |x∗(x)| =
limn→∞ |x∗(xn)| ≤ lim inf |x∗||xn|. Then we use |x| = sup|x∗|<1 |x∗(x)|.

Lemma 11.10. If the dual X∗ of a normed linear space is separable, then so
is X.

Proof. Let {x∗n}n≥1 ⊂ X∗ be a countable dense set and choose xn ∈ X such
that |xn| ≤ 1 and |x∗n(xn)| ≥ |x∗n|/2.

Claim: The set of finite linear combinations L of the xn with rational coef-
ficients is dense in X.

If not, then L̄ 6= X, by one of the collorlaries of Hahn-Banach, there exists
x∗ ∈ X∗ \ {0} such that x∗(L) =?. BY density, let x∗ni → x∗, then |x∗ − x∗ni | ≥
|(x∗ − xni)(xni)| = |xni(xni)| ≥ |x∗ni |/2.

Since |x∗ − x∗ni | → 0, we have that |x∗ni | → 0,a nd so x∗ = 0.

12 Lecture 12

Reflexivity: Main Theorem: If X is a reflexive Banach Space, then A ⊂ X is
weakly sequentially compact iff bounded. Here A needn’t be a subspace.

Last time we proved Lemma -1 which said that a weakly convergent sequence
has a unique limit and lemma 0 which says that if {xn}n≥1 ⊂ X a normed linear
space. Assume that supn |x∗(xn)| <∞ for all x∗ ∈ X∗, then supn |xn| <∞. In
particular, if {xn} is weakly convergent or weakly cauchy, then supn |xn| <∞.

Lemma 12.1. The limit x of a weakly convergent sequence {xn} is in the
closure of the linear space of the xn and |x| ≤ lim supn |xn|.

Lemma 12.2. If the dual X∗ of a normed linear space is separable, so is X.

We will now prove the main theorem:

Theorem 12.3. If X is a reflexive Banach Space, then A ⊂ X is weakly se-
quentially compact iff bounded.

Strategy for the if part(hard): Given {yn} ⊂ A we want a subsequence {ynk}
such that y∗(ynk) converges for all y∗ ∈ X∗. As (Y ∗)∗ = Y ∗∗ = Y =closure of
the span of the yi’s.

Lemma 12.4. Let X,Y be Banach spaces and Tn : X → Y bounded linear
operators. Then limn→∞ Tnx = Tx exists and defines a continuous linear map
iff

1. The limit exists for a fundamental set: ie, one whose linear span is dense
in X.

2. ∀x ∈ X, supn |Tnx| <∞.
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Proof. Only if is clear. For if, assume Tnx converges for D ⊂ X fundamental.
NBy the principle of uniform boundedness, given ε > 0∃δ > 0 such that |Tnx| <
ε for all x, |x|, δ and all n.

Given x ∈ X, choose y ∈ span(D) such that |x − y| < δ. Further choose
n0 = n0(ε, y) such that ∀n,m ≥ n0(ε, y), |Tny − Tmy| < ε.

Thus, |Tn(x)−Tm(x)| ≤ |Tn(x)−Tn(y)|+|Tn(y)−Tm(y)|+|Tm(y)−Tm(x)| ≤
3ε by our choices. Hence the sequence Tnx is Cauchy for every x ∈ X.

???
Hence T = limn→∞ Tn : X → Y is continuous.

Lemma 12.5 (Inheritance of Reflexivity by Closed Subspaces). A closed sub-
space Y of a reflexive Banach space X is also reflexive.

Proof. Let X∗ ⊂ Y ∗. Then r : X∗ → Y ∗ gives rise to r∗ : (Y ∗)∗ → X∗∗. To
define it, given y∗∗ ∈ Y ∗∗, ???

So we have κ : X → X∗∗ an isometric embedding canonically. So κ(x)(x∗) =
x∗(x) for all x∗ ∈ X∗. Assume that we have shown that (N) κ−1(r∗(Y ∗∗)) ⊂ Y .
Let’s conclude the proof from (N). Given y∗∗ ∈ Y ∗∗. Then r∗(y∗∗) ∈ X∗∗.
Further, given an arbitrary element of y∗ ∈ Y ∗, we can choose an extension
x∗ ∈ X∗ such that r(x∗) = y∗. THis is possible by a corollary of Hahn-Banach.

Now we have y∗∗(y∗) = y∗∗(r(x∗)) = r∗(y∗∗)(x∗) = x∗∗(x∗) = κ(x)(x∗) by
the reflexivity of X. This is then x∗(x) = y∗(x). And so y∗∗ = κ(x).

So now we must verify (N). That is, κ−1(r∗(Y ∗∗)) ⊂ Y .
Assume not. Then there exists x ∈ κ−1(r∗(Y ∗∗)) \ Y . Now using that

Y ⊂ X is closed, by one of the corollaries of Hahn-Banach, there exists x∗ ∈ X∗
such that x∗(x) = 1 and x∗|Y = 0. Thus r(x∗) = 0. To get teh contradica-
tion, we write x = κ−1(r∗(y∗∗)) for some y∗∗ ∈ Y ∗∗. Then 0 = y∗∗(r(x∗)) =
r∗(y∗∗)(x∗) = x∗(x) = 1 contradiction.

So now we finally prove the main theorem.
Only if: Assume that A ⊂ X is a weakly sequentially compact set and that

X is reflexive. Then we need to show that A is bounded. If not, then there
exists a sequence contained in A with |xn| = n for all n ≥ 1. By weak sequential
compactness, we have {xnk} a subsequence that converges weakly. By lemma 1
we have that {xnk} is bounded, which is a contradiction.

If(hard): Use Cantor diagonal trick. Assume that X is reflexive and A ⊂ X
bounded. Let {yn} ⊂ A and let Y be the closure of the span of the yi. By
lemma 4, Y = Y ∗∗. Since (Y ∗)∗ ' Y , and Y is separable, by lemma 2 we have
that Y ∗ is separable. (This is where reflexivity is used).

Hence, choose a dense countable set {y∗n} ⊂ Y ∗. By the boundedness
of {y∗1(yn)} ⊂ C, we can choose a subsequence {yn,i}, {n1i} ⊂ N such that
y∗1(yn1i) converges. Then choose a subsequence {y2i} such that y∗2(yn2i) con-
verges. INductively, choose {ynki} ⊂ {ynk−1,i} such that y∗` (ynki) converges for
` ∈ {1, 2, . . . , `}.

Then the sequence {ynkk} has teh property that {y∗` (ynkk) ⊂ C converges
for all `.
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We can interpret this as saying that {κ(ynkk)(y∗` )} converges for all y`6∗. By
lemma 3, we conclude that {κ(ynkk)(y∗)} ⊂ C converges for all y∗ ∈ Y ∗ and the
limit is defined as an element of Y ∗∗ ' Y . So limk→∞ κ(ynkk) = y∗∗ = k(y0)⇒
y(ynkk)→ y∗(y0) for all y∗ ∈ Y ∗. Thus, {ynkk} weakly converges to y0.

Corollary 12.6. A reflexive space is weakly complete.

Proof. If {xn} is a weakly cauchy sequence, then it is bounded. Now apply the
main theorem.

Examples of reflexive Banach Spaces:
Hilbert Spaces, Lp(X) for 1 < p <∞.
Remarks on Hilbert Spaces in the Abstract

Lemma 12.7 (Cauchy-Schwarz Inequality). |(x, y)| ≤
√

(x, x)
√

(y, y).

Proof. 0 ≤ (x + αy, x + αy) = (x, x) + |α|2(y, y) + α(y, x) + ᾱ(x, y). This is
‖x‖2 + |α|2‖y‖2 + 2<(α(y, x)) Now set α = −(x, y)/‖y‖2.

Lemma 12.8. Let x ∈ H and K ⊂ H have the property that 1
2 (K + K) ⊂ K

That is, K is convex. Choose ki in K such that limi→∞ |x−ki| = infk∈K |x−k|.
Then {ki} converges.

Proof. |ki − kj |2 = 2|x− ki|2 + 2|x− kj |2 − 4|x− (ki + kj)/2|2
i,j→∞→ stuff.

Lemma 12.9. The orthogonal complement M⊥ of a closed linear subspace M ⊂
H is a closed linear subspace, and H = M ⊕M⊥.

Proof. Closedness of M⊥ follwos from Cauchy-Schwartz inequality
Now we must show that M ⊕M⊥ is H. Assume that we are given x ∈ H.

We need to show that there exists m ∈ M , m̃ ∈ M⊥ such that x = m + m̃.
Choose an m such that |x−m| = inf |x− k| for k ∈M . This is possibly by the
lemma.

Define m̃ = x−m. Need to show that m̃ ⊥M . To show that m̃ ∈M⊥, take
|x−m−αm1| ≥ infk∈M |x−k| = |x−m| for some α ∈ C, m1 ∈M arbitrary. Then
0 ≤ |x−m−αm1|2−|x−m|2 = |α|2|m1|2−α(m1, x−m)− ᾱ(x−m,m1) and set
α = λ(x−m,m1) for λ ∈ R. Then λ2|m1|2|(x−m,m1)|2−2λ|(x−m,m1)|2 = 0.

If (x−m,m1) 6= 0, for some m1 ∈M , then choose λ small enough. Contra-
diction.

13 Lecture 13

We are looking at Hilbert Spaces
Last time, we proved the lemma

Lemma 13.1. M ⊂ H a subspace which is closed. Then H = M ⊕M⊥.
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Theorem 13.2 (Riesz Representation Theorem). For every y∗ ∈ H∗, there
exists a unique y ∈ H such that y∗(x) = 〈x, y〉 for all x ∈ H.

The map G taking y∗ → y is a conjugate linear isometric isomorphism
H∗ → H with |y∗| = |y|.

