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Abstract. We answer a question of M. Flach by showing that there is a linear representation of a

profinite group whose (unrestricted) universal deformation ring is not a complete intersection. We

show that such examples arise in arithmetic in the following way. There are infinitely many real
quadratic fields F for which there is a mod 2 representation of the Galois group of the maximal

unramified extension of F whose universal deformation ring is not a complete intersection. Finally,

we discuss bounds on the singularities of universal deformation rings of representations of finite
groups in terms of the nilpotency of the associated defect groups.

1. Introduction

In this article we provide an example of a representation of a profinite group whose unrestricted
universal deformation ring is not a complete intersection, thus answering a question of M. Flach [9].
To our knowledge, this is the first example of such a representation. More precisely, we show the
following Theorem.

Theorem 1.1. Let k be a perfect field of characteristic ` = 2.
i. There is a profinite group Γ and a simple kΓ-module V such that the universal deformation

ring R(Γ, V ) is isomorphic to W [[t]]/(2t, t2), where W = W (k) is the ring of infinite Witt
vectors over k. In particular, R(Γ, V ) is not a complete intersection.

ii. There are infinitely many real quadratic fields F such that one can take the group Γ in part
(i) to be Gal(Fun/F ) when Fun is the maximal everywhere unramified extension of F .

Flach’s question arises naturally in number theory in the following way. Let L be a number field
and suppose that S is a finite set of places of L. Let GL,S be the Galois group of the maximal
algebraic extension LS of L which is unramified outside S. Suppose that k is a perfect field of positive
characteristic `. Let ρ : GL,S → GLn(k) be a continuous representation of GL,S associated to a
continuous kGL,S-module V and a choice of basis for V over k. Mazur showed in [20], using results
of Schlessinger, that under various hypotheses there are universal deformation rings RD(GL,S , V )
associated to V and sets of deformation conditions D. A key question in various applications, e.g. in
the work of Wiles and Taylor in [25, 23], has been whether RD(GL,S , V ) is a complete intersection
ring. This has been shown to be true in many cases by a variety of authors when S contains all
the places of L over ` and ∞. Most of these results involve deformation conditions D arising from
the theory of modular forms; see [18], [12, 13] and their references. In [6], Böckle shows that the
unrestricted universal deformation ring R(GL,S , V ), with the empty set of deformation conditions
D, is a complete intersection in various arithmetic situations. In [10], de Jong replaces GL,S by
the fundamental group π1(X) of a curve X in characteristic `. He shows that under some mild
hypotheses on V , R(π1(X), V ) is a complete intersection if a counterpart of a conjecture of Deligne
about geometric monodromy groups is true. He proves this counterpart when n = 2, and relates it
in general to the Langlands correspondence mod `. Further work along this line has been done by
Gaitsgory in [15] and by Böckle and Khare in [7].
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It is not clear for which L, S and D the ring RD(GL,S , V ) should be a complete intersection. A
discussion of some expectations regarding the singularities of deformation rings is given in [19]. One
expects that the addition of deformation conditions may in some cases eliminate singularities and
may in other cases introduce them. Since Flach’s question concerns the case in which D is empty,
we will assume this from now on.

Suppose first that S contains all the places of L over ` and ∞ and where V ramifies. In [20],
Mazur showed in case k finite that the Euler-Poincaré formula implies

dimk(H1(GL,S ,Endk(V )) ≥ dimk(H2(GL,S ,Endk(V )).

This implies that the minimal number of generators in a presentation for R(GL,S , V ) is at least
as large as the number of relations. This is some evidence that R(GL,S , V ) is often a complete
intersection under the above hypotheses. Thus a natural extension of Flach’s question would be to
ask whether R(GL,S , V ) is a complete intersection provided S contains all the places of L over `
and ∞ and where V ramifies.

The case in which S does not contain all the places of L over ` is fundamentally different. Suppose
further that S contains no such places. By the Fontaine-Mazur conjecture, the image of GL,S under
the universal deformation of V should be finite. The issue then becomes the study of universal
deformations of finite groups, and there is less reason to expect the associated deformation rings
to be complete intersections. In fact, Theorem 1.1(ii) produces infinitely many examples which
are not complete intersections and for which L is real quadratic and S = ∅. Another point of
view about the case in which S contains no place over ` is that the deformation theory of linear
representations of GL,S does not provide a great deal of information about GL,S . Boston has
formulated a generalization of the Fontaine-Mazur conjecture (see [8]) which would provide much
more information about pro-` quotients of GL,S via actions of this group on rooted trees.

We recall now the definition of universal deformation rings. Suppose k is a field of characteristic
` > 0, W is a complete local commutative Noetherian ring with residue field k, and Γ is a profinite
group. Let V be a finite dimensional kΓ-module (having the discrete topology and a continuous Γ-
action). In [20] Mazur supposed V is absolutely irreducible, while in [11], de Smit and Lenstra made
the weaker hypothesis that EndkΓ(V ) = k. Under these respective hypotheses, these authors proved
that there is a universal deformation ring R(Γ, V ) characterized by the following property. Let C
be the category of all topological local commutative W -algebras R with residue field k which are
the projective limits of their discrete Artinian quotients. A lift of V over an object R in C is a pair
(M,φ) consisting of an RΓ-module M which is free over R together with a kΓ-module isomorphism
φ : k ⊗R M ∼= V . Isomorphisms between lifts are defined in the natural way, and an isomorphism
class of lifts over R is called a deformation of V over R. The deformation functor FV : C → Sets
sends an object R in C to the set of all deformations of V over R. Then V has a universal deformation
ring R(Γ, V ) in C if the functor FV is naturally isomorphic to HomC(R(Γ, V ),−), i.e. if R(Γ, V )
represents the functor FV . (Note that since we have assumed EndkΓ(V ) = k, and the map R∗ → k∗

is surjective, the isomorphism class of a lift (M,φ) is determined by the isomorphism class of M as
an RΓ-module.)

This paper is organized in the following way. In §2 we prove Theorem 1.1(i) when Γ is the
symmetric group S4 on 4 letters and V is two-dimensional and irreducible; this V is unique up to
isomorphism. The proof relies on results of the first author in [1], and the method used can be
applied to more complicated representations of finite groups.

