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1 Introduction

The study of discriminants has been a central part of algebraic number
theory (c.f. [30]), and has recently led to striking results in arithmetic
geometry (e.g. [6], [33], [2]). In this article we summarize two different
generalizations ([16], [11]) of discriminants to arithmetic schemes having a
tame action by a finite group. We also discuss the results proved in [11,
15, 16] concerning the connection of these discriminants to ε0 and ε-factors
in the functional equations of L-functions. These results relate invariants
defined by coherent cohomology (discriminants) to ones defined by means of
étale cohomology (conductors and ε-factors.) One consequence is a proof of
a conjecture of Bloch concerning the conductor of an arithmetic scheme [15]
when this scheme satisfies certain hypotheses (c.f. Theorem 2.6.4). In the
last section of this paper we present an example involving integral models
of elliptic curves.

The discriminant dK of a number field K can be defined in (at least)
three different ways. The definition closest to Arakelov theory arises from
the fact that

√
|dK | is the covolume of the ring of integers OK of K in

R ⊗Q K with respect to a natural Haar measure on R ⊗Q K (c.f. [8, §4]).
This Haar measure is the one which arises from the usual metrics at infinity
one associates to Spec(K) as an arithmetic variety. A second definition of dK
is that it is the discriminant of the bilinear form defined by the trace function
TrK/Q : K → Q. The natural context in which to view this definition is in
terms of the coherent duality theorem, since TrK/Q is the trace map which
the duality theorem associates to the finite morphism Spec(K) → Spec(Q).
A third definition of the ideal dKZ is that this is the norm of the annihilator
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of the sheaf Ω1
OK/Z

of relative differentials on Spec(OK). Each of these
definitions is linked to the behavior of the zeta function ζK(s) of K via the
fact that |dK |s/2 appears as a factor in the functional equation of ζK(s)
(c.f. [29, p. 254]). This fact reflects that |dK | is also equal to the Artin
conductor of the (permutation) representation of Gal(Q/Q) on the complex
vector space ⊕σ:K→Q C · eσ

Let X be a regular scheme which is flat and projective over Z and equidi-
mensional of dimension d. In this case, a connection between the conductor
in the conjectural functional equation of the Hasse-Weil L-function of X and
an invariant involving the differentials of X has been conjectured by S. Bloch
([5]). In the case of curves (when d = 1), Bloch gave in [6] an unconditional
proof of his conjecture in [5].

In this paper we will consider Artin-Hasse-Weil L-functions by letting a
finite group G act (tamely) on X , in the sense that the order of the inertia
group Ix ⊂ G of each point x ∈ X is prime to the residue characteristic of
x. We will explain how can one relate the conductors and epsilon factors of
the Artin-Hasse-Weil L-functions associated to X and representations of G
(which are defined via étale cohomology) to two kinds of discriminants asso-
ciated to the G-action on X . These discriminants are defined via Arakelov
theory and coherent duality, respectively.

To apply Arakelov theory, we choose in §2 a G-invariant Kähler metric h
on the tangent bundle of the associated complex manifold X (C). Let ZG be
the integral group ring of G. We sketch in §2 the construction given in [16] of
an Arakelov-Euler characteristic associated to a hermitian G-bundle (F , j)
on X . This construction proceeds by endowing the equivariant determinant
of cohomology of RΓ(X ,F) with equivariant Quillen metrics jQ,φ for each
irreducible character φ of G. The resulting Euler characteristic lies in an
arithmetic classgroup A(ZG). This classgroup is a G-equivariant version of
the Arakelov class group of metrized vector bundles on Spec(Z), which it is
isomorphic to when G is the trivial group.

To generalize the connection between the discriminant of OK and the
functional equation ζK(s), we consider variants of the de Rham complex on
X . One complication is that in general, the sheaf Ωi

X/Z of degree i relative
differentials will not be locally free on X . We thus start by considering
instead of Ω1

X/Z the sheaf Ω1
X/Z(log) degree one relative logarithmic differ-

entials with respect to the union of the reductions of the fibers of X over a
large finite set S of primes of Spec(Z) (c.f. [27]) . Under certain hypotheses
(Hypothesis 2.4.1), Ω1

X/Z(log) is locally free of rank d as an OX -module.
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Using exterior powers of Ω1
X/Z(log) and the metrics induced by a choice of

Kähler metric on X , we define in §2.4 a logarithmic de Rham Euler charac-
teristic χdRl(X , G, S) in A(ZG). This Euler characteristic can be viewed as
an Arakelov-theoretic discriminant associated to the action of G on X.

To connect χdRl(X , G, S) to L-functions, we make a further simplification
by considering only symplectic characters of G. A complex representation
of G is symplectic if it has a G-invariant non-degenerate alternating bilinear
form. The group Rs

G of virtual symplectic characters of G is the subgroup
of the character group RG of G generated by the characters of symplectic
representations. In §2.3 we define using symplectic characters a quotient
As(ZG) of A(ZG) called the symplectic arithmetic class group. This quo-
tient has the advantage that it contains a subgroup Rs (ZG) of so-called
rational classes, which is naturally identified with HomGal(Q/Q)(R

s
G,Q

×).
The main result discussed in §2.5 is that the image χsdRl(X , G, S) of

χdRl(X , G, S) in As(ZG) is a rational class which determines and is deter-
mined by certain ε0-constants associated to the L-functions of the Artin
motives obtained from X and the symplectic representations of G.

We will not discuss here a second result, proved in [16], concerning the
actual de Rham complex of X , or rather a canonical complex of coherent
G-sheaves on X which results from applying a construction of derived exte-
rior powers due to Dold and Puppe to the relative differentials Ω1

X/Z. We
refer the reader to [16] for the proof that the Arakelov Euler characteristic
of this complex, together with a ‘ramification class’ associated to the bad
fibers of X , determines the symplectic ε-constants of X . This result provides
a metrized generalization of the main results in [9, 12, 14], which concern a
generalization to schemes of Fröhlich’s conjecture concerning rings of inte-
gers. For a survey of work on the Galois module structure of schemes, see
[18].

A key step in establishing the results in [16] is to consider the case in
which G is the trivial group. This case reduces to a conjecture of Bloch
if X satisfies Hypothesis 2.4.1, which was mentioned above in connection
with Ω1

X/Z(log). We discuss in §2.6 a proof given in [15] for such X . An
independent proof of Bloch’s conjecture for these X has been given by K.
Arai in his thesis. A proof which does not require the assumption that the
multiplicities of the irreducible components of the fibers of X are prime to
the residue characteristic has been given by Kato and Saito (to appear). For
general X , we discuss in §2.6 the proof given in [15] that Bloch’s conjecture
is equivalent to a statement about a metrized Arakelov Euler characteristic.
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In §3 we turn to the other method of generalizing discriminants, via
the coherent duality theorem. In [11], an Euler characteristic in Fröhlich’s
Hermitian class group HCl(ZG) is associated to a perfect complex P • of
ZG-modules for which one has certain G-invariant Q-valued pairings in co-
homology. This leads to an Euler characteristic in HCl(ZG) associated to
the logarithmic de Rham complex and the natural pairings on the de Rham
cohomology of the general fiber of X which arise from duality. We state in
§3.5 the results of [11] for X of dimension 2. In this case, the image of the
above class in Fröhlich’s adelic Hermitian class group both determines and
is determined by the ε0 -factors of representations of G. We will refer the
reader to [11] for an analogous result, when X has dimension 2, concerning
the Dold-Puppe variant of the de Rham complex mentioned in connection
with §2.