Proof. Introduce M = {x ∈ H|y∗(x) = 0}. Then M is closed by the continuity
of y∗, and if y∗ 6= 0, it is a proper subspace. Therefore, there exists y1 ∈M⊥.

y∗(x − y∗(x)y1/y
∗(y1)) = 0 for all x, and so 〈x − y∗(x)y1

y∗(y1) , y1〉 = 0, and so

〈x, y1〉 = y∗(x) 〈y1,y1〉y∗(y1) .

Replace y1 by y = αy1, with α =
¯y∗(y1)

〈y1,y1〉 gives us 〈x, y〉 = y∗(x), so such a y
exists.

For uniquenessm if also y∗(x) = 〈x, ỹ〉, then 〈x, y − ỹ〉 = 0 for all x ∈ H, so
y = ỹ.

Now the isometric property: By Cauchy-Schwartz, we have |〈x, y〉| ≤ |y||x|,
and |y∗| ≤ |Y |, but also 〈y, y〉 = |y||y| ⇒ |y∗| ≥ |y|.

Theorem 13.3. A Hilbert Space H is reflexive. That is, the canonical embed-
ding κ : H → H∗∗ is onto.

Proof. First equip H∗ iwth teh following Hilbert Space structure 〈x∗, y∗〉 =
〈G(y∗), G(x∗)〉, and now apply Riesz to H∗. Thus, given y∗∗ ∈ H∗∗, y∗∗(x∗) =
〈x∗, G(y∗∗)〉, can call G(y∗∗) = y∗. Then y∗∗(x∗) = (x∗, y∗) = (G(y∗), G(x∗)) =
x∗(G(y∗)) and so κ(G(y∗)) = y∗∗.

Example: H = L2(X, dµ) has H∗ = L2(X, dµ).
We want to generalize this. Lp(X) for 1 < p < ∞ has (Lp)'Lq where

1/p+ 1/q = 1, and so Lp is reflexive.

13.1 Radon-Nikodým Theorem

The absolute continuity of measures.

Definition 13.1 (Signed Measure). A signed measure ν on a σ-algebra M of
subsets of X is a function v : M → R ∪ {∞} satisfying

1. v(E) ∈ (−∞,∞] for all E ∈M

2. Countably additive.

Example 13.1. Let f be integrable in the extended sense and f− = min{f, 0} ∈
L1. Then v(E) =

∫
E
fdµ is a signed measure.

Definition 13.2 (Total Variation). Let ν be a signed measure, then the total
variation |v| is given by |v|(E) = sup∪∞j=1Ej=E,Ej disjoint

∑∞
j=1 |v(Ej)|

Theorem 13.4. Total variation is a positive measure satisfying |v(E)| < |v|(E)
for all E in M .
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Proof. Only countable additivity needs a proof.
Let {Ej}j≥1 ⊂ M disjoint. We check that

∑
j≥1 |v|(Ej) ≤ |v|(E), with

E = ∪Ej . We also will check the converse inequality.
Choose for each j a number αj < |v|(Ej). Hence, by definition, there exists a

disjoint decomposition Ej = ∪i≥jFij with αj ≤
∑
i |v(Fij)|, and hence

∑
αj ≤∑

ij |v(Fij)|, but E = ∪ijFij , and so
∑
αj ≤ |v|(E). Now let αj → |v|(Ej) for

all j, and we get
∑
j≥1 |v|(Ej) ≤ |v|(E).

Write E = ∪Fk, then Ej = ∪k(Ej ∩ Fk), adn Fk = ∪j(Fk ∩ Ek). So∑
k |v(Fk)| =

∑
k |
∑
j v(Fk∩Ek)| ≤

∑
jk |v(Fk∩EJ)| ≤

∑
j |v|(Ej) by switching

order of summation, and so we are done.

Given an arbitrary signed measure v, we can write v = v+ − v− where
v+ = 1

2 (|v|+ v) and v− = 1
2 (|v| − v) with v± ≥ 0.

Thus, statements about signed measures can be reduced to statements about
positive measures.

Definition 13.3 (σ-finite). A signed measure is called σ-finite if |v| is. This
means, X = ∪∞j=1Ej, |v|(Ej) <∞.

If we take v, µ with µ positive and v signed measure, we want to decompose
v into ’atomic part’ singular with respect to µ and an absolutely continuous
part with va(E) = 0 if µ(E) = 0. v(E) =

∫
E
fdµ + δ0(E). If X = R and dµ is

lebesgue measure, then f will be an L1 function.

Definition 13.4 (Mutually Singular). Two signed measures ν, µ are called mu-
tually singular if there exist disjoint sets A,B ∈ M with v(E) = v(E ∩ A) and
µ(E) = µ(E ∩B). We write this as ν ⊥ µ

Definition 13.5 (Absolutely continuous). ν a signed measure, µ positive, then
ν is absolutely continuous with respect to µ proved that ν(E) = 0 whenever
µ(E) = 0. This is written ν << µ.

Remark 13.1. If ν ⊥ µ and ν << µ, then ν ≡ 0.

Example 13.2. ν given by ν(E) =
∫
E
fdµ for f− ∈ L1(dµ) is absolutely

continuous with respect to µ.

Lemma 13.5. Let |ν| finite and ν << µ. Then ∀ε > 0, ∃δ > 0 such that (∗)
µ(E) < δ ⇒ |ν|(E) < ε.

Proof. Assume that (*) fails. Then ∃ε > 0 such that ∀n ≥ 1, there exists En
with µ(En) < 2−n but |v|(En) ≥ ε. Then consider E∗ = lim supn→∞En =
∩∞n=1 ∪k≥n Ek.

µ(∪k≥nEk) ≤
∑
k≥n µ(Ek) ≤ 2−n+1, and so µ(E∗) = limn→∞ µ(∪k≥nEk) =

0, and so |v|(∪k≥nEk) ≥ ε.
|v|(E∗) = limn→∞ |v|(∪k≥nEk) ≥ |ε|, and we need |ν|(X) <∞ for this.

Theorem 13.6 (Radon-Nikodým). Let µ be a σ-finite positive measure on M
and ν a σ-finite signed measure, then there exist unique signed measures va, vs
on M such that va << µ, vs ⊥ µ and v = va + vs. Furthermore, we have
va(E) =

∫
E
fdµ for some extended µ-integrable function f .
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Proof. Stepwise: first we assume that both µ, ν are finite and positive. The stat-
egy, due to von Neumann, is to use Riesz Representation Theorem for Hilbert
spaces.

Define ρ = v+µ, and now introduce a functional L2(X, dρ) given by `(φ) =∫
X
φ(x)dρ(x) for φ ∈: L2(X, dρ). We calim that ` is a continuous functional.
|`(φ)| ≤ (

∫
|φ|2dρ)1/2(

∫
dρ)1/2 = ‖φ‖L2(ρ(X))1/2. Hence, by Riesz, there is

a g ∈ L2(dρ) such that `(φ) =
∫
X
φ(x)g(x)dρ(x).

Claim: 0 ≤ g ≤ 1 almost everywhere. To check this, use smart test functions
for φ. That is, let E ∈ M , φ = χE . Then `(χE) =

∫
X
χEdν = ν(E) =∫

E
g(x)dρ, so ν(E)/ρ(E) =

R
E
g(x)dρ

ρ(E) , and if |{x|g(x) > 1}| 6= 0, then E =
{x|g(x) > 1} so we have this ratio is greater than 1, contradiction.

Hnece, by Riesz, there exists g ∈ L2(X, dρ) with
∫
X
φ(x)dν(x) =

∫
X
φ(x)g(x)dρ(x) =∫

X
φ(x)g(x)(dν + dµ)(x),

∫
X

(φ(x)(1 − g(x))dν(x) =
∫
X
φ(x)g(x)dµ(x), and

A = {x|g(x) < 1}, B = {x|g(x) = 1}. Then we define νa(E) = ν(E ∩ A)
and νs(E) = ν(E ∩B).

Claim: va is absolutely continuous.
φ(x) = χE∩A(1 + g + g2 + . . . + gn)(x), and so

∫
X
φ(x)(1 − g(x))dν(x) =∫

E∩A(1− gn+1(x))dν(x), and taking n→∞, we get
∫
E∩A dν(x) = va(E).∫

X
φ(x)g(x)dµ(x) =

∫
E∩A g(1 + g + . . . + gn)dµ as n → ∞, by monotonic-

ity, this is
∫
E∩A

g
1−gdµ, and in particular, g

1−gχA ∈ L1(dµ). So va(E) =∫
E

g
1−gχAdµ⇒ va(E) absolutely continuous, and so we have the desired repre-

sentation.

14 Lecture 14

Radon-Nikodým Theorem:
Step 1: Assume that ν, µ positive finite and set ρ = ν + µ > µ. Then

0 ≤ g ≤ 1,
∫
X
f(x)dν(x) =

∫
X
g(x)dµ(x) for all f ∈ L2(dρ). iff

∫
X
f(x)(1 −

g(x))dν(x) =
∫
X
f(x)g(x)dµ(x).

A = {x ∈ X|g < 1} and B = {x ∈ X|g = 1}, then µ(B) = 0, and
va(E) = v(E ∩A) and vs(E) = v(E ∩B)

Now νa(E) =
∫
E

g
1−gdµ where g/(1− g) ∈ L1(dµ).

Step 2: Assume that ν, µ are positive, σ-finite. X = ∪Ei such that ν(Ei) +
µ(Ei) <∞. Then using step 1, we write νi(E) = ν(E ∩Ei) = νi,a(E) + νi,s(E).
Define νa =

∑
νi,a and νs =

∑
νi,s, we have ν = νa + νs.

νa(E) =
∫
E

∑
fi(x)dµ(x) where each fi is produced for νi,a by step 1. Take

f =
∑
fi, integrable in the extended sense.

Step 3: If ν is signed, then ν = ν+ − ν−.