To produce number theoretic examples, we introduce in §3 the notion of capping groups. A
surjection π : Γ → G of profinite groups shows that G caps Γ for a prime ` if Ker(π) has no
non-trivial pro-` quotients (c.f. Definition 3.1). We show that under this condition, the versal
deformation rings of all mod ` representations of G do not change under inflation from G to Γ. In
Lemma 3.3 we show that this property in fact characterizes when G caps Γ for ` via π : Γ → G.
The notion of capping groups arises naturally in Iwasawa theory, e.g. it can be used to define when
a rational prime ` is regular (c.f. Proposition 3.6). In §4 we analyze which groups are capped by
S4 for ` = 2.
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To apply this to the Galois groups GL,S discussed above, it is useful to know when GL,S can
be capped for a given prime ` by a finite quotient G of GL,S . In §5 we show that when L = Q,
` = 2 and G is a symmetric group Sn, then there is an S for which GL,S is capped by Sn if and
only if n = 2 or n = 3. When one enlarges the base field L to a real quadratic field, however, we
show in §6 that S4 caps GL,∅ for infinitely many real quadratic fields L. This is shown by first
exhibiting explicitly one field L and by then applying a Cebotarev argument. This leads to the
result in Theorem 1.1(ii).

In the last section §7 of this paper we consider the following question:

Question 1.2. Suppose k is a field of characteristic ` > 0, G is a finite group and that V is a kG-
module of finite dimension over k which belongs to a block B of kG having a defect group D which has
nilpotency r. Suppose further that the stable endomorphism ring EndkG(V ) of V is one-dimensional
over k, so that R(G,V ) is well defined. Is it the case that dim(R(G,V ))−depth(R(G,V )) ≤ r− 1?

Note that if R(G,V ) is Cohen-Macaulay (e.g. if R(G,V ) is a complete intersection), then
dim(R(G,V )) = depth(R(G,V )), so this question has an affirmative answer. We show that Question
1.2 has an affirmative answer in various other cases using results from [20], [3], [1] and [2].

We would like to thank M. Flach for letting us know about his question concerning whether all
universal deformation rings are complete intersections. We would like to thank the referee for some
very useful comments improving the paper.

Some of the results of this paper have been announced in [5].

2. The non-trivial irreducible mod 2 representation of S4

Let k be a perfect field of characteristic 2 and let S4 denote the symmetric group on 4 letters.
Up to isomorphism, there is a unique non-trivial irreducible kS4-module V , and dimkV = 2. In
this section, we prove that the universal deformation ring of V is not a complete intersection ring.
We use the following Lemma, which is a correction of [1, Lemma 4.1].

Lemma 2.1. Let k be a perfect field of characteristic 2, and let W be the ring of infinite Witt vectors
over k. Let R be a complete local Noetherian W -algebra for which there is a continuous surjection
τ : R → W and an isomorphism µ : R/2R → k[s]/(s2) of W -algebras. Then R is isomorphic to
W [[t]]/(t2 − 2γt, α2mt) as a W -algebra, where γ ∈ W , α ∈ {0, 1} and 0 < m ∈ Z. In particular, R
is isomorphic to a subquotient algebra of the group ring W (Z/2Z) of Z/2Z or to a quotient algebra
of W [t]/(t2). If moreover there is exactly one continuous surjection τ , then either γ = 0 or α = 1.

Proof. It follows from the assumptions that there is a continuous W -algebra surjection ψ : W [[t]] →
R. By composing ψ with the automorphism of W [[t]] which sends t to t − a for a = τ(ψ(t)) ∈ W ,
we can assume that τ(ψ(t)) = 0. This means that the kernel J of ψ is contained in the ideal (t),
and, since R/2R ∼= k[s]/(s2), J is properly contained in (t). Since the maximal ideal of W [[t]]
is generated by 2 and t, the maximal ideal of R/2R is generated by the image of t. Because
R/2R ∼= k[s]/(s2), we conclude that the image of W ⊕Wt ⊂ W [[t]] under ψ : W [[t]] → R must be
all of R since R is complete. Hence ψ(t2) = ψ(a0 + a1t) for some a0, a1 ∈ W , which means that
t2 − (a0 + a1t) = j ∈ J . Since J is a proper subset of (t), it follows that a0 = 0 and a1 is not a
unit in W , i.e. a1 = 2γ for some γ ∈ W . Therefore, (t2 − 2γt)W [[t]] ⊆ J ⊂ tW [[t]]. Hence J = tJ ′

where (t − 2γ)W [[t]] ⊆ J ′ ⊂ W [[t]], and the latter inclusion is proper since J 6= tW [[t]]. It follows
that J ′ = (t− 2γ, α2m) where α ∈ {0, 1} and m ∈ Z+. Thus J = (t2 − γt, α2mt).

If γ = 0, R ∼= W [[t]]/(t2, α2mt) is isomorphic to a quotient algebra of W [[t]]/(t2) ∼= W [t]/(t2). If
γ 6= 0, R ∼= W [[t]]/(t2 − 2γt, α2mt) is isomorphic to a quotient algebra of W [[t]]/(t2 − 2γt). There
is an injective W -algebra homomorphism

ρ : W [[t]]/(t(t− 2γ)) →W ×W

which sends t to (0, 2γ). Thus the image of ρ is {(x, y) ∈ W ×W | x ≡ y mod 2γW} which is
a W -subalgebra of {(x, y) ∈ W ×W | x ≡ y mod 2W} ∼= W (Z/2Z). If γ 6= 0 and α 6= 1, then
R ∼= W [[t]]/(t(t− 2γ)) has two continuous surjections onto W . �
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Remark 2.2. Let R be a commutative local Noetherian ring. Grothendieck [16, §19.3] calls R a
complete intersection ring if there is a regular complete local commutative Noetherian ring S and
a regular sequence x1, . . . , xn ∈ S such that the completion R̂ is isomorphic to S/(x1, . . . , xn).

Suppose that B is a regular commutative local Noetherian ring, and J is an ideal of B. By [16,
Prop. (19.3.2)], it follows that A = B/J is a complete intersection ring if and only if the ideal J is
generated by a regular sequence of elements in B.

Theorem 2.3. Let k be a perfect field of characteristic 2, let W be the ring of infinite Witt vectors
over k, and let S4 be the symmetric group on 4 letters. Let V be a non-trivial irreducible kS4-
module of dimension 2. Then the universal deformation ring of V is R(S4, V ) ∼= W [[t]]/(t2, 2t). In
particular, R(S4, V ) is not a complete intersection ring.