In a final section we discuss an example of the Euler characteristics
results sketched in §2 and §3, in which X/G is a regular model of an elliptic
curve having reduced special fibers.

2 Equivariant Arakelov Euler Characteristics.

2.1 The equivariant determinant of cohomology.

Let C• denote a perfect complex of CG-modules. Thus the terms of C• are
finitely generated (necessarily projective), and all but a finite number of the
terms are zero. Let Ĝ be the set of complex irreducible characters of G. For
each irreducible character φ ∈ Ĝ let Wφ denote the simple 2-sided CG-ideal
with character φ (1)φ, where φ is the contragredient character of φ. For a
finitely generated CG-module M we define Mφ = (M ⊗C W )G, where G
acts diagonally and on the left of each term. Define the complex line

det
(
H∗ (C•)φ

)
= ⊗i ∧top

(
H i (C•)φ

)(−1)i

(2.1.1)

where for a finite dimensional vector space V of dimension d, ∧top (V )−1 is
the dual of the complex line ∧d (V ) . We recall from [28] the fundamental
fact that there is a canonical isomorphism of complex lines

ξφ : det
(
C•
φ

)
→ det

(
H∗ (C•)φ

)
. (2.1.2)

By a complex conjugation on a complex line L we will mean an isomorphism
λ : L→ L of additive groups such that λ(αl) = αl for α ∈ C and l ∈ L.
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Definition 2.1.1 The equivariant determinant of cohomology of C• is the
family of complex lines

{
det

(
H∗ (C•)φ

)}
φ∈Ĝ

. A metrized perfect ZG-complex

is a pair (P •, h•) where P • is a perfect ZG-complex, and for each the
φ ∈ Ĝ, hφ is a metric on the complex line det

(
H∗ (P • ⊗Z C)φ

)
. We will

say that h is invariant under complex conjugation if on each complex line
det

(
H∗ (P • ⊗Z C)φ

)
, one has specified a complex conjugation under which

hφ is invariant.

2.2 Equivariant degree.

Consider a metrized perfect ZG-complex (P •, h•) as above. If G = {1}, the
degree of (P •, h) is defined to be the positive real number

χ (P •, h) = h
(
⊗i (∧jpij)(−1)i

)
∈ R>0 (2.2.1)

for any choice of basis {pij} for Pi as a Z-module.
When G is non-trivial, we cannot in general find bases for the Pi as ZG-

modules, since the Pi are only locally free. We therefore take the following
adelic approach.

Let Jf (Q) denote the finite ideles of the algebraic closure Q of Q, and
let Ω = Gal(Q/Q). Define HomΩ

(
RG, J(Q)+

)
to be the subgroup

HomΩ

(
RG, Jf (Q)

)
×Hom (RG,R>0)

of Hom
(
RG, Jf (Q)×R×

)
. The equivariant degree χ (P •, h•) takes values

in the equivariant arithmetic class group A (ZG), which is defined in [16] as
the following quotient group of HomΩ

(
RG, J(Q)+

)
.

Let Ẑ =
∏
p Zp denote the ring of integral finite ideles of Z. For x ∈

ẐG×, the element Det(x) ∈ HomΩ(RG, Jf ) is defined by the rule that for a
representation T with character ψ

Det(x)(ψ) = det(T (x));

the group of all such homomorphisms is denoted

Det(ẐG×) ⊆ HomΩ(RG, Jf ).
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More generally, for n > 1 we can form the group Det
(
GLn(ẐG)

)
; as

each group ring ZpG is semi-local we have the equality Det
(
GLn(ẐG)

)
=

Det(ẐG×) (see 1.2.6 in [35]).
Replacing the ring Ẑ by Q, in the same way we construct

Det(QG×) ⊆ HomΩ(RG,Q
×).

The product of the natural maps Q× → Jf and |−| : Q× → R>0 yields an
injection

∆ : Det(QG×) → HomΩ(RG, Jf )×Hom(RG,R>0).

Definition 2.2.1 The arithmetic classgroup A(ZG) is defined to be the quo-
tient group

A(ZG) =

HomΩ(RG, Jf )×Hom(RG,R>0)(
Det(ẐG×)× 1

)
Im(∆)

 . (2.2.2)

For each prime ideal v ∈ Spec (Z), we choose local bases
{
p
(v)
ij

}
of

P i ⊗Z Zv. If di is the ZG rank P i, then for each prime number l we can
find α

(l)
i ∈ GLdi (QlG) such that

p
(0)
ij = α

(l)
i p

(l)
ij (2.2.3)

Let ν be the Hermitian form on CG defined by

ν
(∑

xgg,
∑

yhh
)

= #G ·
∑

xgyg

For a given irreducible character φ ∈ Ĝ, choose an orthonormal basis {wφ,k}
of the ideal Wφ of CG defined in §2.1 with respect to ν.1 For each i we shall
write bi,φ for the wedge product

∧j,k
(∑

g

gpij0 ⊗ gwφ,k

)
∈ det

(
P i ⊗W

)G
.

1The form ν arises from the following fact proved in [16, Lemma 2.3]. Suppose M
is a finitely generated CG-module and || || is a G-invariant metric on det(M). Give
Mφ = (M ⊗C W )G the metric induced by the tensor product metric on M⊗CW associated
to || || and ν. Then the map Mφ → WM defined by

∑
vi ⊗mi →

∑
i
vimi is an isometry

when WM ⊂ M is given the metric induced from || ||.
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Recall from (2.1.2) that for each φ ∈ Ĝ we have an isomorphism

ξφ : det
(
P •
φ

)
→ det

(
H∗ (P •)φ

)
.

Definition 2.2.2 The arithmetic class χ(P •, p•) of (P •, p•) is defined to be
that class in A(ZG) represented by the homomorphism on RG which maps
each φ ∈ Ĝ to the following element of Jf ×R>0:

∏
p

(∏
i

Det(λip)(φ)(−1)i
)

× pφ
(
ξφ

(
⊗ib(−1)i

i,φ

)) 1
φ(1)

.