Theorem 14.1 (Vitali’s Theorem). Let (X,M,µ) be a measure space, µ positive
and if A,B ∈ M , then set d(A,B) = arctan(A \ B ∪ B \ A). Then M/ ∼ with
A ∼ B ⇐⇒ d(A,B) = 0 is a metric space. (Exercise)

Lemma 14.2. M/ ∼ is a complete metric space.

32



Proof. {En}n≥1 is a Cauchy sequence, then choose a subsequence {Eni} such
that d(En, Eni) < 2−i for n ≥ ni.

Exercise: Show that En → E∗, where E∗ = ∪i ∩j≥i Enj .

Definition 14.1 (µ-continuous). A scalar valued set function λ : M → C is
called µ-continuous if ∀ε > 0, there exists δ > 0 such that |λ(E)| < ε if µ(E) < δ.

Observation: Such a function descends to a function λ : M/ ∼→ C proved
that λ is additive.

Indeed, it becomes a continuous function on M/ ∼. To see it, Em → E in
M/ ∼ implies that µ(En\E)→ 0 and µ(E\Em)→ 0 and so λ(E\(En∩Em))→
0 and λ(E \ (En ∩ Em))→ 0

And so λ(E)− λ(Em) = λ(E \ Em ∩ E)− λ(Em \ Em ∩ E)→ 0.

Lemma 14.3. The set operation A,B → A ∪ B,A ∩ B,A∆B are well-defined
and continuous on (M/ ∼, d)

Proof. Exercise

Theorem 14.4. Let (X,M,µ) be a measure space and {λn} be µ-continuous
additive set functions on M . If limn→∞ λn(E) exists for all E ∈ M , then
limµ(E)→0 λn(E) = 0 uniformly in n.

That is, for all ε > 0, there exists δ > 0 such that |λn(E)| < ε if µ(E) < δ
for all n

Proof. Application of Baire.
λn discends to a continuous function on (M/ ∼, d) for all n, and hence for

all ε ≥ 0, the sets An,m = {E ∈M |, |λn(E)−λm(E)| ≤ ε} are closed, as well as
Ap = ∩n,m≥pAn,m

Since limn→∞ λn(E) exists, for all E ∈ M , we have M/ ∼= ∪p≥1Ap. By
Baire, at least one of the Ap has nonempty interior. So there exists q ∈ N and
r > 0 such that |λn(E) − λm(E)| ≤ ε provided µ(E∆A) < r for some A ∈ M ,
n,m ≥ q.

Now, choose δ with 0 < δ < r such that |λn(B)| < ε whenever µ(B) < δ for
n = 1, 2, . . . , q.

Claim: If B ∈M , then µ(B) < δ implies that λn(B) < 3ε for all n.
For n ≥ q:

|λn(B)| = |λq(B) + λn(B)− λq(B)|
= |λq(B) + λn(A ∪B)− λq(A ∪B)− [λn(A \B)− λq(A \B)]
≤ λq(B)|+ |lambdan(A ∪B)− λq(A ∪B)|+ |λn(A \B)− λq(A \B)|
< 3ε

Theorem 14.5 (Vitali). Let 1 ≤ p ≤ ∞, (X,M,µ) a measure space and {fn} ⊂
Lp(dµ) such that fn → f pointwise almost everywhere. Then f is in Lp and
|fn − f |Lp → 0 if and only if
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1. limµ(E)→0

∫
E
|fn(x)|pdµ = 0 uniformly in n

2. ∀ε > 0, there exists Eε ∈M such that µ(Eε) <∞,
∫
Ecε
|fn|pdµ < ε for all

n.

Proof. If: First show that for all ε > 0, there exists Aε such that fn|Aε → f |Aε
uniformly and ‖fn|Acε‖Lp < ε and µ(Aε) <∞.

Proof with hint will be exercise.

Theorem 14.6 (Structure of the dual of Lp(dµ)). . Let 1 ≤ p ≤ ∞, 1/p+1/q =
1, then there is an isometric isomorphism between (Lp(dµ))∗ and Lq(dµ) via the
relation x∗(f) =

∫
X
g(x)g(x)dµ for all f ∈ Lp(dµ) with g(x) ∈ Lq(dµ).

Proof. Fairly easy to check that each g ∈ Lq(dµ) defines an x∗ ∈ (Lp(dµ))∗ via
this map, because continuity of x∗ is equivalent to boundedness of x∗, and by
Hölder’s Inequality, |

∫
g(x)f(x)dµ| ≤ ‖g‖Lq‖f‖Lp . Challenge: Show that each

x∗ is given by a suitable g ∈ Lq(dµ).
Step 1: Assume that µ(X) < ∞. Given x∗ ∈ (Lp(dµ))∗, we’ll introduce a

signed measure, apply Radon-Nikodým.
E ∈ M maps to x∗(χE). If E = ∪Ej , with Ej disjoint, then χE =

∑
χEi ,

in Lp.
x∗(χE) = x∗(χEi) = limN→∞ x∗(

∑N
i=1 χEi) = limN→∞

∑N
i=1 x

∗(χEi) =∑
x∗(χEi).
This implies that E → x∗(χE) is a signed measure. Further, since ‖χE‖Lp →

0 as µ(E) → 0, by Radon-Nikodým, there exists a g ∈ L1 such that x∗(χE) =∫
X
g(X)χE(x)dµ.
Then it is clear that also x∗(f) =

∫
)
Xg(x)f(x)dµ for all f a µ-simple func-

tion. Given a general f ∈ Lp(dµ), there exists fn ∈ Lp(dµ), µ-simple functions
such that fn → f almost everywhere and in Lp(dµ). Then also gfn → gf almost
everywhere.

We want to use Vitali to conclude that gfn → gf in the L1 sense. By
finiteness of µ(X), the 2nd condition of Vitali is trivially satisfied. We need to
check that limµ(E)→0

∫
E
g(x)fn(x)dµ = 0 uniformly in n.

To see this, introduce the set functions λn(E) =
∫
E
gfndµ. Note that

limλn(E) exists for all E ∈M .
So gfn → gf in L1 norm. As gf ∈ L1 and limn→∞

∫
X
gfndµ =

∫
X
gfdµ, we

have limn→∞ x∗(fn) = x∗(f).
All that remains is to conclude that g ∈ Lq. We use the ”bootstrapping”

procedure:
The function taking z → eiθ for z 6= 0 (that is, z/|z|) and taking 0 → 0.

Take Arg(z) to be theta and g1 = |g(−)|1/p Arg(g(−)). This is in Lp.
So x∗(g1) =

∫
X
|g|1+1/pdµ ≤ |x∗||g1|Lp = |x∗|

(∫
X
|g|dµ

)1/p = |x∗|(x∗(Arg g))1/p ≤
|x∗|1+1/p(µ(X))1/p and so g ∈ L1+1/p → L1+1/p+1/p2 → . . .
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(Lp(dµ))∗

Our tools are as follows:

Theorem 15.1 (Vitali-Hahn-Saks). Let (X,M,µ) be a measure space and {λn}
a set of µ-continuous additive set functions. If limn→∞ λn(E) exists for all
E ∈ M , then limµ(E)→0 λn(E) = 0 uniformly in n if and only if ∀ε > 0, there
exists δ > 0, such that if µ(E) < δ then |λn(E)| < ε for all n ≥ 1.

Theorem 15.2 (Vitali). Let 1 ≤ p < ∞ and (X,M,µ) a measure space with
{fn} ⊂ Lp(dµ) and fn → f pointwise. Then f ∈ Lp and fn → f in Lp sense iff

1. limµ(E)→0

∫
E
|fn|pdµ = 0 uniformly in n

2. ∀ε > 0, ∃Eε ∈M with µ(Eε) <∞ such that
∫
Ecε
|fn|pdµ < ε for all n.

Theorem 15.3 (Main Theorem: Structure of (Lp(dµ))∗). Let 1 < p <∞ and
1/p+ 1/q = 1. Then there is an isometric isomorphism between (Lp(dµ))∗ and
Lq(dµ) via the relation x∗(f) =

∫
X
g(x)f(x)dµ for all f ∈ Lp(dµ) and some

g ∈ Lq(dµ) and |x∗| = ‖g‖Lq .

Proof. Step 1: Assume that µ(X) < ∞. Let x∗ ∈ (Lp(dµ))∗. We define a
signed measure via ν(E) = x∗(χE). This is well defined, because ‖χE‖Lp ≤
‖1X‖Lp = (µ(X))1/p. To check that ν(E) is a measure, assume that E =

∐
Ej ,

then
∑
χEi = χE in Lp sense, and so it works out.

We claim that ν is µ-continuous or ν << µ. ν(E) ≤ (µ(E))1/p|x∗| ⇒ ν(E) =
0 if µ(E) = 0, and Radon-Nikodým says x∗(χE) = ν(E) =

∫
X
g(x)χE(x)dµ for

some g ∈ L1(dµ). So x∗(f) =
∫
X
g(x)f(x)dµ for any µ-simple function.

Now let’s assume that f ∈ Lp(dµ). Then choose a sequence {fn} of µ-
simple functions with fn → f almost everywhere and with respect to Lp.
By continuity of x∗, x∗(fn) → x∗(f). And x∗(fn) =

∫
X
g(x)fn(x)dµ. So

g(x)fn(x) → g(x)f(x) a.e. and want to show that this convergence is also in
the L1-sense.

Here we use the technical theorem that
∫
E
g(x)fn(x)dµ = x∗(χEfn) →

x∗(χEf) for all E ∈M .
Now we introduce a family of set functions νn(E) =

∫
E
g(x)fn(x)dµ, and

limn→∞ νn(E) exists for all E ∈M and so by Vitali-Hahn-Saks, limµ(E)→0

∫
νn(E)dµ =

0.
And so, we apply Vitali’s Tehorem to {g(x)fn(x)} and so we have g(x)fn(x)→

g(x)f(x) in L1. So gf ∈ L1(dµ) and x∗(f) =
∫
g(x)f(x)dµ. Make judi-

cious choice for f and define g1(x) = |g(x)|1/p Arg(g(x)) which is in Lp. Now
x∗(g1) =

∫
X
|g|1+1/pdµ ≤ |x∗|‖g‖Lp = |x∗|

(∫
|g(x)|dµ

)1/p, which is less than or
equal to |x∗|(|x|∗µ(X))1/p = |x∗|1+1/p(µ(X))1/p.

