MATH 210, EXTRA CREDIT PROBLEMS # 1

DUE AT ANY TIME DURING THE SEMESTER

1. Two-person two-option zero sum games.

The object of these exercises is to work through some details of the analysis of two-person two-option zero sum games discussed in class. Each subsection recalls some of the theory and notation discussed in class. Homework problems are highlighted between vertical lines.

1.1. **Dominant strategies.** Recall that payoff matrix for Player I has the form:

	Player II	Player II
	option 1	option 2
Player I	$a_{1,1}$	$a_{1,2}$
option 1		
Player I	$a_{2,1}$	$a_{2,2}$
option 2		

The payoffs to Player II are the negatives of the entries in this matrix.

Player I has a dominant strategy if each entry in one of the rows of the matrix is \geq the corresponding entry in the other row.

Player II has a dominant strategy if and only if each entry in one column of the matrix is \leq the entry in the other column.

Problem:

1. Show neither player has a dominant strategy if and only if (i) $a_{1,1}-a_{1,2}$ and $a_{2,1}-a_{2,2}$ have opposite signs, and (ii) $a_{1,1}-a_{2,1}$ and $a_{1,2}-a_{2,2}$ have opposite signs.

1.2. Payoffs for mixed strategies. We suppose that Player I chooses option #1 with probability p and option #2 with probability 1 - p. Player II chooses option # 1 with probability q and option # 2 with probability 1 - q. Since they make these choices independently of one another, the probability of various combinations of choices is given by the following matrix:

	Player II	Player II
	option 1	option 2
	prob. q	prob. $1-q$
Player I	pq	p(1-q)
option 1		
prob. p		
Player I	(1-p)q	(1-p)(1-q)
option 2		
prob. $1-p$		

The expected payoff to player I is then the sum over the various possible combinations of choices of the product of the probability of that combination times the payoff of that combination. This works out to

$$E(p,q) = pqa_{1,1} + p(1-q)a_{1,2} + (1-p)qa_{2,1} + (1-p)(1-q)a_{2,2}$$

$$(1.1) = (a_{1,1} - a_{1,2} - a_{2,1} + a_{2,2})pq + (a_{1,2} - a_{2,2})p + (a_{2,1} - a_{2,2})q + a_{2,2}$$

$$= \Delta pq - np - mq + r$$

where

(1.2)

$$\Delta = a_{1,1} - a_{1,2} - a_{2,1} + a_{2,2}$$

$$n = a_{2,2} - a_{1,2}$$

$$m = a_{2,2} - a_{2,1}$$

$$r = a_{2,2}$$

Player I wishes to find

(1.3)
$$v_I = \max_{0 \le p \le 1} (\min_{0 \le q \le 1} E(p,q))$$

since this represents the best expected return they can achieve against any strategy of player II. Specifically, if they choose a value p_0 such that

$$v_I = \min_{0 \le q \le 1} E(p_0, q)$$

then player I is guaranteed an expected return of at least v_I against any choice of q by player II. If p is any other choice which Player I might make, then

$$v_I \ge \min_{0 \le q \le 1} E(p,q)$$

so Player II can pick a q which will prevent the payoff E(p,q) from being larger than v_I . Similarly, Player II wishes to find

(1.4)
$$v_{II} = \min_{0 \le q \le 1} (\max_{0 \le p \le 1} E(p,q))$$

since this represents the minimal expected payoff that they can hold Player I to in the game.

Problems

2. Suppose that Player I has dominant stategy given by option 1, so that $a_{1,1} \ge a_{2,1}$ and $a_{1,2} \ge a_{2,2}$. Show that for all p, q such that $0 \le p \le 1$ and $0 \le q \le 1$ one has

$$E(1,q) = qa_{1,1} + (1-q)a_{1,2}$$
(1.5)

$$(1.6) \geq q(pa_{1,1} + (1-p)a_{2,1}) + (1-q)(pa_{1,2} + (1-p)a_{2,2})$$

$$(1.6) = E(p,q).$$

$$(1.6) \qquad \qquad = \quad E(p,$$

Deduce from this that

(1.7)

$$v_{I} = \max_{0 \le p \le 1} (\min_{0 \le q \le 1} E(p,q))$$

$$= \min_{0 \le q \le 1} E(1,q)$$

$$= \min_{0 \le q \le 1} (qa_{1,1} + (1-q)a_{1,2})$$

$$= \min(a_{1,1},a_{1,2})$$

Then show that

$$v_{II} = \min_{0 \le q \le 1} (\max_{0 \le p \le 1} E(p,q))$$
$$= \min_{0 \le q \le 1} E(1,q)$$
$$= v_I$$

(1.8)

This shows that $v_I = v_{II}$ if Player 1 has dominant option # 1, and that this is payoff is achieved when Player I chooses option 1 and Player II chooses the best pure strategy against this, corresponding to setting q = 1 if $a_{1,1} \le a_{1,2}$ and q = 0if $a_{1,2} < a_{1,1}$. The proof that $v_I = v_{II}$ results from a choice of pure strategies in the other cases in which one player has a dominant strategy is similar, so we'll not repeat the arguments.

