
MATH 210, PROBLEM SET 1

DUE IN LECTURE ON WEDNESDAY, SEPT. 15.

1. Games with saddlepoints

Before trying to do these problems, read section 15.1 of the “For all practical purposes”
text, which I will refer to as FAPP. On the next page I summarize in more mathematical
terms the meaning of saddlepoints of two person zero sum games. You may also find it
useful to look at the answers to exercises #1, #3 and #5 on page 584 of FAPP which are
given in appendix A of FAPP (see page A-35).

Please briefly explain your reasoning for each problem; the credit I can give depends on
your reasoning.

(1) Do #1 of the “Skills check” problems in Chapter 15 of FAPP (page 581).

(2) Do #2 of the “Skills check” problems in Chapter 15 of FAPP (page 581).

(3) Do #4 of the “Skills check” problems in Chapter 15 of FAPP (page 582).

(4) Do #5 of the “Skills check” problems in Chapter 15 of FAPP (page 582).

2. Games with mixed strategies.

To understand this topic, I suggest reading pages 21 to 33 of the book “How math can
save your life” which is available on gigapedia, as well as section 15.2 of FAPP. See the
course guide on the math 210 web page for how to use gigapedia. I think pages 31 to 33 of
“How math can save your life” are actually clearer than FAPP when it comes to describing
how to choose mixed strategies.

(1) Do #16 of the “Skills check” problems in Chapter 15 of FAPP (page 583).

(2) Describe a situation in the news, at Penn or in your own experience which can
be viewed as a two-person two-option zero sum game. Formulate and explain the
payoff matrix for one player in this game and determine what the optimal strategies
of the players should be. Comment on the significance of your answer. (I will ask
people who include amusing or otherwise unusual answers to this problem whether
they would like their answers posted on a link of the course page. It’s fine if you’d
rather not have such answers posted, though.)
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The theory of saddlepoints

Suppose that two players, named I and II, play a zero-sum game in which player I has n
options while player II has m options. If player I plays option i and player II plays option
j, the payoff to player I is some number ai,j , while the payoff to player II is −ai,j . (The
game is zero sum because the payoff to each player is exactly the negative of the payoff to
the other.)

The Payoff matrix for player I is then

A = (ai,j)1≤i≤n,1≤j≤m.

Rows in this matrix are options for player I, while columns are options for player II.
The maximin of this matrix is

(2.1) maximin(A) = max1≤i≤n(min1≤j≤m ai,j)

This can be computed by first finding

Arow(i) = min1≤j≤m ai,j = ai,j(i) = a minimal entry in row i

for some integer j(i) depending on i. There may be more than one j(i) which works. One
then finds

maximin(A) = max1≤i≤n Arow(i) = ai1,j(i1)

for some i1.
Player II would like to minimize the payoff to player I of playing the game, since this

maximizes the payoff to them. The significance of Arow(i) is that if player II knows that
player I is going to play option i, they should choose a stategy j = j(i) for themselves
which minimizes ai,j as j runs from 1 to m. The payoff to player I of playing option i is
then Arow(i).

If player I realizes that someone is going to leak their choice of strategy to player II,
then they should choose i so that Arow(i) is as large as possible. This leads to the payoff
maximin(A) to player I (and payoff −maximin(A) to player II). One should think of this
number as the best player I can do if once they choose an option, this choice is told to
player II, so that player II can best counter the choice made by player I.

The minimax of the matrix A is

(2.2) minimax(A) = min1≤j≤m(max1≤i≤n ai,j)

This can be computed by first finding

Acol(j) = max1≤i≤n ai,j = ai(j),j = a maximal entry in column j

for some integer i(j). One then finds

minimax(A) = min1≤j≤mAcol(j) = ai(j2),j2

for some j2. This number represents the minimal payoff to player I (and thus the max-
imal payoff to player II) which player II can force if the option that player II picks is
communicated to player I so that player I can best counter it.

One says A has a saddlepoint if

maximin(A) = minimax(A)

In this case, suppose maximin(A) = ai1,j(i1) and minimax(A) = ai(j2),j2 as above. Then

maximin(A) = ai1,j(i1) ≤ ai1,j2 ≤ ai(j2),j2 = maximin(A)
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by the definitions of j(i1) and i(j2). But we are supposing A has a saddlepoint, so the far
left and far right terms are equal, and we get

maximin(A) = ai1,j(i1) = ai1,j2 = ai(j2),j2 = maximin(A).

We could have chosen j(i1) to be any j which minimizes ai,j as j ranges over 1 ≤ j ≤ m, so
this shows we might as well have chosen j(i1) = j2. Similarly we could choose i(j2) = i1.

The upshot is that if A has a saddlepoint, then players I and II should pick options i1
and j2 respectively. Player I is then guaranteed a payoff of maximin(A) = minimax(A) and
player II can ensure that the payoff is not larger than this. Neither player has an incentive
to make another choice, since if they did, the other player could benefit at their expense.
For instance, if player I picked some other option i′1, then

Arow(i1) ≥ Arow(i′1) = ai′1,j(i′1)

and if this is a strict inequality, then player II could make things worse for player II by
picking option j(i′1) rather than j2.

If A does not have a saddlepoint, there need not be one best option for each player.
They may raise their expected returns by choosing randomly between their options giving
each one a certain probability of being chosen. This is the subject of §15.2 of FAPP.