Proof. By [1, Proof of Prop. 4.2], there is exactly one continuous surjective W -algebra homo-
morphism R = R(S4, V ) → W , and R/2R ∼= k[t]/(t2). By Lemma 2.1, R is isomorphic to
W [[t]]/(t2 − 2γt, α2mt), where γ ∈ W , α ∈ {0, 1}, 0 < m ∈ Z and either γ = 0 or α = 1.
Let G = 〈u, v, r, s | Rel〉 with

Rel = {u2 = v2 = r3 = s2 = 1, uv = vu, srs = r−1, sus = v, svs = u, rur−1 = v, rvr−1 = uv}.
By letting u = (1, 2)(3, 4), v = (1, 4)(2, 3), r = (1, 2, 3) and s = (1, 3), we see that G is isomorphic
to S4. The representation ρ : S4 → GL2(k) corresponding to V is given by the following matrices

(2.1) ρ(u) =
(

1 0
0 1

)
= ρ(v), ρ(r) =

(
0 −1
1 −1

)
, ρ(s) =

(
0 1
1 0

)
.

We now construct a representation τ : G = S4 → GL2(W [[t]]/(t2, 2t)) which mod 2 gives a universal
mod 2 deformation of V . Define τ by the following matrices:

τ(u) =
(

1 + t t
0 1 + t

)
, τ(v) =

(
1 + t 0
t 1 + t

)
, τ(r) =

(
0 −1
1 −1

)
, τ(s) =

(
0 1
1 0

)
.

The reduction τ of τ mod 2 defines an indecomposable kS4-module U satisfying tU ∼= V and
U/tU ∼= V . It follows from R(S4, V )/2R(S4, V ) ∼= k[t]/(t2) that U is isomorphic to the universal
mod 2 deformation of V as kS4-module. The reduction of τ mod (t) defines a deformation of V
over W and corresponds to the unique surjection R(S4, V ) →W = R(S3, V ) mentioned earlier.

Suppose now that R is not isomorphic to W [[t]]/(t2, 2t), i.e. R = W [[z]]/(z2 − 2γz, α2mz) so
that if α = 1 then m ≥ 2. Recall γ = 0 or α = 1. To obtain a contradiction, we need to show
there are no γ and α as above such that τ can be lifted to W [[z]]/(z2− 2γz, α2mz) via a continuous
W -algebra homomorphism

ν : R = W [[z]]/(z2 − 2γz, α2mz) →W [[t]]/(t2, 2t)

which induces an isomorphism R/2R → k[t]/(t2). One checks that ν(z) = κt for some κ ∈ W ∗,
so on replacing γ by κ−1γ we can reduce to the case in which ν(z) = t. Since W [[t]]/(t2 − 2γt, 4t)
is a quotient algebra of W [[z]]/(z2 − 2γz, α2mz) through which ν factors, it is enough to show
that τ cannot be lifted to W [[t]]/(t2 − 2γt, 4t) for any γ ∈ W for the canonical projection πγ :
W [[t]]/(t2 − 2γt, 4t) →W [[t]]/(t2, 2t) sending t to t.

This can be seen by looking at τ(u). If τ̂ were a lift of τ to W [[t]]/(t2 − 2γt, 4t) for πγ , then
τ̂(u) would be conjugate to a matrix Au over W [[t]]/(t2 − 2γt, 4t) which has to satisfy the relation
A2

u ≡ I mod (t2 − 2γt, 4t), where I denotes the identity 2 × 2 matrix. An easy matrix calculation
shows that this is not possible. Hence τ cannot be lifted to W [[t]]/(t2 − 2γt, 4t) for any γ ∈ W ,
which implies that R = R(S4, V ) ∼= W [[t]]/(t2, 2t). �

Remark 2.4. Theorem 2.3 provides a correction of [1, Prop. 4.2]. However, R(S4, V ) is still isomor-
phic to a subquotient ring of WD8. This follows, since R(S4, V ) is a quotient algebra of W [t]/(t2)
by Theorem 2.3, and it was shown in the proof of [1, Cor. 4.3] that W [t]/(t2) is isomorphic to a
subquotient ring of WD8. Hence [1, Cor. 4.3] is still correct, i.e. if X is a simple kS4-module, then
R(S4, X) is a subquotient ring of the group ring WD over W of a defect group D of the block B of
kS4 associated to X.
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3. Capping groups

In this section we introduce the notion of capping groups. One application of this concept is to
the computation of the universal or versal deformation ring of a mod ` representation of a profinite
group.

Definition 3.1. Let ` be a prime number, and suppose there is a short exact sequence

(3.1) 1 → K → Γ π−→ G→ 1

where Γ and G are profinite groups, π is a continuous group homomorphism and K is a closed
normal subgroup of Γ. We say G caps Γ (via π) for ` if there is no closed normal subgroup K0 of
Γ satisfying K0 < K and for which K/K0 is a non-trivial pro-` group.

Remark 3.2. Let `, Γ, G, π and K be as in Definition 3.1.
i. The following are equivalent:

a. The group G caps Γ via π for `.
b. The pro-` completion of K is trivial.
c. The maximal pro-` abelian quotient of K is trivial.
d. The maximal `-elementary abelian quotient of K (which may be infinitely generated)

is trivial.
e. There is no closed normal subgroup K ′ of K with the property that K/K ′ is a non-

trivial pro-` group.
ii. If G caps Γ via π for `, then for all closed subgroups H of G, H caps π−1(H) for `.
iii. Let Gab (resp. Γab) be the maximal pro-abelian quotient group of G (resp. Γ). If G caps

Γ via π for `, then Gab caps Γab for `.

We now relate the concept of capping groups to deformation theory. For simplicity, we suppose
that Γ satisfies the following `-finiteness condition of Mazur [20]: For every continuous finite-
dimensional kΓ-module X, the k-dimension of H1(Γ, X) is finite. By [20], this implies that if V is
a continuous finite-dimensional representation of Γ over a discrete perfect field k of characteristic
`, the versal deformation ring R(Γ, V ) is well defined.

Lemma 3.3. Fix a perfect field k of characteristic `. Let M(Γ, G, k) be the set of continuous
finite dimensional representations V of Γ over k which are inflated from representations of G. If Γ
satisfies Mazur’s `-finiteness condition, the following are equivalent:

i. The group G caps Γ via π for `.
ii. The group K = Ker(π : Γ → G) acts trivially on U(Γ, V ) for all V ∈M(Γ, G, k).

In particular, if G caps Γ via π for ` and V ∈M(Γ, G, k), then R(Γ, V ) is isomorphic to the versal
deformation ring R(G,V ) of V as a representation of G.