The following result from [16] will be crucial in subsequent applications:

Theorem 2.2.3 Let (P •, h•) , (Q•, j•) be metrized perfect ZG-complexes and
let f : P • → Q• be a quasi-isomorphism, that is to say a chain map which
induces an isomorphism on cohomology. Suppose further that f induces an
isometry on their equivariant determinants of cohomology. Then

χ (P •, h•) = χ (Q•, j•) in A (ZG) (2.2.4)

2.3 Rational classes and the symplectic arithmetic classgroup.

Let Rs
G denote the group of virtual symplectic characters of G. The symplec-

tic arithmetic classgroup As(ZG) is defined in [16] to be the largest quotient
of

HomΩ

(
Rs
G, J(Q)+

)
= HomΩ

(
Rs
G, Jf (Q)

)
×Hom (Rs

G,R>0) .

such that restriction of functions on RG to Rs
G induces a homomorphism

A(ZG) → As(ZG). In [16] we use the results of [7] to exhibit a subgroup
Rs (ZG) of As (ZG) which carries a natural discriminant isomorphism

θ : Rs (ZG) → HomΩ

(
Rs
G,Q

×)
(2.3.1)

We call Rs (ZG) the subgroup of rational symplectic classes.
One can describe the inverse of θ in the following way. Let

∆f : Q× → J(Q)+ = Jf (Q)×R>0 (2.3.2)
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be the embedding which is the diagonal map on each r ∈ Q>0, and for which
∆f (−1) = (−1)f is the idele in J(Q) whose finite components equal −1 and
whose infinite component is 1. Then ∆f induces an injection

∆f,∗ : HomΩ(Rs
G,Q

×) → HomΩ

(
Rs
G, J(Q)+

)
which gives rise to the inverse of θ when one identifies As (ZG) with a
quotient of HomΩ

(
Rs
G, J(Q)+

)
.

2.4 Arakelov-Euler characteristics

The basic object of study here is a hermitian G − X -bundle (F , j), which
is defined to be a pair consisting of a locally free OX sheaf F having a G-
action which is compatible with the action of G on OX , and a G-invariant
hermitian form j on the complex fibre FC of F which is invariant under
complex conjugation.

From [9, 10] we know that since G acts tamely on X , the ZG-complex
RΓ (X ,F) is quasi-isomorphic to a perfect complex P • in the derived cate-
gory of ZG modules. We further recall that Quillen and Bismut have shown
[4] how j induces so-called Quillen metrics jQ,• = {jQ,φ}φ∈Ĝ on the equiv-
ariant determinants of the cohomology of F .

We define the Arakelov-Euler characteristic of the hermitian G−X bun-
dle (F , j) to be the class χ (P •, jQ,•) in A(ZG). Note that this class is inde-
pendent of choices by Theorem 2.2.3, so we will denote it by χ (RΓ(X ,F), jQ).
We may extend the definition of χ (RΓ(X ,F), jQ) in a natural way to argu-
ments F which are bounded complexes of hermitian G-modules. We will de-
note the image of χ (RΓ(X ,F), jQ) in the symplectic arithmetic class group
As(ZG) by χs (RΓ(X ,F), jQ)

The following technical hypothesis will be useful later.

Hypothesis 2.4.1 The quotient scheme Y = X/G is regular. The reduc-
tions of the finite fibers of Y have strictly normal crossings. The irreducible
components of the finite fibers of Y have multiplicity prime to the residue
characteristic.

Let S denote a finite set of prime numbers which contains all the primes
which support the branch locus of X → Y = X/G, together with all primes
p where the fibre Yp fails to be smooth. Define X red

S to be the disjoint
union of the reduced fibers of X over the primes in S. Let Ω1

X (log) =
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Ω1
X/Z(logX red

S / logS) denote the sheaf of degree one relative logarithmic dif-
ferentials with respect to the morphism (X ,X red

S ) → (Spec(Z), S) of schemes
with log-structures (see [27]). Under hypotheses 2.4.1, Ω1

X (log) is a locally
free sheaf of rank d on X which restricts to Ω1

X/Q on the general fiber X of
X . For i ≥ 0, let ∧ihD be the metric on ∧iΩ1

X (log) which results from the
Kähler metric h. Then (∧iΩ1

X (log),∧ihD) is a hermitian G−X -bundle.

Definition 2.4.2 Assume hypothesis 2.4.1. The log de Rham Euler char-
acteristic of X with respect to S is

χdRl(X , G, S) = χ(RΓ(∧•Ω1
X (log),∧•hDQ) (2.4.1)

=
d∏
i=0

χ(RΓ(∧iΩ1
X (log),∧ihDQ)(−1)i

where ∧ihDQ denotes the Quillen metrics on the determinants of the iso-
typic parts of the cohomology of ∧iΩ1

X (log). The image χsdRl(X , G, S) of
χdRl(X , G, S) in the symplectic arithmetic class group As(ZG) will be called
the symplectic log de Rham Euler characteristic of X .

2.5 Euler characteristics and Epsilon factors

Our goal is to relate the log de Rham Euler characteristic χsdRl(X , G, S) of
definition 2.4.2 to the ε0-factors associated to symplectic representations of
G.

Let χ(YQ) = χ(Y(C)) denote the Euler characteristic of the generic fibre
of Y. Since X → Y is finite, the relative dimension of Y over Spec(Z) is d.
Note that in all cases d · χ(YQ) is an even integer, so that we may define
ξS : RG → Q× by the rule

ξS(θ) =
∏
p∈S

p−θ(1)·d·χ(YQ)/2 (2.5.1)

Let ξsS : Rs
G → Q× be the restriction of ξS to the group Rs

G of symplectic
characters of G.

We need to introduce some notation for ε0-constants. For a more detailed
account see [12, §4] and [14, §2, 5]. For a given prime number p, we
choose a prime number l = lp which is different from p and we fix a field
embedding Ql → C. Following the procedure of [17, §8], each of the étale
cohomology groups Hi

ét(X × Q̄p,Ql) for 0 ≤ i ≤ 2d, affords a continuous
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complex representation of the local Weil-Deligne group. Thus, after choosing
both an additive character ψp of Qp and a Haar measure dxp of Qp, for
each complex character θ of G the complex number ε0,p(Y, θ, ψp, dxp, lp)
is defined. (For a representation V of G with character θ this term was
denoted εp,0(X ⊗G V, ψp, dxp, l) in [12, §2.4].) Setting ε̃0,p(Y, θ, ψp, dxp, lp) =
ε0,p(Y, θ− θ(1) · 1, ψp, dxp, lp), by Corollary 1 to Theorem 1 in [13] we know
that when θ is symplectic, ε̃0,p(Y, θ, ψp, dxp, lp) is a non-zero rational number,
which is independent of choices, and θ �→ ε̃0,p(Y, θ) defines an element

ε̃s0,p(Y) ∈ HomΩ(Rs
G,Q

×) (2.5.2)

Analogously, for the Archimedean prime ∞ of Q, Deligne provides a
definition for ε∞(Y), and from 5.5.2 and 5.4.1 in [12] we recall that

ε̃s∞ (Y) ∈ HomΩ(Rs
G,±1).