Thus, g ∈ L1+1/p. Now we define g2 = |g|(1+1/p)/p Arg(g).
Now ‖g2‖Lp =

(∫
X
|g(x)|1+1/pdµ

)1/p ≤ |x∗|1/p+1/p2(µ(X))1/p2 , and so
∫
X
|g(x)|1+1/p+1/p2dµ =∫

g(x)|g|1/p+1/p2 Arg(g(x))dµ = x∗(g2) ≤ |x∗|‖g2‖Lp = |x∗|1+1/p+1/p2(µ(X))1/p.
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Now proceed inductively to define gn = |g|1/p+...+1/pn Arg(g(x)).
∫
X
|g|1+...+1/pndµ ≤

|x∗|1+...+1/pn(µ(X))1/pn .
Note that

∑∞
i=0

1
pi = q, and so by Fatou’s Lemma, as |g|1+...+1/pn → |g|q,

we have
∫
|g|qdµ ≤ |x∗|q ⇒ ‖g‖Lq ≤ |x∗|, and by Hölder’s Inequality, we also

have |x∗| ≤ ‖g‖Lq , and so |x∗| = ‖g‖Lq .
Step 2: Now assume that µ(X) = ∞. Define M1 = {E ∈ M |µ(E) < ∞}

(note, not a σ-algebra, but it is an algebra). For E ∈M1, denote Lp(E) = {f ∈
Lp(dµ)|f |Ec ≡ 0}.

Then x∗E = x∗|Lp(E), and by what we’ve shown, for all E ∈ M1, there
exists gE ∈ Lq(E) such that x∗E(f) =

∫
X
gE(x)f(x)dµ for all f ∈ Lp(dµ). And

so ‖gE‖Lq ≤ |x∗|. Further, if E1, E2 ∈ M1, then gE1 |E1∩E2 = gE2 |E1∩E2 →∫
E1∩E2

gE1fdµ =
∫
E1∩E2

gE2fdµ.
Thus, ν(E) = ‖gE‖qLq(E) ≤ |x

∗|q increasing set function. Hence there exists
an increasing sequence En ∈M1 such that |x∗En | → supE∈M1

|x∗E | ≤ |x∗|.
Since gEn = gEn+k for all k ≥ 0, almost everywhere with respet to µ on En,

and so g(x) = limn→∞ gn(x) defined almost everywhere on ∪∞n=1En.
By the monotone convergence theorem, ‖g‖Lq = limn→∞ ‖gEn‖Lp = supE∈M1

|x∗E | ≤
|x∗|.

Our claim now is that g is the desired representative,
∫
X
fgdµ = x∗(f)∀f ∈

Lp(dµ).
To see this, first assume E ∈M1, E∩F = ∅ (where F = ∪En). ‖gE∪En‖

q
Lq =

‖gE‖qLq + ‖gEn}
q
Lq ⇒ gE = 0 almost everywhere.

Hence, if f ∈ Lp(E) and E ∈M1 arbitrary, then x∗(f) = χ∗E(f) =
∫
E
gE(x)f(x)fµ =∫

E\F gE(x)f(x)dµ +
∫
E∩F gE(x)f(x)dµ =

∫
X
g(x)f(x)dµ. We conclude by ob-

serving that ∪E∈M1L
p(E) is dense in Lp(dµ).

Corollary 15.4. For 1 < p < ∞ the space Lp(dµ) is reflexive, and hence
bounded subsets are weakly sequentially compact.

Proof. Let x∗∗ ∈ (Lp)∗∗ = (Lq)∗. Hence there exists y∗ ∈ (Lq(dµ))∗ such that
x∗ ∗ (x∗) = y∗(g) if x∗ is represented as x∗(f) =

∫
X
g(x)f(x)dµ. But then there

is h ∈ Lp such that y∗(g) =
∫
X
h(x)g(x)dµ = x∗(h), and so x∗∗ = κ(h).

Remark: It is true, provided that (X,M,µ) is σ-finite, that (L1)∗ = L∞,
however, (L∞)∗ 6' L1.

15.1 Distribution Theory

How to make sense of things like ∆u without assuming that u ∈ C2.
If φ ∈ C∞0 (Rn), then 〈∆u, φ〉 = 〈u,∆φ〉. So in a sense, distributions are in

the dual of C∞0 (Rn) (but not really, because it’s not a Banach space) There are
so many distributions because C∞0 is a VERY restricted space.

Definition 15.1 (Distribution). Let X ⊂ Rn open. Then a distribution u is a
linear functional on C∞0 (X) with the property that for every K ⊂ X compact
with nonempty interior (written K << Rn), there exist C ∈ R, k ∈ N such that
|u(φ)| ≤ C

∑
|a|≤k sup |∂aφ| for all φ ∈ C∞0 (K).
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Example 15.1. Let u ∈ L2(Rn). Define ∆u by its action on C∞0 (Rn) via
〈∆u, φ〉 = 〈u,∆φ〉. We claim that ∆u is a distribution.

Pick a K << Rn and let φ ∈ C∞0 (K). Then |〈∆u, φ〉| ≤ ‖u‖L2‖∆φ‖L2 ≤
‖u‖L2

∑
‖∂aφ‖L∞(m(K))1/2. Then k = 2 and C = ‖u‖L2(m(K))1/2.

Example 15.2. δx0 is defined by 〈δx0 , φ〉 = φ(x0), and derivatives of δx0 by
(−1)|α|〈δx0 , ∂

αφ〉.

Other examples: every f ∈ Lp for some 1 ≤ p ≤ ∞ is a distribution.

Definition 15.2 (Finite Order). A distribution is of finite order if the k from
the definition of the distribution is independent of K.

16 Lecture 16

References: Lp(dµ) stuff: Chapter in Dunford-Schwarz ”Linear Operators Vol
I”

Riesz Representation for Functions on C0(Rn) in Rudin ”Real and Complex
Analysis”

Distribution Theory Hörmander ”Partial Differentail Operators Vol I”
Last time, we introduced distributions.
The space of distributions is denoted D′(X).

Theorem 16.1. Let u ∈ D′(X), X ∈ Rn open. Assume u(φ) ≥ 0 whenever
φ ∈ C∞0 (X) is nonnegative. Then u is a positive measure µ on X such that
µ(K) < ∞ for all K << X by u(φ) =

∫
X
φ(x)dµ(x) for all φ ∈ C∞0 (X). In

particular, u is of order 0.

Strategy, show that u extends to C0
0 (X) and then use Riesz Representation

Theorem.
We will need the following lemma:

Lemma 16.2 (Smooth Urysohn). Given K ⊂ X compact, then there exists
χ ∈ C∞0 (X) such that χ ≡ 1 on X, 0 ≤ χ ≤ 1.

Proof. Let infx∈K,y∈Xc |x− y| ≥ 4ε > 0 for suitable ε > 0 (note that X ⊂ Rn).
Then choose χ̃ ∈ C∞0 (B1(0)),

∫
χ̃(x)dx = 1, 0 ≤ χ̃ and χ̃ε = ε−nχ̃(x/ε), then

supp χ̃ε ⊂ Bε(0), and
∫
χ̃ε(x)dx = 1.

Define χK2ε to be the characteristic function of the setK2ε = {y ∈ Rn| infx∈K |x−
y| ≤ 2ε}.

Set χ(x) = [χK2ε ∗ χε](x) =
∫

Rn χK2ε(x− y)χ̃ε(y)dy.
Then suppχ ⊂ K3ε and 1 ≥ χ(x) ≥ 0, χ ∈ C∞0 (X). We also have (1− χ) =

(1− χK2ε) ∗ χ̃ε.
If x ∈ K, then since y ∈ Bε(0) on supp χ̃ε, so x − y ∈ Kε on support of

integrand, so (1 − χK2ε))(x − y) = 0 if x ∈ U , y ∈ support of integral implies
that χK ≡ 1.

Now we prove the theorem.
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Proof. Given φ ∈ C∞0 (X), let K = suppφ << X and choose χ as inn the
lemma. Then χ sup |φ| ± φ ≥ 0, if φ real valued by the positivity of u.

u(χ supp |φ| ± φ) ≥ 0 implies that |u(φ)| ≤ u(χ) sup |φ|, and so ∀ compact
K ⊂ X, there exists C(K) such that for all φ ∈ C∞0 (K) ⊂ C∞0 (X) |u(φ)| ≤
C(K) sup |φ|.

Next assume that φ is complex valued. Then choose θ ∈ R such that
eiθu(φ) ∈ R. Then eiθu(φ) = u(eiθφ) = u(<(eiθφ)) + iu(=(eiθφ)) and by pre-
ceeding, |u(<(eiθφ))| ≤ C(K) sup |eiθφ| = C(K) sup |φ|.

Thus, for all K << X, φ ∈ C∞0 (K), there exists C(K) such that |u(φ)| ≤
C(K) sup |φ|.

By approximating arbitrary functions ψ ∈ C0
0 (X) by C∞0 (X) functions (with

support slight, but fixed, englargement of suppose ψ) we have that u extends
to a continuous linear function on C0

0 (X). Now conclude via Riesz.

Topology on D′(X). Use the ”weak topology” which has as a basis for open
sets Uφ1,...,φn,ε,v = {u ∈ D′(X) : |u(φi)− v(φi)| < ε for all i ∈ {1, . . . , n}} where
v is a fixed element in D′(X), φ1, . . . , φn ∈ C∞0 (X).