Proof. The fact that (i) implies (ii) follows since the kernel of the natural surjection

AutR(Γ,V )(U(Γ, V )) → Autk(V )

is a pro-` group.
We now assume (ii) and suppose that G does not cap Γ via π for `. We may thus suppose that

there is a closed normal subgroup K0 of Γ contained in K such that K/K0 is a non-trivial pro-`
group. Since Γ/K0 is a pro-finite group, there is an open normal subgroup K ′ of finite index in Γ
with the following property. The exact sequence

1 → K/(K ∩K0) → Γ/K0 → G/π(K0) → 1

gives an exact sequence

1 → K/(K ∩ (K ′K0)) → Γ/(K ′K0) → G/π(K ′K0) → 1

in which K/(K ∩ (K ′K0)) is a non-trivial finite `-group. Here Γ/(K ′K0) is a finite group. By
Theorem 3.2 of [4], there is a finite dimensional representation V of Γ/(K ′K0) over k which is inflated
from a representation of G/π(K ′K0) such that the versal deformation U(Γ/(K ′K0), V ) is faithful.
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In particular, the group K/(K ∩ (K ′K0)) acts non-trivially on U(Γ/(K ′K0), V ). We now inflate
this V from Γ/(K ′K0) to Γ. Since U(Γ/(K ′K0), V ) must arise from the versal deformation U(Γ, V )
of V as a representation of Γ, we see that K acts non-trivially on U(Γ, V ) because K/(K ∩ (K ′K0))
acts non-trivially on U(Γ/(K ′K0), V ). This completes the proof. �

Definition 3.4. Let ` be a prime, let G be a profinite group, and let L be a number field.
i. We say G caps L for ` at a set of places S if there exists some π as in (3.1) such that G caps
GL,S via π for `, where GL,S denotes the Galois group of the maximal unramified outside
S extension of L.

ii. We say G caps L for ` if there is a set of places S such that G caps GL,S for `.
iii. We say G is a capping group for ` if G caps some number field L for `.

The natural question in this context is:

Question 3.5. Given a prime `, which profinite groups G are capping groups for `? Which of these
cap Q for `?

We give one example of how one can phrase statements in Iwasawa theory in terms of capping
groups.

Proposition 3.6. Suppose ` is an odd prime.
i. The field Q(ζ`∞)+ is the unique extension of Q which is unramified outside {`} and with

Galois group G = Z∗`/{±1}.
ii. The group G caps Q for ` at S = {`} if and only if the maximal abelian pro-` extension of

Q(ζ`∞)+ which is unramified outside {`} is trivial. This holds if and only if ` is regular in
the sense that ` does not divide the class number of Q(ζ`).

Proof. Part (i) follows from classical cyclotomic theory. Hence the canonical continuous surjection

π : GQ,S → G

is unique up to an automorphism of G.
By [24, Thm. 5.34 and Prop. 13.22], ` is regular if and only if the minus part of the class number

of Q(ζ`n) is not divisible by ` for all n ≥ 1. By [24, Prop. 13.32], this is equivalent to the maximal
abelian outside ` unramified pro-` extension of Q(ζ`∞)+ being trivial. This is so if and only if G
caps Q (via π) for `. �

Our main result on capping groups is the following theorem.

Theorem 3.7. Let Sn denote the symmetric group on n letters.
i. The group Sn caps Q for ` = 2 if n = 2, 3 and does not cap Q for ` = 2 if n ≥ 4.
ii. There are infinitely many real quadratic fields L such that S4 caps L for ` = 2 at the empty

set S of places of L.

Remark 3.8. A group G caps a number field L for ` at a set S of places of L if and only if there is
a G-extension L′ of L which is unramified outside S satisfying the following. For all conductors M
in L′ which involve only places lying over S, the ray class group of L′ of conductor M has order
prime to `. In particular, part (ii) in Theorem 3.7 is equivalent to the statement that there are
infinitely many real quadratic fields L for which there is an unramified S4-extension of L which has
odd class number. An example of such a field is L = Q(

√
5 · 14197).

As a corollary of Theorem 2.3 and Theorem 3.7, we obtain the following result which implies
Theorem 1.1.

Corollary 3.9. Let k be a perfect field of characteristic 2, and let V be a non-trivial irreducible
kS4-module of dimension 2. There are infinitely many real quadratic fields L such that

i. There is surjection π : GL,∅ → S4, and
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ii. When V is viewed as a module for GL,∅ via π, then

R(GL,∅, V ) = R(S4, V ) ∼= W [[t]]/(t2, 2t)

is not a complete intersection ring.

4. Groups capped by S4 for ` = 2

Lemma 4.1. Suppose there is a short exact sequence

1 → K → Γ π−→ S4 → 1

where Γ is a profinite group, π is a continuous group homomorphism and K is a closed normal
subgroup of Γ. Then S4 caps Γ via π for ` = 2 if and only if there is no commutative diagram with
exact rows and columns

(4.1) 1

��
T

��
Γ //

π ��?
??

??
Γ0

//

π0��

1

S4

�� ��@
@@

@@

1 1

where either T ∼= Z/2 with trivial S4-action, or T ∼= V where V = Z/2× Z/2 and the action of S4

on V is given by the same matrices as in (2.1).

Proof. Suppose that S4 does not cap Γ for ` = 2. Since S4 is finite, this implies that there is a
closed normal subgroup K0 ≤ K of Γ such that T = K/K0 is a finite 2-group. We have a short
exact sequence

(4.2) 1 → T = K/K0 → Γ/K0 → Γ/K = S4 → 1.

We can replace T by T ab/(T ab)2 so as to be able to assume that T is an elementary abelian 2-group.
Since S4 acts on T by conjugation, T is a (Z/2)S4-module. Since every irreducible (Z/2)S4-module
is isomorphic to either the trivial simple module Z/2 or to the non-trivial simple module V , we can
replace T by a quotient so as to be able to assume that T is either Z/2 or V . Setting Γ0 = Γ/K0

in (4.2) results in a diagram (4.1). �

The following two Lemmas analyze the group Γ0 in diagram (4.1) if it exists.

Lemma 4.2. Suppose that there is a group Γ0 as in diagram (4.1) in which T = Z/2 with trivial
action by S4. Then one of the following mutually exclusive possibilities occurs:

a. There is a surjection of Γ0 onto a group of order 4.
b. There is an embedding ρ : Γ0 → GL2(C) which gives a lifting of a faithful projective repre-

sentation ρ̃ : S4 = Γ0/T → PGL2(C) in the sense of Tate and Serre [22, §6]. This leads to
two isomorphism classes of Γ0 which can be distinguished by det(ρ) having order 1 or 2.