For φ ∈ Rs
G almost all ε̃s0,v (Y, φ) are equal to 1. The global ε̃0-constant

of φ is
ε̃s0 (Y, φ) =

∏
v

ε̃s0,v (Y, φ)

and we define
εs0,S (Y, φ) = ε̃s0 (Y, φ)

∏
v∈S′

ε0,v (Y, φ (1)) (2.5.3)

where S′ = S ∪ {∞}. The main result proved in [16] concerning the log de
Rham Arakelov Euler characteristic is:

Theorem 2.5.1 The arithmetic class χsdRl(X , G, S) lies in the group of ra-
tional symplectic classes Rs(ZG) and

θ(χsdRl(X , G, S)) = ξsS · εs0,S(Y)−1 (2.5.4)

We refer the reader to [16] for an analogous result about a metrized
Euler characteristic associated to the de Rham complex itself, or rather to a
canonical complex of coherent G-sheaves on X which results from applying a
construction of derived exterior powers due to Dold and Puppe to the relative
differentials Ω1

X/Z. In [16] it is shown that the Arakelov Euler characteristic
of this complex, together with a ‘ramification class’ associated to the bad
fibers of X , determines the symplectic ε-constants of X .
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2.6 A Conjecture of Bloch

In this section we let G be the trivial group, and we suppose initially only
that X is a regular flat projective scheme over Z which is equidimensional of
relative dimension d. Denote by XS the disjoint union of the singular fibers
of f : X → Spec(Z). For a zero cycle

∑
i nixi, define

ord(
∑
i

nixi) =
∏
i

(#k(xi))ni

with k(xi) the residue field of xi. For the definition of the conductor A(X ) of
X , see [5]. This definition requires the choice of an auxiliary prime l, in order
to use Galois representations provided by the l-adic étale cohomology of the
base change of the general fiber of X to Q. We will suppress dependence of
l in the notation A(X ).

Conjecture 2.6.1 (Bloch [5]) The conductor A(X ) is given by

A(X ) = ord((−1)dcXS
d+1(Ω

1
X/Z)) (2.6.1)

where cXS
d+1(Ω

1
X/Z) := cXd+1,XS

(Ω1
X/Z) ∩ [X ] is the localized d + 1-st Chern

class in CH0(XS) described in loc. cit.

We now describe a result from [15] which shows the equivalence of this
conjecture with one concerning a metrized Euler characteristic.

As in the previous section, we choose a Kähler metric h on the tangent
bundle of X (C), and we let hD be the resulting hermitian metric on Ω1

X (C).

Recall the definition of the arithmetic Grothendieck group K̂0(X ) of hermi-
tian vector bundles of Gillet and Soulé ([22, §6]); all hermitian metrics are
smooth and invariant under the complex conjugation on X (C). There is an
arithmetic Euler characteristic homomorphism

χQ : K̂0(X ) −→ R

such that if (F , h) is a vector bundle on X with a hermitian metric on
FC, then χQ((F , h)) is the logarithmic Arakelov degree of the hermitian
line bundle on Spec(Z) formed by the determinant of the cohomology of F
with its Quillen metric. (Note that the Euler characteristic in (2.2.1) lies in
the multiplicative group of positive real numbers, so on composing with the
logarithm one has an additive Euler characteristic in R.)
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By work of Roessler in [32], the arithmetic Grothendieck group K̂0(X ) is
a special λ-ring with λi-operations defined in [22, §7]: If (F , h) is the class of
a vector bundle with a hermitian metric on FC then λi((F , h)) is the class
of the vector bundle ∧iF with the exterior power metric on ∧iFC induced
from h. Now consider the sheaf of differentials Ω1

X/Z; this is a “hermitian
coherent sheaf” in the terminology of [24, §2.5]. Since X is regular, by loc.
cit. 2.5.2, Ω1

X/Z defines an element Ω in K̂0(X ) as follows: Each embedding
of X into projective space over Spec(Z) gives a short exact sequence

E : 0 → N → P → Ω1
X/Z → 0 (2.6.2)

with P and N vector bundles on X (here P is the restriction of the relative
differentials of the projective space to X and N is the conormal bundle of the
embedding). Pick hermitian metrics hP and hN on PC and NC respectively
and denote by c̃h(EC) the secondary Bott-Chern characteristic class of the
exact sequence of hermitian vector bundles EC (as defined in [22]; there is a
difference of a sign between this definition and the definition in [24, §2.5.2]).
Then

Ω = ((P, hP ), 0)− ((N,hN ), 0) + ((0, 0), c̃h(EC)) ∈ K̂0(X )

depends only on the original choice of Kähler metric.
For each i ≥ 0 we can consider now the element λi(Ω) in K̂0(X ).

Conjecture 2.6.2 ([15]) One has

− log |A(X )
d+1
2 | =

d∑
i=0

(−1)iχQ(λi(Ω)) (2.6.3)

The following two results are proved in [15]

Theorem 2.6.3 Conjecture 2.6.2 is equivalent to Bloch’s conjecture 2.6.1.

Theorem 2.6.4 Bloch’s conjecture 2.6.1, and therefore Conjecture 2.6.2,
holds when for all primes p, the fiber of X → Spec(Z) over p is a divisor
with strict normal crossings with multiplicities relative prime to p.

The connection of Theorem 2.6.4 to results in §2.5 is that one can refor-
mulate Bloch’s conjecture in terms of the ε factor ε(X ) of X . As with A(X ),
the definition of ε(X ) requires the choice of an auxiliary prime l. One has

ε(X )2 = A(X )d+1 (2.6.4)
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Note that it is the ε-factor of X which occurs in (2.6.4) rather than the ε0
factor. For this reason, Theorem 2.6.4 is equivalent to [16, Thm. 8.3] for
the action of the trivial group G on X , rather than to Theorem 2.5.1.

In [5], Bloch proved 2.6.1 when d = 1, i.e. for arithmetic surfaces.
A result equivalent to Theorem 2.6.4 was proved independently by Arai
in his thesis. Kato and Saito have proved 2.6.1 without the assumption
that the multiplicities of the irreducible components of the fibers of X are
prime to the residue characteristic (to appear). One other result related
to these developments is an Arakelov-theoretic proof by Univer in [37] of a
result of Saito [33] concerning the conductors and de Rham discriminants of
arithmetic surfaces.