In the weak topology, a set A of distributions is open iff it can be written as
a union of such sets.

Equivalently, a sequence of distributions ui → u iff ui(φ) → u(φ) for all
φ ∈ C∞0 (X).

Theorem 16.3 (Weak Completeness Property for D′(X)). If {uj}j≥1 ⊂ D′(X)
satisfies u(φ) = limj→∞ uj(φ) exists for all φ ∈ C∞0 (X), then u ∈ D′(X) and
uj → u in the sense of distributions.

Proof. We need to check that u satisfies the boundedness requirement for a
distribution. Pick a compact set K << X. We shall equip C∞0 (K) with the
structure of a Frechet Space. Introduct the semi-norms ‖φ‖α = supK |∂αφ| for
α = (α1, . . . , αn) a multi-index.

Define |φ| =
∑
α(2n)−|α| ‖φ‖α1+‖φ‖α . Now (exercise) check that (C∞0 (K), | · |) is

complete.
Further, each uj is continuous with respect to the Frechet Space structure.
By the principle of uniform boundedness, for all ε > 0, there exists δ > 0

such that |φ| < δ ⇒ |uj(φ)| < ε for all j ≥ 1.
In particular, also |u(φ)| ≤ ε, and so u is a distribution on C∞0 (K). To

see this, assume not. Then for all k ≥ 1, there exists φk ∈ C∞0 (K) such that
|u(φk)| ≥ 2k

∑
|∂αφk| by normalizing, we can require that |u(φk)| = 1 and

so
∑
|∂αφk| ≤ 2−k, and this implies that |φ| < δ for k large enough. Thus

|u(φk)| < ε, contradiction.

Example 16.1. Limit of distributions: ut(x) =

{
teitx x > 0
0 x ≤ 0

and 〈ut, φ〉 =∫
R ut(x)φ(x)dx for φ ∈ C∞0 (R).

Question: What is limt→∞ ut(x) ∈ D′(R)?
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ut(φ) =
∫∞

0
teitxφ(x)dx = iφ(0) + i

∫∞
0
eitxφ′(x)dx = iφ(0) − φ′(0)/t −∫∞

0
eitx

t φ′′(x)dx→ iφ(0) as t→∞.
And so limt→∞ teitx = iδ0.

Important Operations on Distributions:

1. Localization: U → D′(U)

2. Differentiation: U ⊂ V , a map D′(V )→ D′(U)

Theorem 16.4. If u ∈ D′(X) and every point in X has a neighborhood on
which the restriction of u vanishes, then u = 0

Theorem 16.5. Let {Xi}i∈I arbitrary family of open sets in Rn such that
X = ∪Xi, if ui ∈ D′(Xi) and ui|Xi∩Xj = uj |Xi∩Xj for all i, j, then there exists
a unique u ∈ D′(X) such that ui = u|Xi .

Corollary 16.6. The map U → D′(U) is a sheaf.

We need a lemma

Lemma 16.7. Let X1, . . . , Xk ⊂ Rn open, φ ∈ C∞0 (∪Xi). Then there exists
φj ∈ C∞0 (Xj) for each j such that φ =

∑
φj.

Proof. Choose compact sets Kj ⊂ Xj with suppφ ⊂ ∪Ki. By our smooth
Urysohn Lemma, find ψj ∈ C∞0 (Xj) with 0 ≤ ψj ≤ 1 and ψj ≡ 1 on Kj . Then
consider φ1 = φψ1, φ2 = φψ2(1− ψ1) etcetera. Then

∑
φj − φ = −φ

∏k
j=1(1−

ψj) = 0.

And now we prove the first theorem:

Proof. Given φ ∈ C∞0 (X), find for each x ∈ suppφ a nieghborhood Ux ⊂ X such
that u|Ux ≡ 0. Finitely many of the Ux cover suppφn and call them U1, . . . , Uk.
Then finte φ1, . . . , φk and suppose suppφi ⊂ Ui. Then

∑
φi = φ.

u(φ) =
∑
u(φi) = 0

17 Lecture 17

Now we will prove the second statement.

Proof. The uniqueness follows from the first statement.
Assume that φ =

∑
φi for φi ∈ C∞0 (Xi). Then we necessarily have u(φ) =∑

ui(φi). We need to show that this canonically defines u.
Equivalently, we need to verify that whenever

∑M
i=1 φi ≡ 0 for φi ∈ C∞0 (Xi),

then
∑M
i=1 ui(φi) = 0.

Put K = ∪ supp(φi) << X. Choose finitely many functions ψk ∈ C∞0 (Xk)
such that

∑
ψk|K ≡ 1.

Then ψkφi ∈ C∞0 (Xk ∩Xi), and by assumption ui(ψkφi) = uk(ψkφi).∑
i ui(φi) =

∑
i,k ui(φiψk) =

∑
i,k uk(φiψk) =

∑
k uk(

∑
i ψkφi) = 0.
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Still need to check that u satisfies the bounds required of a distribution.
Choose L << X compact and let ψk ∈ C∞0 (Xk) be finitely many k such that∑
ψk|L ≡ 1.
If φ ∈ C∞0 (L), then u(φ) =

∑
k u(ψkφ) =

∑
k uk(ψkφ).

For all k, there exists CkL and PL,k ∈ N, such that |uk(ψkφ)| ≤ CkL
∑
|α|≤PL,k supK |∂α(ψkφ)|,

and so there exists c ∈ R such that |u(u)| ≤ c
∑

sup |∂αφ|, and so u ∈ D′(X).
There are two very important classes f distributions.

1. Compactly Supported Distributions

2. Tempered distributions

Definition 17.1 (Support). Let u ∈ D′(X). Then suppu = {x ∈ X|∃Ux 3 x
such that u|Ux ≡ 0}c.

Example 17.1. If f ∈ L1
Loc(X), then supp f in the sense of a distribution is

essetially supp f as a measureable function.

Example 17.2. If u = δ0, then suppu = {0}.

u is compactly supported if suppu << X.
Assume that u ∈ D′(Rn) is compactly supported. Then u extends canon-

ically to a homomorphism C∞(Rn) → C. Indeed, given φ ∈ C∞(Rn), choose
ψ ∈ C∞0 (Rn) such that ψ|suppu ≡ 1. Then define u(φ) = u(φψ). This is
independent of the choice of ψ, since if ψ̃ is another, then u(φ(ψ − ψ̃)) = 0.

IfK = suppu, then u : C∞(Rn)→ C satisfies |u(φ)| ≤ C
∑
|α|≤k suppK |∂αφ|.

Conversely, if u : C∞(Rn) → C satisfies a relation of this type, it restricts
to a compactly supported distribution D′(Rn).

So, if C∞(Rn) is equipped with a suitable Frechet space structure, then the
linear functionals that are continuous C∞(Rn) → C are exactly the compactly
supported distribution.

To equip C∞(Rn) with Frechet space structure, introduce the seminorms
φ→ pn,α(φ) := supKn |∂

αφ| where Kn is compact for all n and ∪Kn = Rn.
Define |φ| =

∑
n,α(2d)−n−|α| pn,α(φ)

1+pn,α(φ) .
Observation: u : (C∞(Rn), | · |)→ C is continuous iff there exists k ∈ N, C ∈

R, K << Rn such that |u(φ)| ≤ C
∑
|α|≤k supK |∂αφ|.

Proof. Only if: If not, then there exist φn for all n with |u(φn)| ≥ 100n
∑
|α|≤n sup∪i=1nKn

|∂αφ|.
Rescaling, we may assume that |u(φn)| = 1 and so |φn| < 2−n if n large

enough, contradiction.

The upshot is that compactly supported distributions are the ”dual” of
C∞(Rn).

Tempered Distributions
REcall that S(Rn) = {φ ∈ C∞(Rn)| supx∈Rn(1 + |x|n)|∂αφ|(x) < ∞∀n ≥

1, α}.
This also comes with a Frechet Space structure, by φ 7→ sup|α|≤m supx∈Rn(1+

|x|n)|∂αφ|(x).
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The dual of S(Rn), when restricted to C∞0 (Rn), is the Tempered Distribu-
tions.

What is an application of all this?
An important application is fundamental solutions for constant coefficient

PDEs.
As a technical tool, we define a convolution of distributions. If φ, ψ functions

and φ ∗ ψ(x) =
∫

Rn φ(x − y), ψ(y)dy = 〈ψy, φ(x − y)〉. We generalize this to
the case where ψ is a distribution, if u ∈ D′(Rn), and φ ∈ C∞0 (Rn), then
u ∗ φ = uy(φ(x− y)).

Exercise 17.1. Check that uy(φ(x− y)) is a smooth function of x. Also, it is
compactly supported if u is.

Now, we can define the convolution to two distributions, u1, u2 if u2 is com-
pactly supported to be (u1 ∗u2)∗φ = u1 ∗ (u2 ∗φ) for φ ∈ C∞0 (Rn). This defines
it uniquely!

Definition 17.2. A constant coefficient linear differential operator on Rn is a
finite linear combination P =

∑
aα∂

α.

Definition 17.3. A distribution E is called a fundamental solution for P pro-
vided that PE = δ0.

Use of this: consider the problem Pu = f .
Claim: E ∗ f solves this. Pu = P (E ∗ f) = (PE) ∗ f = δ0 ∗ f = f . This is

also called Green’s Functions in special cases (like the Laplacian).
Important examples:
Laplace equation on Rn and heat equation on Rn+1 (n spacial dimensions)

Theorem 17.1. Set E(x) = (2π)−1 log |x| for x ∈ R2\{0}, E(x) = −|x|2−n
n−2 cu−1,

x ∈ Rn \ {0} for n ≥ 3 and cn the volume of the unit sphere in Rn. Then ∂jE

in the dense of distributions given by xj |x|−n
cn

, ∆E = δ0.