In both cases, if S3 is a subgroup of S4 isomorphic to the symmetric group on 3 letters then the
maximal abelian quotient of π−1

0 (S3) has order 4.

Proof. The description of the groups in parts (a) and (b) is well-known and can easily be proved
by computing H2(S4, µ2) using the Kummer sequence

1 → µ2 → C∗ z→z2

−−−→ C∗ → 1.
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In both cases, we have a commutative diagram

1 // Z/2 // Γ0
π // S4

// 1

1 // Z/2 // π−1
0 (S3)

OO

// S3

OO

// 1

where the vertical arrows are inclusions. Since π−1
0 (S3) is not isomorphic to A4, π−1

0 (S3) has a
normal Sylow 3-subgroup P3. Since π−1

0 (S3) is not abelian, this means that the maximal abelian
quotient of π−1

0 (S3) has order 4. �

Lemma 4.3. Suppose that there is a group Γ0 as in diagram (4.1) in which T ∼= V = Z/2 × Z/2
with the action of S4 on V being given by the matrices in (2.1). Then Γ0 is a semidirect product
Γ0 = H× S3 where either

a. H ∼= V ⊕ V ∼= (Z/2)4; or
b. H ∼= Z/4× Z/4.

In both cases, if D8 is a Sylow 2-subgroup of S4, so that D8 is isomorphic to a dihedral group of
order 8, then the maximal abelian quotient of π−1

0 (D8) has order 8.

Proof. Since H2(S4, V ) has 2 elements, there are precisely two possibilities for Γ0, up to isomorphism.
This leads to the description of Γ0 as Γ0 = H× S3 where H is as in part (a) or (b).

In both cases (a) and (b), there is an exact sequence

1 →M → π−1
0 (D8) → Z/2 = {1, σ} → 1

where M is isomorphic to (Z/2){1, σ} ⊕ (Z/2){1, σ} (resp. to (Z/4){1, σ}) as a module for the
group {1, σ} under the conjugation action of σ in case (a) (resp. in case (b)). In either case,
(1−σ)M is an order 4 subgroup of M which is stable under the left action of σ, where the action of
σ corresponds to conjugation by a pre-image of σ in π−1

0 (D8). It follows that (1− σ)M is a normal
subgroup of π−1

0 (D8) and π−1
0 (D8)/(1−σ)M is abelian of order 8. Since the commutator subgroup

of π−1
0 (D8) has non-trivial intersection with T ∼= V and since there is also a non-trivial element

in the commutator subgroup of π−1
0 (D8)/T ∼= S4, it follows that the maximal abelian quotient of

π−1
0 (D8) has order at most 32/4 = 8. This completes the proof of Lemma 4.3. �

5. Sn-extensions of Q

Our goal in this section is to show that Sn caps Q for ` = 2 for n = 2, 3 and not for any n ≥ 4,
which proves part (i) of Theorem 3.7.

We first dispense with the cases n = 2 and n = 3.

Lemma 5.1. If n = 2, the group S2
∼= Z/2 caps Q for ` = 2 at S = {5} via any π : GQ,S → S2. If

n = 3, the group S3 caps Q for ` = 2 at S = {23,∞} via any π : GQ,S → S3.

Proof. When n = 2, it follows from class field theory that the field Q(
√

5) is the maximal pro-2
extension of Q which is unramified outside {5}. When n = 3, one finds similarly that the splitting
field N of f(x) = x3− x− 1 is a the unique S3-extension of Q unramified outside {23,∞}, and this
field has no extension of two-power degree unramified outside {23,∞}. �

We now recall some results from [22, §6] concerning liftings of projective representations of
GL = Gal(L/L) when L is a global or local field.

Suppose
ρ̃ : GL → PGLm(C)

is an m-dimensional projective representation. A lifting of ρ̃ is a continuous linear representation

ρ : GL → GLm(C)
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giving rise to ρ̃ via the canonical surjection GLm(C) → PGLm(C). If ρ is such a lifting, then all
other liftings have the form χ⊗ ρ for some one-dimensional character χ of GL.

Suppose v is a place of L. Let v be a place of L over v, and define IL,v ⊂ DL,v ⊂ GL to be the
inertia and decomposition groups of v. These groups are determined by v up to conjugation.

Theorem 5.2. (Tate) For all global and local fields L, the cohomology group H2(GL,C∗) is trivial.
In consequence, every projective representation of GL has a lifting.

Theorem 5.3. (Tate) Suppose that L = Q and that ρ̃ : GQ → PGLm(C) is a projective represen-
tation. For each prime number p, let ρ′p : DQ,p → GLm(C) be a lifting of the restriction ρ̃|DQ,p of ρ̃
to DQ,p. Suppose that ρ′p|IQ,p is trivial for almost all p. Then there is a unique lifting ρ of ρ̃ such
that

(5.1) ρ|IQ,p = ρ′p|IQ,p

for all primes p.

It is important to note that this Theorem specifies the restriction of a lifting to the inertia groups
of finite places of Q, not on the decomposition groups of these places. Further, the Theorem does
not specify the lifting on the inertia group at infinity.

The following result can easily be proved by considering the Sn-cohomology of the Kummer
sequence 1 → {±1} → C∗ → C∗ → 1.

Lemma 5.4. For n ≥ 4, there is an embedding of Sn into PGLm(C) for some m which does not
lift to an embedding of Sn into GLm(C).

Proof of part (i) of Theorem 3.7.
By Lemma 5.1, the Theorem is true for n = 2, 3. Suppose now that n ≥ 4. Let S be a finite set of
places of Q, and let GQ,S be the Galois group of the maximal unramified outside S extension of Q.
Suppose π : GQ,S → Sn is a surjection. Let QS be the maximal unramified outside S extension of
Q. Then N = QKer(π)

S is an Sn-extension of Q unramified outside S. Our goal is to show that Sn

does not cap GQ,S via π for ` = 2. This is equivalent to showing that there is a Galois extension
N ′ of N such that Gal(N ′/N) is a non-trivial pro-2 group and N ′ ⊂ QS . If S contains the prime
2, then the composition of N with the cyclotomic totally real Z2-extension of Q is such a field N ′.
So in what follows, we assume that S does not contain 2.

