MATH 210, EXTRA CREDIT PROBLEMS \# 1

DUE AT ANY TIME DURING THE SEMESTER

1. TWO-PERSON TWO-OPTION ZERO SUM GAMES.

The object of these exercises is to work through some details of the analysis of two-person two-option zero sum games discussed in class. Each subsection recalls some of the theory and notation discussed in class. Homework problems are highlighted between vertical lines.
1.1. Dominant strategies. Recall that payoff matrix for Player I has the form:

	Player II option 1	Player II option 2
Player I option 1	$a_{1,1}$	$a_{1,2}$
Player I option 2	$a_{2,1}$	$a_{2,2}$

The payoffs to Player II are the negatives of the entries in this matrix.
Player I has a dominant strategy if each entry in one of the rows of the matrix is \geq the corresponding entry in the other row.

Player II has a dominant strategy if and only if each entry in one column of the matrix is \leq the entry in the other column.

Problem:

1. Show neither player has a dominant strategy if and only if (i) $a_{1,1}-a_{1,2}$ and $a_{2,1}-a_{2,2}$ have opposite signs, and (ii) $a_{1,1}-a_{2,1}$ and $a_{1,2}-a_{2,2}$ have opposite signs.
1.2. Payoffs for mixed strategies. We suppose that Player I chooses option \#1 with probability p and option \#2 with probability $1-p$. Player II chooses option \# 1 with probability q and option \# 2 with probability $1-q$. Since they make these choices independently of one another, the probability of various combinations of choices is given by the following matrix:

	Player II option 1 prob. q	Player II option 2 prob. 1-q
Player I option 1 prob. p	$p q$	$p(1-q)$
Player I option 2 prob. 1 $-p$	$(1-p) q$	$(1-p)(1-q)$

The expected payoff to player I is then the sum over the various possible combinations of choices of the product of the probability of that combination times the payoff of that combination. This works out to

$$
\begin{align*}
E(p, q) & =p q a_{1,1}+p(1-q) a_{1,2}+(1-p) q a_{2,1}+(1-p)(1-q) a_{2,2} \\
& =\left(a_{1,1}-a_{1,2}-a_{2,1}+a_{2,2}\right) p q+\left(a_{1,2}-a_{2,2}\right) p+\left(a_{2,1}-a_{2,2}\right) q+a_{2,2} \tag{1.1}\\
& =\Delta p q-n p-m q+r
\end{align*}
$$

where

$$
\begin{align*}
\Delta & =a_{1,1}-a_{1,2}-a_{2,1}+a_{2,2} \\
n & =a_{2,2}-a_{1,2} \tag{1.2}\\
m & =a_{2,2}-a_{2,1} \\
r & =a_{2,2}
\end{align*}
$$

Player I wishes to find

$$
\begin{equation*}
v_{I}=\max _{0 \leq p \leq 1}\left(\min _{0 \leq q \leq 1} E(p, q)\right) \tag{1.3}
\end{equation*}
$$

since this represents the best expected return they can achieve against any strategy of player $I I$. Specifically, if they choose a value p_{0} such that

$$
v_{I}=\min _{0 \leq q \leq 1} E\left(p_{0}, q\right)
$$

then player I is guaranteed an expected return of at least v_{I} against any choice of q by player $I I$. If p is any other choice which Player I might make, then

$$
v_{I} \geq \min _{0 \leq q \leq 1} E(p, q)
$$

so Player II can pick a q which will prevent the payoff $E(p, q)$ from being larger than v_{I}.
Similarly, Player II wishes to find

$$
\begin{equation*}
v_{I I}=\min _{0 \leq q \leq 1}\left(\max _{0 \leq p \leq 1} E(p, q)\right) \tag{1.4}
\end{equation*}
$$

since this represents the minimal expected payoff that they can hold Player I to in the game.

Problems

2. Suppose that Player I has dominant stategy given by option 1 , so that $a_{1,1} \geq a_{2,1}$ and $a_{1,2} \geq a_{2,2}$. Show that for all p, q such that $0 \leq p \leq 1$ and $0 \leq q \leq 1$ one has

$$
\begin{align*}
E(1, q) & =q a_{1,1}+(1-q) a_{1,2} \\
& \geq q\left(p a_{1,1}+(1-p) a_{2,1}\right)+(1-q)\left(p a_{1,2}+(1-p) a_{2,2}\right) \tag{1.5}\\
& =E(p, q) . \tag{1.6}
\end{align*}
$$

Deduce from this that

$$
\begin{align*}
v_{I} & =\max _{0 \leq p \leq 1}\left(\min _{0 \leq q \leq 1} E(p, q)\right) \\
& =\min _{0 \leq q \leq 1} E(1, q) \\
& =\min _{0 \leq q \leq 1}\left(q a_{1,1}+(1-q) a_{1,2}\right) \\
& =\min \left(a_{1,1}, a_{1,2}\right) \tag{1.7}
\end{align*}
$$

Then show that

$$
\begin{aligned}
v_{I I} & =\min _{0 \leq q \leq 1}\left(\max _{0 \leq p \leq 1} E(p, q)\right) \\
& =\min _{0 \leq q \leq 1} E(1, q) \\
& =v_{I}
\end{aligned}
$$