Proof. Note that E(x) ∈ L1
loc(Rn), E(x) ∈ D′(Rn), ∂

∂xj
E ∈ L1

loc(Rn).

We use the Divergence Theorem, which is
∫
S
~v(x) · ~ndS =

∫
D
÷~V dx.

Let φ ∈ C∞0 (Rn), 〈∂jE, φ〉 = −〈E, ∂jφ〉 = − limε→0

∫
|x|>εE(x)∂jφ(x)dx =

limε→0

∫
|x|>ε φ(x)∂jE(x)dx+limε→0

∫
|x|=εE(x) xj

|x|·~nφ(x)dx. The first term there
ebcomes

∫
φ(x)∂jE(x)dx, and we must compute the second term.∣∣∣∫|x|=εE(x)〈xi〉/|x|~nφ(x)dS|

∣∣∣ ≤ Cε log |ε| → 0 as ε → 0. Hence, indeed,

∂jE = xj |x|−n/cn.
Now we must check that this is a fundamental solution.
We will do this by calculation. ∆E(x) = 0 if x ∈ Rn \ {0}. 〈∆E, φ〉 =

〈E,∆φ〉 = limε→0

∫
|x|>ε(Eδφ−∆Eφ)dx = limε→0

∫
|x|>ε÷(E gradφ−φ gradE)dx.

By the divergence theorem, limε→0

∫
|x|=ε(φ gradE−E gradφ)·~ndS, and gradφ→

0. Now gradE = −xj |x|
−n

cn
. Dot this with ~n and we get 1

cn
ε−(n−1), and so

limε→0

∫
|x|=ε φ gradE · ~ndS = φ(0), and this is the same as ∆E = δ0.
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18 Lecture 18

Theorem 18.1. The function E(t, x) = (4πt)−n/2 exp(−|x|2/4t) for t > 0 and
E(x, t) = 0 for t ≤ 0 is a fundamental solution to (∂t − ∆)(E(x, t)) = δ0,
δ0 ∈ D′(Rn+1).

Proof. IF |x| 6= 0, then check that E(t, x) is smooth and extends smoothly to
x = 0 if t > 0. Then

∫
Rn(4πt)−n/2 exp(−|x|2/4t)dx = 1, and so E(t, x) ∈

L1
loc(Rn+1) ad hence is a distribution. When t > 0, ∂E

∂xj
= −xj/2tE and ∆xE =

−nE/2t+ |x|2E/(4t2) = ∂E
∂t . Thus, supp(E(t, x)) ⊂ {0}.

〈(∂t−∆)E, φ〉 = −〈E, ∂φ∂t +∆xφ〉 = limε→0

∫
t>ε
−E(t, x)(∂φ∂t +∆φ)dxdt. The

divergence theorem then gives us limε→0

∫
E(ε, x)φ(ε, x)dx = limε→0

∫
Rn E(1, x)φ(ε,

√
εx)dx =

φ(0, 0).

Theorem 18.2. Every constant coefficient partial linear differential operator
P 6= 0 admits a fundamental solution E ∈ D′(Rn), PE = δ0.

18.1 Sobolev Spaces

LEt X ⊂ Rn open. THen Lp(X) ⊂ L1
loc by Hölder, and Lp(X) ⊂ D′(X). Let

u ∈ Lp(X), but ∂αu /∈ Lp(X).

Definition 18.1. LEt k ∈ N and W k,p(X) = {u ∈ D′(X)|∂αu ∈ Lp(X)∀|α| ≤
k}.

These can be turned into Banach spaces by using the norm ‖u‖k,p,X =

‖u‖Wk,p(X) =
(∫ ∑

|α|≤k |∂αu|p(x)dx
)1/p

Lemma 18.3. W k,p is a Banach Space.

Proof. Completeness: LEt {uj} by a Cauchy Sequence. THen each ∂αuj ∈
Lp(X) is Cauchy. By the completeness of Lp(X), ∂αuj → uα in Lp for |α| ≥ 1
and for all |α| ≤ k, uj → u in Lp.

Claim: ∂αu = uα.
〈∂αum, φ) = (−1)|α|〈u, ∂α〉 = limj→∞(−1)|α|〈uj , ∂αφ〉 = limj→∞〈∂αuj , φ〉 =

〈uα, φ〉 ⇒ ∂αu = uα in D′(Rn).

Corollary 18.4. If we embed W k,p ⊂
∏
|α|≤k L

p(X) by u 7→ (∂αu)|α|≤k, then
the iomage is closed. Hence if 1 < p <∞ then W k,p is reflexive.

If X = Rn, and p = 2, then we can use the alternative definition via
Plancherel ‖u‖L2(Rn) = ‖û‖L2(Rn).

u ∈W k,2(Rn) if and only if
∫

Rn(1 + |ξ|2)k|û(ξ)|2dξ <∞.
Call W k,2 = Hk, and check that ‖u‖Wk,2 = ‖u‖Hk .
Sobolev Embedding

Definition 18.2. W k,p
0 (X) is the closure of Ck0 (X) with respect to ‖ · ‖Wk,p(X).
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Remark 18.1. If X = Rn, then W k,p
0 (Rn) = W k,p(Rn). These are essentially

the functions with zero boundary value.

Theorem 18.5 (Sobolev Embedding Theorem). Let X ⊂ Rn open, then W 1,p
0

embeds into Cnp/(n−p)(X) if p < n and into L0(X) if p > n.

Moreover, we have that ‖u‖np/(n−p) ≤ C(p, n)‖∇u‖Lp , p < n and supX |u| ≤
C(u, x)‖∇u‖Lp for p > n.

Remark 18.2. The reason for the np/(n−p) exponend is scaling comptibility. If
we take u(x) to u(λx) for λ 6= 0, then ‖u(λx)‖Lnp/(n−p) = 1

(λn)(n−p)/np
‖u‖Lnp/(n−p) ,

which means that scaling this gives a multiplication by λ−p/(n−p). Scaling ∇u
gives the opposite.

Proof. Our choice of W 1,p
0 means that it suffices to consider u ∈ C1

0 (X) using
density argument.

First consider p = 1. Then |u(x)| ≤
∫ xi
−∞

∣∣∣ ∂∂xiu∣∣∣ dxi for i = 1, . . . , n. Thus

|u(x)|n/(n−1) ≤
(∏n

i=1

∫∞
−∞

∣∣∣ ∂u∂xi ∣∣∣ dxi)1/(n−1)

.
Now we apply Hölder successively in each variable:

‖u‖Ln/(n−1) =
(∫

Rn
|u(x)|n/(n−1)dx

)(n−1)/n

≤

∫
Rn

(
n∏
i=1

∫ ∞
−∞

∣∣∣∣ ∂∂xiu
∣∣∣∣ dxi

)1/(n−1)
(n−1)/n

≤

[
n∏
i=1

(∫ ∣∣∣∣ ∂u∂xi
∣∣∣∣ dx1dx2 . . . dxn

)1/(n−1)
](n−1)/n

≤ ‖∇u‖L1

So this settles the case where p = 1.
For the case p > 1, replace u by |u|γ where γ > 1 is to be chosen. Then what

we’ve proved gives us ‖|u|γ‖n/(n−p) ≤ γ
∫
|u|γ−1|∇u|dx ≤ γ‖|u|γ−1‖Lp‖∇u‖Lp .

So γn/(n− 1) = (γ− 1)p/(p− 1), and so γ = (n− 1)p/(n− p). Then the in-
equality implies that ‖u‖γnp/(n−p) ≤ γ‖u‖

γ−1
np/(n−p)‖∇u‖Lp , and so ‖u‖np/(n−p) ≤

γ‖∇u‖Lp .
Now we consider the case p > n. Then use a boot strap technique. u ∈

C1
0 (X), and also assume that m(X) = 1. Then define ũ = |u|

‖∇u‖Lp(X)
.

By the preceding steps, ‖ũγ‖ ≤ γ‖ũγ−1‖Lp/(p−1) ≤ γ1/γ‖ũ‖p′γ ≥ γ1/γ‖ũ‖1−1/γ
p′(1−γ) ≥

‖ũ‖n′γ .
Now put γ = δk for k = 1, . . . and δ = n′/p′ > 1.
‖ũ‖n′δk ≤ δkδ

−k‖ũ‖1−δ
−k

n′δk−1 ≤ δkδ
−k
δ(k−1)δ−(k−1)(1−δ−k)‖ũ‖(1−δ

−k)(1−δ−k−1)

n′δk−2 .
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Iterating, this is less than or equal to δ
P
k≥1 kδ

−k
‖ũ‖n′ ≤ M‖∇ũ‖L1 ≤

M‖∇ũ‖Lp ≤M = δ
P
kδ−k .

The proof is concluded by the following lemma:

Lemma 18.6. Let X ⊂ Rn bounded and u measurable. Then esstlsupX |u| ≤

limp→∞

(
1
|X|
∫
X
|u|pdx

)1/p

.
In particular, the limit exists in [0,∞].

Recall that esstlsup|u| =
∫
N⊂X,|N |=0

supX\N |u|.

19 Lecture 19

19.1 Spectral Theory of Operators on Hilbert Space

Let H be Hilbert Space and T : H → H bounded linear map. Then we can
associate an adjoint with T

Proposition 19.1. There exists a unique continuous linear map T ∗ : H →H
such that

1. (Tf, g) = (f, T ∗g) for all f, g ∈ H.

2. ‖T‖ = ‖T ∗‖

3. (T ∗)∗ = T .

One calls T ∗ the adjoint of T .

Proof. Fix g ∈ H. Then define a linear functional g : H → C by g(f) = (Tf, g).
This is bounded, and so by Riesz Representation Theorem, there exists an
element named T ∗g such that g(f) = (f, T ∗g). Then clearly T ∗g depends
linearly on g.
‖g‖ = sup{|(Tf, g)|, ‖f‖ ≤ 1, ‖g‖ ≤ 1} = sup{|(f, T ∗g)|, ‖f‖ ≤ 1, ‖g‖ ≤

1} = ‖T ∗‖. And finally 3 follows by conjugation.