By Lemma 5.4, there is an embedding ι of Sn into PGLm(C) for some m which does not lift to
an embedding of Sn into GLm(C). The composition of the natural surjection GQ → GQ,S with π
followed by ι gives a projective representation

ρ̃ : GQ → PGLm(C)

which is unramified outside S. By Theorem 5.2 applied to the completions of Q, there is a lifting
ρ′p of the restriction of ρ̃ to DQ,p for all primes p. If p is unramified, the image of ρ̃|DQ,p is cyclic,
and we can assume ρ′p is unramified. Theorem 5.3 now shows that there is a lifting

ρ : GQ → GLm(C)

of ρ̃ for which (5.1) is true. In particular, ρ is unramified outside of S ∪ {∞}.
Suppose S does not contain the real place ∞ of Q, and that ρ is ramified at ∞. Then N must be

totally real, and if c is a complex conjugation in GQ, ρ(c) is the negative −I of the m×m identity
matrix I. Since S does not contain 2, the quadratic subfield F of N must be unramified over 2. Let
p be an (odd) prime ramifying in F . Then there is a character χp of (Z/p)∗ such that χp(−1) = −1.
View χp as a character of GQ which is unramfied outside of p and ∞. Then χp ⊗ ρ is unramified
outside S, since χp(c) · ρ(c) = I. Thus on replacing ρ by χp ⊗ ρ, we can assume ρ is unramified
outside S in all cases.

The image Θ of ρ is a central extension of Sn = ρ̃(GQ) = Gal(N/Q) by a finite cyclic group µr =
ρ(Ker(ρ̃)) ⊂ C∗·I. Thus Θ defines an extension class in H2(Sn, µr) whose image in H2(Sn,C∗) ∼= Z/2
is the unique non-trivial class. Thus r must be even. Let N ′′ be the extension QKer(ρ)

S , and let N ′
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be the quadratic extension of N given by (N ′′)µr/2 , where µr/2 is the unique subgroup of index 2
in µr ⊂ Θ. Then N ′/N is a degree two extension which is unramified outside S, which shows that
Sn does not cap GQ,S via π : GQ,S → Sn = Gal(N/Q) for ` = 2. This completes the proof of part
(i) of Theorem 3.7.

The following result will be used in §6 to prove part (ii) of Theorem 3.7.

Lemma 5.5. Suppose p ≡ 1 mod 4 and ρ̃ : GQ,{p} → PGL2(C) has image isomorphic to S4.
i. There exist precisely two non-isomorphic liftings ρ′ : GQ,{p,∞} → GL2(C) of ρ̃ with det(ρ′) =

1. They differ by twisting with the one-dimensional character given by the quadratic residue
symbol

(
∗
p

)
, and each has #Image(ρ′) = 48.

ii. Suppose now that p ≡ 5 mod 8. There exist precisely two non-isomorphic liftings ρ :
GQ,{p,∞} → GL2(C) of ρ̃ which are unramified outside p and such that #Image(ρ) = 48.
Fix a lifting ρ′ : GQ,{p,∞} → GL2(C) of ρ̃ with det(ρ′) = 1 as in part (i). Let ξ be one of the
two Dirichlet characters of conductor p and order 4. Then ρ = η⊗ρ′ for a one-dimensional
character η specified by the following conditions.

a. If ρ′ is unramified at ∞ then η ∈ {id, ξ2} and det(ρ) is trivial.
b. If ρ′ is ramified at ∞ then η ∈ {ξ, ξ−1} and det(ρ) = ξ2 =

(
∗
p

)
has order 2.

iii. In either of case ii(a) or ii(b), the fixed field N ′ = QKer(ρ)
{p,∞} does not depend on the choice of

η, and is a quadratic extension of N = QKer(ρ̃)
{p} . In case ii(a) (resp. ii(b)), every prime of

N over p is quadratically ramified in N ′ (resp. is unramified in N ′).

Proof. Throughout the proof we assume that ρ̃ is given by ρ̃ : GQ,{p,∞} → PGL2(C) which factors
through GQ,{p}.

By Tate’s Theorems 5.2 and 5.3, there is a lifting ρ′ : GQ,{p,∞} → GL2(C) of ρ̃. Let c be a
complex conjugation in GQ,{p,∞}. Then ρ̃(c) equals the identity element, since ρ̃ factors through
GQ,{p}. Hence ρ′(c) must be ±I when I is the identity matrix. The one-dimensional characters
χ of GQ,{p,∞} correspond to Dirichlet characters of conductor p, and there is such a χ for which
χ(c)·I = ρ′(c). Then χ⊗ρ′ is not ramified at infinity, so det(χ⊗ρ′) = χ2det(ρ′) is a one-dimensional
character which is unramified outside p. In particular, this character is not ramified at infinity, so it
corresponds to a character of (Z/p)∗ which is trivial on −1. This implies det(χ⊗ ρ′) = χ′2 for some
character χ′. On replacing the lift ρ′ by χ′−1⊗χ⊗ρ′ we obtain det(ρ′) = 1. The restriction of ρ′ to
Ker(ρ̃) must have image in the scalar matrices, and must be non-trivial since there is no lifting of
S4 ⊂ PGL2(C) to an isomorphic subgroup of GL2(C). Hence det(ρ′) = 1 implies ρ′(Ker(ρ̃)) consists
of {±I}, and #Image(ρ′) = 48.

Suppose ρ0 is another lifting of ρ̃ with det(ρ0) = 1. Then ρ0 = χ′′ ⊗ ρ′ for some one-dimensional
character χ′′ of GQ,{p,∞}. Since det(ρ0) = χ′′

2 = 1, it follows that χ′′ is given by the quadratic

residue symbol
(
∗
p

)
. To finish the proof of part (i) we need to show that ρ′ and

(
∗
p

)
⊗ ρ′ are not

isomorphic. Fix an isomorphism of ρ̃(GQ,{p}) with S4. The composition of this isomorphism with

the sign character of S4 is a quadratic character of GQ,{p}, which must correspond to
(
∗
p

)
. Hence to

show that ρ′ and
(
∗
p

)
⊗ ρ′ are not isomorphic, it will suffice to show that any element g ∈ GQ,{p,∞}

which maps to a cycle of order 4 in ρ̃(GQ,{p}) ∼= S4 must have Tr(ρ′(g)) 6= 0. If Tr(ρ′(g)) = 0, then
the eigenvalues of ρ′(g) would be λ and −λ for some λ ∈ C∗. But then ρ′(g2) would a scalar matrix
since it is semi-simple, contradicting the fact that ρ̃(g2) is not the identity.

