MATH 210, PROBLEM SET 9

DUE IN LECTURE ON WEDNESDAY, NOV. 17

1. The central limit theorem

In class we talked about the central limit theorem for $n \geq 1$ independent random variables X_{1}, \ldots, X_{n} having the same distribution function. Let $\mu=E\left(X_{i}\right)$ and $\sigma=\sigma\left(X_{i}\right)=$ $\sqrt{\operatorname{Var}\left(X_{i}\right)}$ be the mean and standard deviation of each of the X_{i}. Define

$$
Y_{n}=\frac{X_{1}+\cdots+X_{n}-n \mu}{\sigma \sqrt{n}} .
$$

The central limit theorem, with Berry's error term, says

$$
\begin{equation*}
\left|\operatorname{Pr}\left(Y_{n} \leq x\right)-\int_{-\infty}^{x} \phi(u) d u\right| \leq \frac{3 \rho}{\sigma^{3} \sqrt{n}} \tag{1.1}
\end{equation*}
$$

when $\rho=E\left(\left|X_{i}-\mu\right|^{3}\right)$, where $\phi(u)=\frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2}$ is the probability density function of the normal distribution.

1. The newspaper columnist Marilyn Vos Savant often claimed that she had an I. Q. of 220 , which would be 8 standard deviations above the mean. Suppose that the I.Q. test supporting this had n questions. Suppose that scores of people taking the test on questions 1 through n are represented by independent random variables X_{1}, \ldots, X_{n}, with $\operatorname{Prob}\left(X_{i}=1\right)=1 / 2$ being the probability of a correct answer and $\operatorname{Prob}\left(X_{i}=0\right)=1 / 2$ being the probability of a wrong answer. What is the smallest number n of questions on the exam such that Marilyn Vos Savant's total score $X=X_{1}+\cdots+X_{n}$ could have been 8 standard deviations above the mean? (Hint: You don't need to use the central limit theorem for this, just the formula for $\sigma(X)$.
2. When n is your answer to question 1 , what is the probability that a person has the same score on the exam as Marilyn Vos Savant? If the population of the earth is $6 \cdot 10^{9}$, what is the probability of finding a person with this high a score on earth, given that the exam could be modeled as in problem \# 1? How would you explain your conclusions?
3. Suppose we now want to use the central limit theorem to approximate the probability found in question $\# 2$. Let $x=8$ in (1.1). How large should we make n in order for to make the error term on the right hand side of (1.1) less than the probability you found in question $\# 2$ of a person having a score equal to Marilyn Vos Savant's? (This n will be considerably larger than the answer you find in question \#1.)

Comment: This is another illustration of how the known error estimates for the central limit theorem do not work well at large distances from the mean unless n is exceedingly large.

2. Stirling's formula

One form of Stirlings formula is that if $n \geq 1$ is an integer, then

$$
\begin{equation*}
n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} e^{\lambda_{n}} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{12 n+1}<\lambda_{n}<\frac{1}{12 n} \tag{2.3}
\end{equation*}
$$

4. Use Stirling's formula to show that the probability of getting exactly $n / 2$ heads on flipping a fair coin an even number n of times is equal to

$$
\begin{equation*}
\sqrt{\frac{2}{n \pi}} e^{s_{n}} \tag{2.4}
\end{equation*}
$$

where

$$
\frac{1}{12 n+1}-\frac{1}{3 n}<s_{n}<\frac{1}{12 n}-\frac{2}{6 n+1} .
$$

(This corrects a formula we talked about in class.)