3. Suppose that

$$\Delta = a_{1,1} - a_{1,2} - a_{2,1} + a_{2,2} = 0$$

in (1.2). Deduce from this that

 $a_{1,1} - a_{1,2} = a_{2,1} - a_{2,2}$

and

$$a_{1,1} - a_{2,1} = a_{1,2} - a_{2,2}.$$

Explain why this means that both players have a dominant strategy. Then you can conclude that $v_I = v_{II}$ is achieved by pure strategies using problem #2.

1.3. Completion of the proof of the minimax theorem, namely: $v_I = v_{II}$. So far we have shown that $v_I = v_{II}$ if one of the two players has a dominant strategy (problem 2), and that if neither player has a dominant strategy then $\Delta \neq 0$ (problem 3). We suppose now that neither player has a dominant strategy. In class we proved the identity

(1.9)
$$E(p,q) = \Delta pq - np - mq + r = \Delta (p - \frac{n}{\Delta})(q - \frac{m}{\Delta}) + E(\frac{n}{\Delta}, \frac{m}{\Delta})$$

(1.10)
$$= \Delta st + E(\frac{n}{\Delta}, \frac{m}{\Delta}) = \Delta st + E(p_0, q_0)$$

when

(1.11)
$$s = p - \frac{n}{\Delta} = p - p_0$$
 and $t = q - \frac{m}{\Delta} = q - q_0$.

This identity (1.9) results form checking that the coefficients of pq, p and q on both sides of the first line of (1.9) are the same and by then checking that the constant term is correct by evaluating both sides at $p = -\frac{n}{\Delta}$ and $q = -\frac{m}{\Delta}$. The second line in (1.9) is just changing variables using (1.11). The change of variables from (p,q) to (s,t) lead in class to:

$$v_I = \max_{0 \le p \le 1} \left(\min_{0 \le q \le 1} E(p, q) \right) = \max_{-p_0 \le s \le 1 - p_0} \left(\min_{-q_0 \le t \le 1 - q_0} \Delta st + E(p_0, q_0) \right)$$

and (1.13)

$$v_{II} = \min_{0 \le q \le 1} \left(\max_{0 \le p \le 1} E(p, q) \right) = \min_{-q_0 \le t \le 1-q_0} \left(\min_{-p_0 \le s \le 1-p_0} \Delta st + E(p_0, q_0) \right)$$

Problems.

4a. Using the formulas for n and m in (1.2), show that

(1.14)
$$p_0 = \frac{n}{\Delta} = \frac{a_{2,2} - a_{1,2}}{a_{2,2} - a_{1,2} + a_{1,1} - a_{2,1}}$$

and

(1.15)
$$q_0 = \frac{m}{\Delta} = \frac{a_{2,2} - a_{2,1}}{a_{2,2} - a_{2,1} + a_{1,1} - a_{1,2}}$$

Then use problem # 1 to show that becaue we have assumed that neither player I or player II have a dominant strategy, one has $0 < p_0 < 1$ and $0 < q_0 < 1$.

4b. Using the inequalities on p_0 and q_0 in problem (4a), show that $(s_0, t_0) = (0, 0)$ is then an allowable value for (s, t) in the formulas (1.12) and (1.13). Then show that in fact

$$v_I = v_{II} = E(p_0, q_0).$$

Hints: We know

$$v_I = \max_{-p_0 \le s \le 1-p_0} (\min_{-q_0 \le t \le 1-q_0} \Delta st + E(p_0, q_0)) \ge E(p_0, q_0)$$

since the maximum over s is at least as large as what one gets when one lets $s = s_0 = 0$, and the latter value is $E(p_0, q_0)$. Argue that if $-p_0 \le s \le 1 - p_0$ and $s \ne 0$, then one can always choose t near 0 so that Δst is negative. Then explain why this gives $v_I = E(p_0, q_0)$. The argument for v_{II} is similar.

4c. Suppose as above that neither player I or II have a dominant strategy. Explain why the numbers p_0 and q_0 in Problem 4a above are given by

$$p_0 = \frac{c_1}{c_1 + c_2}$$
 and $q_0 = \frac{d_1}{d_1 + d_2}$

when we let c_1, c_2, d_1, d_2 be the numbers computed by the following table discussed in class:

	Player II	Player II	
	option 1	option 2	
Player I	$a_{1,1}$	$a_{1,2}$	$c_1 = a_{2,1} - a_{2,2} $
option 1			
Player I	$a_{2,1}$	$a_{2,2}$	$c_2 = a_{1,1} - a_{1,2} $
option 2			
	$d_1 = a_{1,2} - a_{2,2} $	$d_2 = a_{1,1} - a_{2,1} $	