To prove part (ii), we assume p ≡ 5 mod 8 and we fix a lifting ρ′ : GQ,{p,∞} → GL2(C) of ρ̃
with det(ρ′) = 1. All other lifts of ρ̃ as a representation of GQ,{p,∞} have the form ρ = η ⊗ ρ′ for a
one-dimensional character η of GQ,{p,∞}. We first determine necessary and sufficient conditions on
η for #Image(ρ) = 48.

The arguments of part (i) show that the restriction of ρ to Ker(ρ̃) is non-trivial and has image in
C∗ · I. It follows that #Image(ρ) = 48 if and only if det(ρ) = det(ρ′) · η2 = η2 has trivial restriction
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to Ker(ρ̃). This is true if and only if η2 is either the trivial abelian character or the inflation of
the sign character of Image(ρ̃) ∼= S4, the latter character corresponding to

(
∗
p

)
. This is equivalent

to the statement that η ∈ {id, ξ, ξ2, ξ3} when ξ is either one of the two order four characters of
conductor p.

Suppose now that η ∈ {id, ξ, ξ2, ξ3}. We consider the further condition that ρ be unramified
outside p, so that it is inflated from a representation of GQ,{p}. This will be so exactly when
ρ(c) = η(c) · ρ′(c) = I when c is a complex conjugation, or equivalently when ρ′(c) = η(c)−1 · I.
Since p ≡ 5 mod 8, we have ξ(c) = −1. This together with ρ′(c) = ±I, η ∈ {id, ξ, ξ2, ξ3} and
det(ρ) = det(ρ′) · η2 = η2 leads to statements (a) and (b) of part (ii). The fact that the two twists
involved in either (a) or (b) are distinct can be proved by the argument used in part (i).

To show part (iii), note that in either of the two cases in part (ii), the field N ′ = QKer(ρ)
{p,∞} does not

depend on the choice of η, since ξ2 is trivial on Ker(ρ̃). When N = QKer(ρ̃)
{p,∞} , the extension N/Q is

an S4 extension and [N ′ : N ] = 2. Let Ip ⊂ GQ,{p,∞} be an inertia group at p. The group ρ̃(Ip) has
even order since Q(

√
p) = NA4 is quadratically ramified at p. Since p ≡ 5 mod 8, p must be tamely

ramified in N and N ′, so ρ̃(Ip) and ρ′(Ip) are cyclic. It follows that ρ̃(Ip) ⊂ S4 is cyclic of order 2
or 4, while ρ′(Ip) is cyclic of order 2, 4 or 8. Since det(ρ′) = 1, there is a one-dimensional character
ψ of Ip of order dividing 8 such that ρ′|Ip ∼= ψ ⊕ ψ−1. The fact that p ≡ 5 mod 8 means that ψ
cannot have order 8. The order of ψ cannot divide 2 since this would imply that ρ̃(Ip) would be
trivial. Hence ψ has order 4 and corresponds to either ξ or ξ−1. Thus if ρ = ρ′ or ρ = ξ2 ⊗ ρ′ as in
case (a) of part (ii), we get that ρ|Ip ∼= ξ⊕ ξ−1. In this case, ρ(Ip) has order 4 while ρ̃(Ip) has order
2, so every prime over p in N ramifies in N ′. In case (b) of part (ii), we find that ρ|Ip = 1⊕ ξ2, so
ρ(Ip) and ρ̃(Ip) both have order 2 and no prime of N over p ramifies in N ′. �

6. S4-extensions of real quadratic fields

The object of this section is to prove the following Theorem which implies part (ii) of Theorem
3.7 and Corollary 3.9.

Theorem 6.1. There are infinitely many pairs (p, q) of distinct odd primes with the following
property. There is an everywhere unramified S4-extension N ′ of Q(

√
pq) which has odd class number.

Let π : GQ(
√

pq),∅ → Gal(N ′/Q(
√
pq)) = S4 be the associated surjection. Then S4 caps GQ(

√
pq),∅

via π for ` = 2. Let V be the inflation to GQ(
√

pq),∅ of the non-trivial irreducible two-dimensional
representation of S4 over a perfect field k of characteristic 2. Then the universal deformation ring
R(GQ(

√
pq),∅, V ) is isomorphic to W [[t]]/(t2, 2t) and is not a complete intersection ring.

To begin the proof, we start by analyzing certain S4-extensions of Q.

Proposition 6.2. Let F4 be a totally real quartic field of odd prime discriminant p. Let N be the
Galois closure of F4 over Q. Then N is an S4-extension of Q. The quadratic subfield F2 of N
is Q(

√
p), and p ≡ 1 mod 4. In F4, p splits as a product P2

1P2P3, where the Pi are degree one
primes. The inertia group of a prime over p in N equals the decomposition group of this prime,
and is generated by a transposition. Let F3 be one of the three cubic subfields of N . Then F3 has
discriminant p, and p splits in F3 as Q2

1Q2, where Q1 and Q2 are degree 1 primes.

Proof. The extension N/Q is unramified outside of p, and G = Gal(N/Q) is a subgroup of S4 of
order divisible by 4. Let I(G,P) be the inertia group in G of a prime P over p in N . The conjugates
of I(G,P) generate G since Q has no non-trivial finite extension. A Sylow 2-subgroup of I(G,P)
is cyclic and non-trivial since p > 2. This implies that either G ∼= Z/4 = I(G,P), or G = S4. But
G ∼= Z/4 is impossible since the discriminant of F4 over Q is p. Since the quadratic subfield F2 of
N is real and unramified outside p, we conclude that F2 = Q(

√
p) with p ≡ 1 mod 4.

The possible ways that p can split in F4 are (i) (p) = P2
1P2P3, where the Pi are degree one

primes; or (ii) (p) = P2
1P2 in which P1 has degree 1 and P2 has degree 2. Suppose that (ii) occurs.