2.7 Sketch of the proofs

2.7.1 The proof of Theorem 2.6.3.

Denote by ĈH
·
(X ), ĈH·(X ) the arithmetic Chow groups of Gillet and Soulé

([22, 23]). The direct image homomorphism

f∗ : ĈH
d+1

(X ) → ĈH
1
(Spec(Z)) = R

satisfies f∗(zS(a)) = log(ord(a)) for a ∈ CH0(XS), where

zS : CH0(XS) → ĈH0(X ) = ĈH
d+1

(X )

is the natural homomorphism. Therefore, Theorem 2.6.3 is equivalent to

d∑
i=0

(−1)iχQ(λi(Ω)) = (−1)d+1d+ 1
2

f∗(zS(cXS
d+1(Ω

1
X/Z))) (2.7.1)

From the Arithmetic Riemann Roch theorem of Gillet and Soulé ([24,
Theorem 7], see also 4.1.5 loc. cit.) we have

d∑
i=0

(−1)iχQ(λi(Ω)) = f∗((ĉh(
d∑
i=0

(−1)iλi(Ω)) · T̂d(X ))(d+1)) (2.7.2)

−1
2

∫
X (C)

ch(
d∑
i=0

(−1)iΩi
X (C))Td(TX (C))R(TX (C))

where the notations are as in loc. cit. and the factor of 1/2 in front of the
second term results from the normalization discussed after equation (15) in
section 4.1.5.
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An argument of Soulé (c.f. [15, Prop. 2.3]) shows that the integral
on the right in (2.7.2) is 0. This argument identifies the integrand with
cd(TX (C))R(TX (C)) via a classical Chern identity, and this product is 0 by
considering the degree filtration of ĈH

·
(X ).

A Chern class calculation (c.f. [16, Prop. 2.4]) shows

(ĉh(
d∑
i=0

(−1)iλi(Ω)) · T̂d(X )))(d+1) = (−1)d+1d+ 1
2

ĉd+1(Ω) (2.7.3)

These results and (2.7.2) show that to prove (2.7.1), and thus Theorem
2.6.3, it is enough to prove

zS(cXS
d+1(Ω

1
X/Z)) = ĉd+1(Ω) (2.7.4)

The proof of (2.7.4) involves the construction of the localized Chern class
via the Grassmanian graph construction (as described in [5, §1] or in [24,
§1]) applied to the complex 0 → N → P with cokernel Ω1

X/Z arising from

(2.6.2). One defines a class µ ∈ ĈH
d+1

(X ×P1)⊗Z Q via this construction
whose restrictions to X ×{0} and X ×{∞} are ĉd+1(Ω) and zS(cXS

d+1(Ω
1
X/Z)),

respectively. One then shows that these restrictions are equal by using [23,
Theorem 4.4.6] to identify their difference with a (d, d) form on X (C) which
can be shown by explicit computation to be 0. We refer the reader to [16,
Lemmas 3.2 and 3.3] for further details.

2.7.2 The proof of Theorem 2.6.4.

With the notation and assumptions of §2.6, the exact sequence

0 → N → P → Ω1
X/Z → 0

together with the natural homomorphism

Ω1
X/Z → Ω1

X/Z(log) = Ω1
X/Z(logX red

S / logS)

give a complex
E1 : N δ→ P → Ω1

X/Z(log) (2.7.5)

which is exact off S and concentrated in degrees −1, 0 and 1. We also have
a complex

E2 : N
(δ,0)→ P ⊕ Ω1

X/Z(log)
pr→ Ω1

X/Z(log)
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concentrated in the same degrees. There is a short exact sequence of com-
plexes

0 → E1 → E2 → Ω1
X/Z(log) → 0

where on the right end, Ω1
X/Z(log) is considered as a complex supported on

degree 0. Therefore, [1, Prop. 1.4][A] (see also [5, Prop. 1.1]) implies that

cXS
d+1(Ω

1
X/Z) =

∑
k+l=d+1

ck(Ω1
X/Z(log)) · cXS

l ([E1]) (2.7.6)

Let q =
∏
p∈S p, and let {Ti}i∈I be the set of irreducible components of

singular fibers of X → Spec(Z). Using Hypothesis 2.4.1, one can prove (c.f.
[15, Prop. 4.1]) that in the Grothendieck group KXS

0 (X ) of complexes of
locally free OX -sheaves which are exact off XS , E1 in (2.7.5) has the same
class as the complex

E3 : OX
(q,−q)→ OX ⊕ (⊕iOX (−Ti))

(id,ι)→ ⊕iOX

in which ι is induced by the natural inclusions OX (−Ti) → OX and id is the
identity map. Therefore we have

cXS
l ([E1]) = cXS

l ([E3]) = cXS
l ([OX /qOX ] +

∑
i

(−[OTi ])) (2.7.7)

Substituting (2.7.7) into (2.7.6), one deduces (c.f. [15])

cXS
d+1(Ω

1
X/Z) =

∑
i∈I

(mi − 1)cd(Ω1
X/Z(log)|Ti) + (2.7.8)

+
∑

J⊂I,|J |≥2

(−1)|J |cd+1−|J |(Ω
1
X/Z(log)|TJ )

where TJ = ∩i∈JTi for each subset J of I.
The logarithmic structure logX red

p |TJ on TJ obtained by restricting (X ,X red
p )

to TJ is isomorphic to the logarithmic structure on TJ defined by its divisor
with strict normal crossings ∪J �=⊂J ′TJ ′ . This leads to an equality

[Ω1
X/Z(log)|TJ ] = [Ω1

TJ/k
(logX red

p |TJ)] + (|J | − 1)[OTJ ]

in K0(TJ) (see [15, Prop. 4.8]). By considering Chern roots, one finds from
this that

cd+1−|J |(Ω
1
X/Z(log)|TJ ) = cd+1−|J |(Ω

1
TJ/k

(logX red
p |TJ)) (2.7.9)
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From [34, p. 402],

deg(cd+1−|J |(Ω
1
TJ/k

(logX red
p |TJ))) = (−1)d+1−|J |χc(T ∗

J ) (2.7.10)

where χc(T ∗
J ) is the l-adic (l /∈ S) Euler characteristic with compact supports

of T ∗
J = TJ − ∪J �=⊂J ′TJ ′ .
Combining (2.7.8), (2.7.9) and (2.7.10) shows

deg((−1)d+1cXS
d+1(Ω

1
X/Z)|Xp

) = −
∑
i∈Ip

(mi − 1)χ∗
c(Ti) +

∑
J⊂Ip,|J |≥2

χ∗
c(TJ)

= −
∑
i∈Ip

miχ
∗
c(Ti) + χ(Xp) (2.7.11)

where Ip is the subset of I that corresponds to components over p. Hypoth-
esis 2.4.1 implies that the ramification of X is tame, in the sense that the
Swan conductor associated to X is trivial. We thus find from [34, Cor. 2,
p. 407] that the far right side of (2.7.11) is the power of p appearing in the
conductor A(X ), and this completes the proof of Theorem 2.6.4.

2.7.3 The proof of Theorem 2.5.1.

Suppose first that G is the trivial group. Theorem 2.5.1 can then be shown
by techniques similar to those used in the proof of the non-equivariant result
Theorem 2.6.4. An alternate proof when G is trivial due to Bismut, which
exploits Serre Duality and was pointed out to us by C. Soulé, is given in [16,
Theorem 7.8].