Definition 19.1 (Symmetric). A continuous linear operator T : H → H is
called symmetric (self-adjoint) if T ∗ = T .

Remark 19.1. In general, symmetric and self-adjoint are not the same.

Definition 19.2 (Compact). A continuous linear operator T : H → H is called
compact if T (B1(0)) ⊂ H is compact.

Theorem 19.2 (Spectral Theorem for Compact Symmetric Operators). Let
T : H → H be compact symmetric. Then there exists an orthonormal basis
{φk} of H consisting of eigenvectors for T , that is, Tφk = λkφk for λk ∈ R and
H = span{φk}.

Furthermore, λk → 0 as k → ∞. If λ 6= 0, then the dimension of the
eigenspace Eλ is finite.
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Remark 19.2. The numbers {λk} are called the spectrum of T . If λ 6= 0
and λ /∈ {λk}, then (T − λI)−1 is bounded on Ek for each k and is given by
(−λ+ λk)−1.

Hence ‖(T − λI)−1‖H = sup{(λ− λk)−1} = max{(λ− λk)−1} <∞

Lemma 19.3. Let T be as in the theorem. Then

1. If λ is an eigenvalue, then λ ∈ R.

2. If f1, f2 are eigenvectors belonging to different eigenvalues, then (f1, f2) =
0.

Proof. 1. If Tf = λf , ten λ(f, f) = (Tf, f) = (f, Tf) = λ̄(f, f), and since
(f, f) 6= 0, λ = λ̄

2. If Tfi = λifi for i = 1, 2 and λ1 6= λ2, then λ1(f1, f2) = (Tf1, f2) =
(f1, T f2) = λ2(f1, f2), and so (f1, f2) = 0.

Lemma 19.4. Same assumptions as in theorem. Then for λ 6= 0, the eigensapce
Eλ is finite dimensional. The eigenvalues of T for an at most denumerable set.

Proof. For first assertion, assume Eλ is infinite dimensional. Then there exists
a countably infinite orthonormal set {φk} ⊂ Eλ with Tφk = λφk. By com-
pactness, there exists a subsequence Tφkn which converges. This can’t be, as
‖φkn − φkm‖2 = ‖φkn‖2 + ‖φkm‖2 = 2.

For second assertion, we’ll show that for µ > 0, there are only finitely many
eigenvalues λ with |λ| ≥ µ. Then the eigenvalues are the union of the ones
greater than 1

n , and so are denumerable.
Assume that there are infinitely many λ with |λ| ≥ µ. Then we choose at

least countably many of their eigenvectors {φk} with Tφk = λkφk orthonormal.
Then a subsequence Tφkn converges, ‖λknφkn−λkmφkm‖2 = |λkn |2+|λkm |2 ≥

2µ2, contradiction.

Lemma 19.5 (Existence of Eigenvalues). Same assumptions. Then either ‖T‖
or −‖T‖ is an eigenvalue.

Proof. Claim: ‖T‖ = sup‖f‖=1 |(Tf, f)|. By Cauchy-Schwartz, |(Tf, f)| ≤ ‖T‖.
Conversely, we use the following algebriac trick: (Tf, g) = 1

4 [(T (f + g), f + g)− (T (f − g), f − g) + i(T (f + ig), f + ig)− i(T (f − ig), f − ig)],
and so (Tf, f) = (f, Tf) = (Tf, f), and so (Tf, f) ∈ R. Thus <(Tf, g) =
1
4 [(T (f + g), f + g)− (T (f − g), f − g)]

And so |<(Tf, g)| ≤ 1
4 sup‖f‖≤1 |(Tf, f)|[‖f + g‖2 + ‖f − g‖2]. And so

sup‖f‖≤1,‖g‖≤1 |<(Tf, g)| ≤ sup‖f‖≤1 |(Tf, f)|. To get rid of <, for arbitrary
f, g ∈ H with ‖f‖, ‖g‖ ≤ 1, choose θ ∈ R such that (T (eiθf), g) ∈ R.

Then |(Tf, g)| = |e−iθ(T (eiθf), g)| = |(T (eiθf), g)| = |<(T (eiθf), g)| ≤
sup‖f‖≤1 |(Tf, f)|, and so the claim is established.

Now we know that ‖T‖ = sup‖f‖=1 |(Tf, f)|, and so either ‖T‖ = sup‖f‖=1(Tf, f)
or −‖T‖ = inf‖f‖=1(Tf, f) or both.
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Assume the first case. Pick a sequence {fn} ⊂ H with (Tfn, fn) → ‖T‖
and ‖fn‖ = 1. By compactness, we can choose a subsequence (which we will
again label fn) such that Tfn → g ∈ H. We claim that g is an eigenvector with
eigenvalue ‖T‖.
‖Tfn−‖T‖fn| → 0. Indeed, ‖Tfn−‖T‖fn‖2 = ‖Tfn‖2+‖T‖2−2‖T‖(Tfn, fn)→

0. Since Tfn → g, then ‖T‖fn → g, and so ‖T‖Tfn → ‖T‖g and to Tg, and so
Tg = ‖T‖g.

We now finish the proof of the Spectral Theorem.

Proof. Denote the closure of the span of the eigenvectors of T on H by S,
S 6= {0}. We calim that S = H. If not, then H = S ⊕ S⊥. Check that
T : S → S and S⊥ → S⊥. Then by the last lemma, there exists an eigenvector
v ∈ S⊥, contradiction.

Example 19.1 (Hilbert-Schmidt Operators). H = L2(Rn), Tf =
∫

Rn k(x, y)f(y)dy
and k(x, y) ∈ L2(Rn × Rn) is the Hilbert-Schmidt Kernel.

Theorem 19.6. T is a compact operator on L2(Rn). Its adjoint is also Hilbert-
Schmidt, with kernel k(x, y).

Remark 19.3. In particular, if k(x, y) = k(x, y), then the spectral theorem
applies.

Proof. First note that
∫
k(x, y)f(y)dy is well defined for almost every x ∈ Rn

by Fubini’s theorem. By C-S, k(x, y)f(y) ∈ L1(Rn) for almost every x.
C-S says that

∫
k(x, y)f(y)dy ≤

(∫
|k(x, y)|2dy

)1/2 (∫ |f(x)|2dy
)1/2 ≤ ∫∫ |k(x, y)2dydx‖f‖2L1 ≤

C‖f‖2L1 .
Now we check compactness. Choose an orthonormal basis {φn} for L2(Rn).

Then the set of functions {φn(x)φm(y)} on Rn × Rn is orthonormal. We calim
it’s a basis for L2(Rn ×Rn). To see this, assume that (g(x, y), φn(x)φn(y)) = 0
for all n,m.

Then
(∫
g(x, y)φm(y)dy, φnx)

)
= 0, so

∫
g(x, y)φm(y)dy = 0 for almost ev-

ery x, and so g(x, y) = 0 for almost every x, y. So k(x, y) =
∑
n,m≥1 anmφn(x)φm(y)

where anm = (k(x, y), φn(x)φm(y)).
Now we define the operator T` for ` ≥ 1. T`f =

∫
k`(x, y)f(y)dy, where

k`(x, y) =
∑`
n,m=1 anmφn(x)φm(y). Note that the image of T` has dimension

` <∞. T` is compact. Further, T` → T .

Lemma 19.7. Assume T` : H → H is compact and T` → T as ` → ∞. Then
T is compact.

Proof. Given {fn} ⊂ H with ‖fn‖ ≤ 1, choose a subsequence {fm} such that
T1fm converges. Then choose a subsequence f2m such that T2f2n converges.
Continue interatively. Let gn be the diagonal sequence.

Claim: {Tgn} converges. Given ε > 0, choose ` large enough such that
‖T −T`‖ < ε/3. Then choose k large enough such that ‖T`gn−T`gm‖ < ε/3 for
all n,m > k. Then ‖Tgn−Tgm‖ ≤ ‖T`gn−T`gm‖+‖(T−T`)gn‖+‖(T−T`)gm‖ ≤
ε and so we are done.
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20 Lecture 20

∆u = f , ∆ on a bounded domain Ω ⊂ Rn. L2(Ω) = ⊕Ek, wieth ∆|Ek = λkIEk
for Ek ⊂ C∞(Ω).

Theorem 20.1 (Rellich-Kondrakor Compactness Theorem). Let Ω ⊂ Rn a
bounded open set. Then W 1,p

0 (Ω) embeds compactly into Lq(Ω) for any q < np
n−p

if p < n.

Proof. First we establish the compactness of the embedding W 1,p
0 (Ω) ⊂ L1(Ω).

LEtA ⊂W 1,p
0 ⊂W 1,p

0 (Ω) bounded by scaling, we may assume that ‖u‖W 1,p
0 (Ω) ≤

1 for all u ∈ A.
By using density, we may assume that A ⊂ C1

0 (Ω).
Let ρ ≥ 0, ρ ∈ c∞0 (B1(0)),

∫
Rn ρ(x)dx = 1. uh =

∫
Rn ρn(x − y)u(y)dy,

ρn(x) = h−nρ(x/h), h > 0. And so Ah = {uh|u ∈ A}.
|uh(x)| ≤ Ch−n, C = C(supu∈A ‖u‖W 1,p

0
,Ω), |∇u(x)| = |

∫
∇ρh(x−y)u(y)dy| ≤

Ch−n−1, and so we now use the Arzela-Ascoli theorem to see that Āh is compact
in C0(Ω̄), and so Āh is compact in L1(Ω).

Theorem 20.2 (Arzela-Ascoli). Let K ⊂ Rn compact, tehn a closed subset
A ⊂ C0(K) is compact if and only if it is bounded and equicontinuous.