This shows that $v_{I}=v_{I I}$ if Player 1 has dominant option \# 1, and that this is payoff is achieved when Player I chooses option 1 and Player II chooses the best pure strategy against this, corresponding to setting $q=1$ if $a_{1,1} \leq a_{1,2}$ and $q=0$ if $a_{1,2}<a_{1,1}$. The proof that $v_{I}=v_{I I}$ results from a choice of pure strategies in the other cases in which one player has a dominant strategy is similar, so we'll not repeat the arguments.
3. Suppose that

$$
\Delta=a_{1,1}-a_{1,2}-a_{2,1}+a_{2,2}=0
$$

in (1.2). Deduce from this that

$$
a_{1,1}-a_{1,2}=a_{2,1}-a_{2,2}
$$

and

$$
a_{1,1}-a_{2,1}=a_{1,2}-a_{2,2} .
$$

Explain why this means that both players have a dominant strategy. Then you can conclude that $v_{I}=v_{I I}$ is achieved by pure strategies using problem $\# 2$.
1.3. Completion of the proof of the minimax theorem, namely: $v_{I}=v_{I I}$. So far we have shown that $v_{I}=v_{I I}$ if one of the two players has a dominant strategy (problem 2), and that if neither player has a dominant strategy then $\Delta \neq 0$ (problem $3)$. We suppose now that neither player has a dominant strategy. In class we proved the identity

$$
\begin{align*}
E(p, q) & =\Delta p q-n p-m q+r=\Delta\left(p-\frac{n}{\Delta}\right)\left(q-\frac{m}{\Delta}\right)+E\left(\frac{n}{\Delta}, \frac{m}{\Delta}\right) \tag{1.9}\\
& =\Delta s t+E\left(\frac{n}{\Delta}, \frac{m}{\Delta}\right)=\Delta s t+E\left(p_{0}, q_{0}\right) \tag{1.10}
\end{align*}
$$

when

$$
s=p-\frac{n}{\Delta}=p-p_{0} \quad \text { and } \quad t=q-\frac{m}{\Delta}=q-q_{0} .
$$

This identity (1.9) results form checking that the coefficients of $p q, p$ and q on both sides of the first line of (1.9) are the same and by then checking that the constant term is correct by evaluating both sides at $p=-\frac{n}{\Delta}$ and $q=-\frac{m}{\Delta}$. The second line in (1.9) is just changing variables using (1.11). The change of variables from (p, q) to (s, t) lead in class to:
$v_{I}=\max _{0 \leq p \leq 1}\left(\min _{0 \leq q \leq 1} E(p, q)\right)=\max _{-p_{0} \leq s \leq 1-p_{0}}\left(\min _{-q_{0} \leq t \leq 1-q_{0}} \Delta s t+E\left(p_{0}, q_{0}\right)\right)$ and

$$
\begin{equation*}
v_{I I}=\min _{0 \leq q \leq 1}\left(\max _{0 \leq p \leq 1} E(p, q)\right)=\min _{-q_{0} \leq t \leq 1-q_{0}}\left(\min _{-p_{0} \leq s \leq 1-p_{0}} \Delta s t+E\left(p_{0}, q_{0}\right)\right) \tag{1.13}
\end{equation*}
$$

Problems.

4a. Using the formulas for n and m in (1.2), show that

$$
\begin{equation*}
p_{0}=\frac{n}{\Delta}=\frac{a_{2,2}-a_{1,2}}{a_{2,2}-a_{1,2}+a_{1,1}-a_{2,1}} \tag{1.14}
\end{equation*}
$$

and

$$
q_{0}=\frac{m}{\Delta}=\frac{a_{2,2}-a_{2,1}}{a_{2,2}-a_{2,1}+a_{1,1}-a_{1,2}}
$$

Then use problem \# 1 to show that becaue we have assumed that neither player I or player II have a dominant strategy, one has $0<p_{0}<1$ and $0<q_{0}<1$.
4b. Using the inequalities on p_{0} and q_{0} in problem (4a), show that $\left(s_{0}, t_{0}\right)=(0,0)$ is then an allowable value for (s, t) in the formulas (1.12) and (1.13). Then show that in fact

$$
v_{I}=v_{I I}=E\left(p_{0}, q_{0}\right) .
$$

Hints: We know

$$
v_{I}=\max _{-p_{0} \leq s \leq 1-p_{0}}\left(\min _{-q_{0} \leq t \leq 1-q_{0}} \Delta s t+E\left(p_{0}, q_{0}\right)\right) \geq E\left(p_{0}, q_{0}\right)
$$

since the maximum over s is at least as large as what one gets when one lets $s=s_{0}=0$, and the latter value is $E\left(p_{0}, q_{0}\right)$. Argue that if $-p_{0} \leq s \leq 1-p_{0}$ and $s \neq 0$, then one can always choose t near 0 so that $\Delta s t$ is negative. Then explain why this gives $v_{I}=E\left(p_{0}, q_{0}\right)$. The argument for $v_{I I}$ is similar.
4c. Suppose as above that neither player I or II have a dominant strategy. Explain why the numbers p_{0} and q_{0} in Problem 4 a above are given by

$$
p_{0}=\frac{c_{1}}{c_{1}+c_{2}} \quad \text { and } \quad q_{0}=\frac{d_{1}}{d_{1}+d_{2}}
$$

when we let $c_{1}, c_{2}, d_{1}, d_{2}$ be the numbers computed by the following table discussed in class:

	Player II option 1	Player II option 2	
Player I option 1	$a_{1,1}$	$a_{1,2}$	$c_{1}=\left\|a_{2,1}-a_{2,2}\right\|$
Player I option 2	$a_{2,1}$	$a_{2,2}$	$c_{2}=\left\|a_{1,1}-a_{1,2}\right\|$
	$d_{1}=\left\|a_{1,2}-a_{2,2}\right\|$	$d_{2}=\left\|a_{1,1}-a_{2,1}\right\|$	