Given Theorem 2.5.1 when G is trivial, the proof for general G is reduced
in [16, §7] to considering characters of degree 0. More precisely, suppose in
the notation of §2.3 that f ∈ HomΩ

(
Rs
G, J(Q)+

)
is a character function

representing a class c in the symplectic arithmetic classgroup As(ZG). The
character function f̃ defined by f̃(χ) = f(χ−dim(χ)1G) then defines a class
c̃ in As(ZG). Using Theorem 2.5.1 when G is trivial, we can reduce the
general case to proving

θ(χ̃sdRl(X , G, S)) = ξ̃sS · ε̃s0,S(Y)−1 (2.7.12)

Note that by (2.5.1), ξ̃sS = 1.
The strategy used to show (2.7.12) is similar to the one used in [14].

One would like to reduce the identity (2.7.12) to the case of one-dimensional
X , to which the methods used in studying the metrized Galois structure of
rings of integers can be applied.

16



The first step in carrying out this reduction is to show that after a ‘harm-
less’ finite base extension of Z, the d-th Chern class cd(Ω1

Y/Z(logYred
S / logS))

associated to the rank d vector bundle Ω1
Y/Z(logYred

S / logS) on Y = X/G
can be written in G0(Y) as a sum∑

i

ni[ODi ] + F

in which each ni = ±1, Di is a horizontal irreducible one-dimensional sub-
scheme of Y which intersects the reduced fibers of Y transversely, and F is
a class which will contribute nothing to later Euler characteristic computa-
tions. Since π : X → Y is a log-étale morphism, Ω1

X/Z(logX red
S / logS) is the

pullback of Ω1
Y/Z(logYred

S / logS). Because we have reduced to considering
characters of degree 0, a comparison of Quillen metrics on the determinants
of cohomology leads to a formula for χ̃sdRl(X , G, S) in terms of metrized
equivariant Euler characteristics associated to the structure sheaves of the
normalizations Zi of the π−1(Di). The metrics at infinity one uses on OZi

are simply those coming from the standard archimedean absolute values on
the function fields of the irreducible components of Zi.

The methods of Fröhlich, Taylor and Cassou-Noguès may be applied to
compute the metrized Euler characteristic of the OZi in terms of ε0-factors
over Di. Results of Saito [34] then enable one to relate these ε0-factors to
those appearing on the right side of (2.7.12). For further details, see [16].

3 Equivariant discriminants and duality.

3.1 Hermitian modules and Fröhlich’s Hermitian classgroup.

Let G be a finite group. All G-modules we consider will be left G-modules.
Denote by α → α the anti-involution of QG which is Q-linear and sends
each g ∈ G to g−1. Suppose L is a finitely generated QG-module. An
Hermitian pairing on L is a Q-pairing

〈, 〉G : L× L→ QG (3.1.1)

which is QG-linear in the second variable, and for which

〈m,m′〉G = 〈m′,m〉G (3.1.2)

for m,m′ ∈ L. Such pairings are in bijection with G-invariant Q-bilinear
forms

〈, 〉 : L× L→ Q (3.1.3)
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via the formula
〈m,m′〉G =

∑
g∈G

〈m, gm′〉 g−1 (3.1.4)

In [19], a Hermitian ZG-module is defined to be a pair (M, 〈, 〉G) consist-
ing of a finitely generated locally free ZG-module M and a non-degenerate
hermitian pairing 〈, 〉G on MQ = Q⊗Z M .

In [19], Fröhlich defined a quotient HCl(ZG) of

HomΩ(RG, J(Q×))×HomΩ(Rs
G,Q

×) (3.1.5)

called the Hermitian classgroup of ZG. He associated to a Hermitian ZG-
module (M, 〈, 〉G) a discriminant d(M, 〈, 〉G) in HCl(ZG), by giving a recipe
analogous to that in §2.2 for an element of (3.1.5). We refer the reader to
[19, 11] for details.

3.2 The Adelic Hermitian classgroup and rational classes

In [19], Fröhlich defines the adelic Hermitian classgroup to be the quotient

Ad HCl(ZG) =
HomΩQ

(Rs
G, J(Q))

Dets(U(ZG))
(3.2.1)

where Dets(U(ZG)) is the subgroup of HomΩQ
(Rs

G, J(Q)) formed by the
restrictions to Rs

G of character functions which are determinants of elements
of the unit idele group U(ZG) of ZG. There is a natural homomorphism

HCl(ZG) → Ad HCl(ZG)

induced by the homomorphism

HomΩ(RG, J(Q×))×HomΩ(Rs
G,Q

×) → HomΩ(Rs
G, J(Q))

defined by
(h, f) → hs · f.

where hs is the restriction of h to Rs
G.

The homomorphism ∆f : Q× → J(Q) defined in (2.3.2) induces an
injection

∆f,∗ : HomΩQ
(Rs

G,Q
×) → Ad HCl(ZG)

As in §2.3, we will call the image of ∆f,∗ the rational symplectic classes
Rs
Ad(ZG) in Ad HCl(ZG). We let

θ : Rs
Ad(ZG) → HomΩQ

(Rs
G,Q

×) (3.2.2)

be the isomorphism whose inverse is the map induced by ∆f,∗.
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3.3 Discriminants of complexes.

Definition 3.3.1 Suppose P • is a perfect complex of ZG-modules. A per-
fect pairing 〈, 〉 on the cohomology H•(P •

Q) is defined to be a collection {〈, 〉t}t
of non-degenerate G-invariant pairings

〈, 〉t : Ht(P •
Q)×H−t(P •

Q) → Q

such that
〈x, y〉t = 〈y, x〉−t (3.3.1)

for all t ∈ Z, x ∈ Ht(P •
Q) and y ∈ H−t(P •

Q). The pair (P •, 〈, 〉) will be
called a perfect Hermitian complex. It will be said to be quasi-isomorphic
to another perfect Hermitian complex (P ′•, 〈, 〉′) if there is an isomorphism
between P • and P ′• in the derived category of the homotopy category of
complexes of ZG-modules which are bounded above which identifies 〈, 〉 with
〈, 〉′.

Suppose M• is a complex of finitely generated QG-modules. Let M̃•

be the complex which results from applying to M• the functor M → M̃ =
HomQ(M,Q) of finitely generated QG-modules M . The ith term of M̃• is
M̃−i.