To conclude, we need to compare u1, uh. |u(x)− uh(x)| ≤
∫
|z|≤1

ρ(z)|u(x)−

u(x− hz)|dz =
∫
|z|≤1

ρ(z)|
∫ h|z|

0
Dru(x− rw)|drdz where w = z/|z|.

And so,
∫
|u(x) − uh(x)|dx ≤

∫ ∫
|z|≤1

ρ(z)|
∫ h|z|

0
Dru(x − rω)|drdzdx ≤∫

|z|≤1
ρ(z)

∫ h|z|
0

∫
Ω
Dru(x− rω)|dxdrdz ≤ ‖∇u‖L1h ≤ ‖∇u‖LphC(Ω).

This implies compactness of A: let {xn} ⊂ A be given. Tjem cjppse {u1n}
a subsequence such that it converges in L1(Ω). Then choose a subseqeunce u2n

which converges in L1(???) Then inductively choose uin that converges. Then
consider unn, then this converges in L1(Ω). And so W 1,p

0 ⊂ L1(Ω) compactly.
In fact, this is to Lq(Ω), as ‖u‖qLq =

∫
Ω
|u|qdx =

∫
Ω
|u|a|u|bdx for a+ b = q.∫

Ω
|u|a|u|bdx ≤ (

∫
Ω
|u|ap1dx)1/p1(

∫
Ω
|u|bp2dx)1/p2 where 1/p1 + 1/p2 = 1. If

ap1 = 1 and bp2 = np
n−p , and denote a = λ, we get q−λ

1−λ = np
n−p and we can solve

this for λ.
And so if {unn} converges in L1(Ω), then ‖un−um‖Lq ≤ ‖un−um‖a/qL1(Ω)‖un−

um‖, and so {un} converges in Lq(Ω).

Note now that ∆u = f , everything on a bounded domain and u ∈W 1,2
0 (Ω),

then we can interpret this equation weakly!
∂i(∂if) = f summed over the repeated index, and this holds if and only if

(∂iu, ∂iv) = (f, v) for all v ∈W 1,2
0 (Ω).

L (u, v) = −(∂iu, ∂iv) is a bilinear form on W 1,2
0 (Ω) × W 1,2

0 (Ω). Define
Lδ(u, v) = −(∂iu, ∂iv)− δ(u, v) for δ > 0 arbitrary.
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Terminology: Let H over R be a Hilbert Space and B : H×H → R bilinear.
We call B coercice provided that B(u, u) ≥ λ‖u‖2 for some λ > 0.

Clearly, Lδ(u, u) ≥ min{δ, 1}‖u‖2
W 1,2

0 (Ω)
. General fact about coercive linear

forms:

Theorem 20.3 (Lax-Milgram). Let B : H × H → R bounded, coercice and
bilinear. Then for every F ∈ H∗, there exists a unique element f ∈ H such that
B(x, f) = F (x) for all x ∈ H.

Proof. By Riesz Representation Theorem, there exists a map T : H → H such
that B(x, f) = (x, Tf), with T linear and bounded. B(Tf, f) = (Tf, Tf) ≤
C‖Tf‖‖f‖, and so C‖f‖ ≥ ‖Tf‖.

λ‖f‖2 ≤ B(f, f) = (f, Tf) ≤ ‖f‖‖Tf‖, and so λ‖f‖ ≤ ‖Tf‖ and so T is
1-1, and T−1 is bounded on the rage, and T has closed range. We need to show
that T is onto.

Assume that T is not onto. By the closedness of the image, there exists
z 6= 0, (z, Tf) = 0 for all f ∈ H. Then put f = z, and so (z, Tz) = 0 and so
B(z, z) = 0, by coercivity, z = 0, contradiction.

Lδ is coercive and bounded on W 1,2
0 (Ω) ×W 1,2

0 (Ω). h−1
δ : (W 1,2

0 (Ω))∗ →
W 1,2

0 (Ω), F (u) = Lδ(u, h−1
δ F ) for all F ∈ (W 1,2

0 (Ω))∗.
L2(Ω) ⊂ (W 1,2

0 (Ω))∗: if v ∈ L2(Ω), then v(u) = (u, v)L2 for u ∈W 1,2
0 .

And so h−1
0 : L2 →W 1,2

0 → L2.
If K = iL

2

W 1,2
0
◦ h−1

δ , where i is the inclusion W 1,2
0 ⊂ L2, then we must check

that K is symmetric and compact. Then the spectral theorem applies, and
so there is a countable set {λk} oand corresponding finite dimensional spaces
Ek ⊂ L2 such that h−1

δ |Ek = λk id |Ek .
And so L2 = ⊕Ek, and to translate back to the level of the Laplacian,

h−1
0 φ = λφ implis that Lδ(v, φ) = (v, φ), and so −λ

∫
Ω
∂iv∂iφdx− λδ

∫
vφdx =

(v, φ), if and only if (∆−δ)φ = λ−1φ in the weak sense, and so ∆φ = (δ+λ−1)φ.

21 Lecture 21
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23 Lecture 23

Schrodinger Equation −∆ψ+V ψ(x) = Eψ. We will construct the ground state
solution.

ε(ψ) =
∫

Rn |∇ψ|
2(x)dx+

∫
V (x)|ψ|2dx.
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Theorem 23.1. If V ∈ Ln/2 + L∞, for all a > 0, |{|V (x)| > a}| < ∞ and∫
ε(ψ) = E1 < 0 on the unit sphere, then there exists a minimzer ψ0 ∈ H for

ε(ψ) which satisfies the Schrodinger Equation, in the distributional sense.
Further, if V ∈ C∞(Rn), then so is ψ0.

Strategy:

1. Show coercivity: that is,
∫
|∇ψ|2dx ≤ Cε(ψ)+D‖ψ‖2L2 where C,D depend

on V , and here we only need that V ∈ Ln/2 + L∞.

2. SHow the weak continuity of ε(ψ).

3. Use the first two parts to construct ψ0.

Part 1 was last time.
For part 2, we need that

Proposition 23.2. Let V be as in the main theorem. Then if ψj → ψ in H,
then

∫
V (x)|ψj |2dx→

∫
V (x)|ψ|2dx.

Proof. Replace V with V δ which is bounded, by defining V δ(x) =

{
V (x) |V (x)| < 1/δ
0 else

.

Then replace Rn by a set A of bounded measure. Here we use the fact that
|{|v|(x) > a}| <∞ for all a > 0. We reduced to the following lemma:

Lemma 23.3 (Weak Convergence implies Strong Convergence). Let ψj ∈ H ′(Rn)
such that ∇ψj → v. Then v = ∇ψ for some suitable ψ in H ′(Rn), and for every
A ⊂ Pn of bounded measure, χAψj → χAψ with respect to Lp for 2 ≤ p ≤ 2n

n−2 .

Proof. By the principle of uniform boundedness, ‖∇ψj‖L2 ≤ C for all j. We
may assume that C = 1. By Sobolev embedding, ‖ψj‖L2n/n−2 ≤ C for all j. By
reflexivity, there is a subsequence {ψkj} such that ψkj → ψ, with ‖ψkj‖ ≤ D,
and so ‖ψ‖ ≤ D.

We claim that the full sequence ψj → ψ. If not, then some other subsequence
goes to ψ̃ 6= ψ.

φ ∈ C∞0 (Rn), −
∫
ψ∂iφdx = limj→∞−

∫
ψkj∂iφdx = limj→∞

∫
∂iψkjφdx,

and similary for ψ̃. And so everything is equal, and so ψ = ψ̃.
Furthermore, ∇ψ = v. This establishes the first part of the lemma. Now we

use this to show strong local convergence. ψj → ψ. The idea is to regularize
the ψj . ψj 7→ ψ̃j = et∆ψj(x) = (4πt)−n/2

∫
Rn e

−|x−y|2/(4t)ψj(y)dy.
So now ‖ψj − et∆ψj‖2 =

∫
|ψ̂j |2(ξ)(1− e−4π|ξ|2t)2dξ.

Some inequalities follow.
I’m lost.

And so now we finish the proof of the main theorem.
Choose a minimizing sequence ψj ∈ H ′ with ‖ψj‖ = 1. That is, ε(ψj) →∫

ε(ψ) = E0.
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By part 1,
∫
|∇ψj |2dx ≤ Cε(ψj) +D‖ψj‖2 = Cε(ψj) +D, and so ‖ψj‖ ≤M

in H ′ norm.
By reflexivity of H ′, a subsequence again denoted by ψj converges weakly

to some ψ0. ∇ψj → v, and so
∫
V (x)|ψj |dx →

∫
V (x)|ψ0|2dx, and

∫
|∆ψj |2dx

is decreasing.
Thus, ε(ψ0) ≤ lim infj ε(ψj) = E0. So ‖ψ0‖L2 ≤ 1, so E0 ≥ ε(ψ0) ≥

‖ψ0‖L2E0, by definition, and so ‖ψ0‖ = 1 and ε(ψ0) = E0, and so ψ0 6= 0 works.
We must just show that it satisfies Schrodinger in the distributional sense.

ψ0 + εη for η ∈ C∞0 (Rn and ε ∈ R.
Let Lε = ε(ψ0 + εη) ≥ ε(ψ0) (note, all things are normalized). This holds

for all ε, η.
Then dL

dε |ε=0 = 0, and so (mess inequalities and equations) we get the result,
that −∆ψ0 + V (x)ψ0 = E0ψ0 in D′(Rn).

In addition to all the requirements, we also assume that V is smooth of
compact support. Claim is that ψ0 ∈ C∞(Rn). Then we claim that (−∆ −
E0)ψ0 = V ψ0 ∈ H ′.

ψ0 = (−∆− E0)−1(V ψ0), which is in H ′. So then we have ...gibberish.
I don’t understand this. I’m fucked on Thursday.
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