Let 〈, 〉 be a perfect pairing on a perfect complex P •. The following
results are proved in [11]. There is an acyclic perfect complex K• of ZG-
modules so that when S• = P •⊕K•, there is a G-isomorphism of complexes
φ = φ(〈, 〉) : S•

Q → S̃•
Q with the following properties.

i. For all integers t, the isomorphism in cohomology

Ht(S•
Q) → Ht(S̃•

Q) = HomQ(H−t(S•
Q),Q)

induced by φ is the one induced by the pairing 〈, 〉t together with the
natural isomorphism of H±t(S•

Q) with H±t(P •
Q).

ii. Define Seven =
⊕

i even S
i and Sodd =

⊕
i odd S

i. Then φ gives non-
degenerate symmetric G-invariant pairings

〈, 〉evenS : SevenQ × SevenQ → Q and 〈, 〉oddS : SoddQ × SoddQ → Q

We now let 〈, 〉evenS,G and 〈, 〉oddS,G be the Hermitian pairings on Seven and
Sodd, respectively, which are associated to 〈, 〉evenS and 〈, 〉oddS via the for-
mula (3.1.4).
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Theorem 3.3.2 The quotient

d(P •, 〈, 〉) =
d(Seven, 〈, 〉evenS,G )

d(Sodd, 〈, 〉oddS,G)

in HCl(ZG) depends only on the quasi-isomorphism class of (P •, 〈, 〉), and
will be called the discriminant of (P •, 〈, 〉).

3.4 Hermitian log de Rham discriminants.

In this section we describe an arithmetic application of the results of §3.3.
We suppose as in §1 that X is a regular projective scheme which is flat
and equidimensional over Z of relative dimension d, and that G is a finite
group acting tamely on X . We will also suppose hypothesis 2.4.1, so the
sheaf Ω1

X (log) = Ω1
X/Z(logX red

S / logS) of degree one relative logarithmic
differentials is locally free of rank d.

Let λ•(Ω1
X (log))[d] be the complex of locally free OX -modules having

∧iΩ1
X (log) in dimension i − d for 0 ≤ i ≤ d, the zero sheaf in other dimen-

sions, and trivial boundary maps. We have already seen that the hyperco-
homology H•(X , λ•(Ω1

X (log))[d]) is represented by a perfect complex P • of
ZG-modules because we have assumed G acts tamely on X . Let X = Q⊗ZX
be the general fiber of X . The restriction of Ω1

X (log) to X is Ω1
X = Ω1

X/Q.
Hence by flat base change, we find that for all t,

Ht(P •)Q =
⊕

i+p=t+d

H i(X,Ωp
X) (3.4.1)

From [25, III,§7] we have canonical perfect G-invariant duality pairings

〈, 〉i,j : H i(X,Ωj
X)×Hd−i(X,Ωd−j

X ) → Q

for 0 ≤ i, j ≤ d. Define

〈, 〉′i,j : H i(X,Ωj
X)×Hd−i(X,Ωd−j

X ) → Q

by
〈x, y〉′i,j = 〈y, x〉d−i,d−j (3.4.2)

By comparing 〈, 〉i,j to the intersection pairing on Betti-cohomology (c.f.
[21]), we see that

〈x, y〉′i,j = (−1)(i+j)〈x, y〉i,j (3.4.3)

since i+ j and 2d− (i+ j) have the same parity.
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Definition 3.4.1 Define a G-invariant non-degenerate pairing

〈, 〉t : Ht(P •)Q ×H−t(P •)Q → Q

in the following way. If t < 0, let

〈, 〉t =
⊕

i+j=t+d
〈, 〉i,j

relative to the canonical direct sum decomposition in (3.4.1) for t and −t.
If t > 0, define

〈x, y〉t = 〈y, x〉−t =
⊕

i+j=t+d
〈, 〉′i,j = (−1)t+d · ⊕

i+j=t+d
〈, 〉i,j .

Finally, if t = 0, let

〈, 〉0 =
⊕

i<d/2
〈, 〉i,d−i ⊕ 〈, 〉d/2,d/2

⊕
i>d/2

〈, 〉′i,d−i.

where the term 〈, 〉d/2,d/2 appears only if d is even.

Note that if d is even, then 〈, 〉d/2,d/2 = 〈, 〉′d/2,d/2 is a symmetric pairing

on Hd/2(X,Ωd/2
X ) because of (3.4.3). Thus

〈x, y〉t = 〈y, x〉−t

for all t, x ∈ Ht(P •)Q) and y ∈ H−t(P •)Q).

Definition 3.4.2 Define the Hermitian logarithmic de Rham discriminant
of (X , G) in HCl(ZG) by

χHl(X , G, S) = d(λ•(Ω1
X/Z(logX red

S / logS))[d], 〈, 〉) = d(P •, 〈, 〉) (3.4.4)

Let χAHl(X , G, S) be the image of χHl(X , G, S) in the adelic Hermitian class-
group Ad HCl(ZG).

The image of χHl(X , G, S) in the usual classgroup Cl(ZG) is

(−1)d
d∑
i=0

χG(Ωi
X/Z(logX red

S / logS))

where χG(F) ∈ Cl(ZG) is the Euler characteristic in Cl(ZG) of a coherent
G-sheaf F on X as defined in [9]. This image arises in the study of the
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de Rham invariant χ(X , G) ∈ Cl(ZG) considered in [9, 12, 14], but is not
exactly equal to χ(X , G), since the latter pertains to the de Rham complex
rather than the log de Rham complex. With more work, one can define a
canonical Hermitian class χH(X , G) ∈ HCl(ZG) whose image in Cl(ZG) is
χ(X , G); see [11].

We end this section by discussing the classical case in which d = 0
and X = Spec(ON ) for a tame G-extension N/K of number fields. Then
ON is a projective ZG-module by a result of Noether, and χ(X , G) is
the stable isomorphism class (ON ) ∈ Cl(ZG). The classes χHl(X , G, S)
and χH(X , G, S) are both equal to the class in HCl(ZG) of the Hermi-
tian G-module (ON ,TrN/Q) defined by the trace form associated to N/Q.
Fröhlich’s conjecture relating (ON ) ∈ Cl(ZG) to root numbers was proved
by Taylor [36]; the corresponding Hermitian conjecture concerning χAHl(X , G, S)
was proved by Cassou-Noguès and Taylor in [7].

3.5 The case of surfaces.

The following result is shown in [11]. Since symplectic characters have
even dimension, we may define a homomorphism B′ ∈ HomΩ(Rs

G,Q
×) by

B′(χ) = (−1)dim(χ)/2. The diagonal map Q× → J(Q) allows us to view
B′ as an element of HomΩ(Rs

G, J(Q)); let B be the image of this element
in Ad HCl(ZG) under the surjection in (3.2.1). Note that B will not be a
rational class, since we have used the diagonal embedding of Q× into J(Q)
rather than the homomomorphism ∆f of (2.3.2). Let ξsS and εs0,S(Y) be the
elements of HomΩ(Rs

G,Q
×) defined in §2.5

Theorem 3.5.1 Suppose dim(X ) = d+ 1 = 2 and that X satisfies hypoth-
esis 2.4.1. Then Bχ(YQ) · χAHl(X , G, S) lies in the group of rational classes
Rs
Ad(ZG) and

θ(Bχ(YQ) · χAHl(X , G, S)) = ξsS · εs0,S(Y)−1 (3.5.1)

where θ is defined in (3.2.2) and χ(YQ) is the Euler characteristic of the
general fiber YQ of Y.

It is somewhat mysterious that the same ε0-factors arise in describing
χAHl(X , G, S) and the Arakelov theoretic class χsdRl(X , G, S) of Theorem
2.5.1. We see no direct reason for this to be true, e.g. because the metrics on
cohomology in the Arakelov approach are positive definite while the pairings
on cohomology used to define χAHl(X , G, S) will be indefinite in general.
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3.6 Sketch of the proof of Theorem 3.5.1.

When G is the trivial group and dim(X ) = 2, Theorem 3.5.1 follows from
work of Saito [34] on ε0-factors and of Bloch [5] on the relation between
conductors and de Rham discriminants. The factor Bχ(YQ) arising in (3.5.1)
comes the computation of the discriminants of hyperbolic Hermitian mod-
ules given in [19, Prop. II.5.7]. As in §2.7.3, knowing Theorem 3.5.1 when
G is trivial reduces one to considering characters of degree 0 for general G.

To treat characters of degree 0, the strategy (as in [12]) is to reduce
to the case of rings of integers by a judicious choice of effective divisors
on Y = X/G. Suppose, for example, that one has a global section s of
Ω1
Y/Z(logYred

S / logS), and that C is the (effective) divisor of s. Let π : X →
Y be the natural quotient map, and let C′ = π−1(C). Then one has an exact
sequence

0 → OX
s→ Ω1

X/Z(logX red
S / logS) → OC′ → 0 (3.6.1)

of coherent G-sheaves. The cohomology of this sequence can be used to re-
late the difference of the Euler characteristics of Ω1

X/Z(logX red
S / logS) and

OX to that of OC′ . To show such a relation for Hermitian Euler character-
istics, one must compare the duality pairings on the cohomology of OX and
Ω1
X/Z(logX red

S / logS) to the trace pairing on the cohomology of OC′ .
Since one does not in general have a global section of Ω1

Y/Z(logYred
S / logS),

a more involved argument is used in [11] in which one chooses two effective
horizontal divisors D and J on Y. These divisors have the property that

KY + YredS + 2J + F = D

for a canonical divisor KY on Y, where YredS is the sum of the reductions
Yredp of the fibers of Y over the primes p in S, and F is a linear combination
of irreducible components of fibers of Y → Spec(Z) over primes not in S.
The algebraic problem is to show that

χ̃AHl(X , G, S) = d̃(H0(OD′), trD′) · d̃(H0(OJ ′), trJ ′)−2 (3.6.2)

where c̃ is the restriction to characters of degree 0 of a class c, D′ = π−1(D),
J ′ = π−1(J ) and trD′ and trJ ′ are the trace forms on the generic fibers D′

and J ′ of D′ and J ′, respectively. This requires establishing various exact
sequences in cohomology and comparing via these sequences the pairings
involved in the definition of the discriminants appearing in (3.6.2).

The proof of Theorem 3.5.1 is completed by using the main result of
Cassou-Noguès and Taylor in [7] to relate the right hand side of (3.6.2) to
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root numbers associated to D′ and J ′, and the comparison of these root
numbers to those going into the definition of ε̃s(Y)−1 which was made in
[12, §9]. The latter comparison again relies on the formulas of Saito in [34];
for further details, see [11].

4 An example

Theorem 4.0.1 Let F be a number field. Suppose Hypothesis 2.4.1 holds,
and that Y = X/G is a projective, flat, regular model over OF of an el-
liptic curve over F having reduced fibers. Then the Euler characteristics
χsdRl(X , G, S) and χAHl(X , G, S) appearing in Theorems 2.5.1 and 3.5.1, re-
spectively, are both trivial, as are the character functions ξsS and εs0,S(Y).

We first indicate one way to construct examples in which the hypotheses
of this Theorem are satisfied. Let E be a regular model over OF of an elliptic
curve over F , and suppose that the singular fibers of E are reduced and of
multiplicative type. Suppose that there is a finite subgroup Γ of E(F ) which
maps injectively into each smooth fiber of E and injectively into the group of
connected components of each singular fiber of E . Then Γ gives a finite group
of automorphisms of E such that the quotient map E → E/Γ = Y is an étale
Γ-cover. Let N/F be a finite tame Galois extension which is unramified over
the places of F where E has bad reduction. The scheme X = Spec(ON )×E is
a tame Galois cover of Y with group Gal(N/F )×Γ = G, and the hypothesis
of Theorem 4.0.1 hold.

To prove Theorem 4.0.1, observe first that by [16, Lemma 7.10],
Ω1
Y/Z(logYred

S / logS) is naturally isomorphic to the relative dualizing sheaf
ωY/Z since Y has reduced special fibers. By [3, Prop. 1.15], the Neron
model YN of Y consists of the complement of the (codimension two) sin-
gular points in the singular fibers of Y. Since Ω1

YN/Z
is the trivial bundle

on YN , it follows that ωY/Z is isomorphic to OY . We conclude on pulling
back via π : X → Y = X/G that Ω1

X/Z(log) = Ω1
X/Z(logX red

S / logS) =
π∗Ω1

Y/Z(logYred
S / logS) is equivariantly isomorphic to OX . By [16, Thm.

6.2], we therefore have an equality of degree 0 classes

χ̃
(
RΓ(X ,OX),Λ0hDQ

)
= χ̃

(
RΓ(X ,Ω1

X/Z(log)),Λ1hDQ

)
(4.0.1)

where ΛihDQ is the Quillen metric in cohomology associated to a choice of
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Kähler metric on X (see Definition 2.4.2). Therefore

χ̃sdRl(X , G, S) = χ̃
(
RΓ(X ,OX ),Λ0hDQ

)
· χ̃

(
RΓ(X ,Ω1

X/Z(log)),Λ1hDQ

)−1

= 1 (4.0.2)

By Theorem 2.5.1,

θ(χsdRl(X , G, S)) = ξsS · εs0,S(Y)−1 (4.0.3)

Since the generic fiber YQ of Y has been assumed to be an elliptic curve, one
has ξsS = 0 from (2.5.1). Thus (4.0.2) and (4.0.3) show that θ(χsdRl(X , G, S))
and εs0,S(Y) are trivial on characters of degree 0. If χ is a virtual symplectic
character of G, then dim(χ) is even, and χ−dim(χ)χ0 is a virtual symplectic
character of degree 0, where χ0 is the trivial character and 2χ0 is symplectic.
Since θ is injective (c.f. §2.3), we conclude that to show to χsdRl(X , G, S) = 0,
it will suffice to prove

εs0,S(Y)(2χ0) = 1 (4.0.4)

This equality follows from [16, Theorem 7.9] since all of the fibers of Y have
been assumed to be reduced. Since we have now shown ξsS and εs0,S are both
trivial, we have χAHl(X , G, S) by Theorem 3.5.1. This completes the proof
of Theorem 4.0.1.
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