Then the decomposition group D(G,P) of a prime P over p in N has order 4, while the inertia
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group I(G,P) has order 2. Since P2 ramifies in N , I(G,P) intersects Gal(N/F4) ∼= S3 non-trivially,
so I(G,P) contains a transposition. This implies D(G,P) is a non-cyclic group of order 4 which
is not normal in G = Gal(N/Q) ∼= S4. Let ρ̃ : G → PGL2(C) be a projective embedding of G.
By Lemma 5.5(i), there exists a lifting ρ′ : Gal(Q{p,∞}/Q) → GL2(C) of ρ̃ such that det(ρ′) = 1.
This implies that if σ ∈ Gal(Q{p,∞}/N) then ρ′(σ) must be ±I since ρ′(σ) is a scalar matrix with

determinant 1. Thus if Ñ = QKer(ρ′)
{p,∞} , the group Γ0 = Gal(Ñ/Q) is isomorphic via ρ′ to a subgroup

of GL2(C), and the natural map GL2(C) → PGL2(C) leads to an exact sequence

(6.1) 0 → Gal(Ñ/N) → Γ0 → G→ 0

in which H = Gal(Ñ/N) has order 1 or 2. In fact, H must have order 2, since G = S4 has no
faithful representation in GL2(C). Let Ip ⊂ Dp ⊂ GQ,{p,∞} be an inertia and decomposition group
at p. Then ρ′(Dp) is an extension of D(G,P) ∼= (Z/2) × (Z/2) by a group of order 1 or 2. On
the other hand, ρ′(Dp) is a finite 2-group quotient of Gal(Qp/Qp) and is thus a 2-group quotient
of 〈s, t|sts−1 = tp〉 such that the image of 〈t〉 is the ramification subgroup. Since ρ′(Ip) has order
divisible by 4 and since we assume p ≡ 1 mod 4, the group ρ′(Dp) is isomorphic to a quotient of
the abelian group Z× (Z/4), and hence to a quotient of (Z/2)× (Z/4). Since det(ρ′) is trivial and
neither (Z/2) × (Z/2) nor (Z/2) × (Z/4) have a faithful two-dimensional complex representation
with trivial determinant, we get a contradiction. This proves p splits in F4 as P2

1P2P3 with each
Pi of degree 1.

We see from Gal(N/F4) ∼= S3 that the inertia group of a prime over p in N is of order 2 and
is generated by a transposition. The residue field degree of a prime over p in N is one, since P1,
P2 and P3 have degree 1 and N is the compositum of the conjugates of F4. Hence the inertia and
decomposition groups of a prime over p are the same. Finally, one has (p) = Q2

1Q2 in F3 with Qi

of degree 1 because Gal(N/F3) is a Sylow 2-subgroup of Gal(N/Q), which contains some but not
all of the inertia groups of primes over p in N . �

Lemma 6.3. Let N be as in Proposition 6.2, and suppose that p ≡ 5 mod 8. There is then a unique
quadratic extension N ′ of N which is Galois over Q such that Gal(N ′/Q) is a central extension
of Gal(N/Q) = S4 by a group T = Gal(N ′/N) of order 2 and N ′/Q is unramified outside {p}.
In particular, N ′ is totally real. The field N ′ is QKer(ρ)

{p} when ρ : GQ,{p} → GL2(C) is a lifting of
a projective representation ρ̃ : GQ,{p} → PGL2(C) having Ker(ρ̃) = Gal(Q{p}/N). There are two
mutually exclusive possibilities:

a. The determinant det(ρ) is trivial, which happens if and only if the extension N ′/N is
quadratically ramified at every prime of N over p.

b. The determinant det(ρ) is non-trivial, which happens if and only if the extension N ′/N is
everywhere unramified.

In case (b), either the class number of the quartic subfield F4 of N is even, or every element of the
unit group O∗F4

is congruent to a square at each of the residue fields k(P2) and k(P3).

Proof. Suppose first that N ′/N is a quadratic extension having the properties stated in the second
sentence of the Lemma. Then Gal(N ′/Q) must be one of the groups described in Lemma 4.2. In
case (a) of Lemma 4.2, there would be an abelian extension of Q of degree 4 contained in N ′. This
extension would be unramified outside {p} and totally real. However, the hypothesis that p ≡ 5
mod 8 means that there is no such extension, since the Sylow 2-subgroup of (Z/p)∗/{±1} has order
2. So Gal(N ′/Q) has to be as in case (b) of Lemma 4.2, and N ′ must be associated to a lifting of ρ̃.

The remaining assertions in the Lemma follow directly from Lemma 5.5 except for the final
statement about case (b). We now assume that case (b) occurs. By Lemma 4.2, there is a field L
such that F4 ⊂ L ⊂ N ′ and L/F4 is an abelian extension of degree 4. Recall that (p) = P2

1P2P3 in
F4, and that all primes over p are quadratically ramified in N . Since N ′/N is unramified, P1 does
not ramify in the extension L/F4, and P2 and P3 can be at most quadratically ramified. Consider
the (surjective) Artin map

(6.2) ψ : ClP2P3(F4) → Gal(L/F4)
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where ClP2P3(F4) is the ray class group. We have an exact sequence

(6.3) 1 → k(P2)∗ × k(P3)∗

Image(O∗F4
)

→ ClP2P3(F4) → Cl(F4) → 1

where Cl(F4) is the class group of F4 and O∗F4
is mapped diagonally into the residue fields of P2 and

P3. The map ψ in (6.2) must be trivial on k(P2)∗2 × k(P3)∗2 since L/F4 is at most quadratically
ramified at P2 and P3. The group (

k(P2)∗

k(P2)∗2

)
×

(
k(P3)∗

k(P3)∗2

)
Image(O∗F4

)

has order 4 if and only if every unit in O∗F4
is a square in k(P2)∗ and in k(P3)∗; otherwise it has

order 1 or 2. Thus from (6.3) and the fact that L/F4 has degree 4, we conclude that either #Cl(F4)
is even, or every unit in O∗F4

is a square in k(P2)∗ and in k(P3)∗. �

We now assume p ≡ 5 mod 8, and pick an auxiliary prime r satisfying the following hypotheses:

Hypothesis 6.4. Let r be a rational prime such that:
a. r ≡ 1 mod 4.
b. the quadratic residue symbol

(
p
r

)
= −1. Equivalently, p is a non-square mod r, and by

quadratic reciprocity, r is a non-square mod p.

We are going to analyze the restriction of a lifting ρ satisfying the hypotheses of Lemma 6.3 to
GQ(

√
pr). To do this, we first need to prove some results about Q(

√
pr).

Lemma 6.5. The narrow class numbers h+
Q(
√

p) and h+
Q(
√

r)
are odd, and the fundamental units of

Q(
√
p) and Q(

√
r) have norm −1 to Q. The class number hQ(

√
pr) is exactly divisible by 2. The

maximal abelian two-extension of Q(
√
pr) which is unramified over Q(

√
pr) is Q(

√
p,
√
r). Let P be

the unique prime over p in Q(
√
pr), so that (p) = P2 as ideals of OQ(

√
pr). The order of the Sylow

2-subgroup of the ray class group ClP(Q(
√
pr)) is 2, so the natural surjection

ClP(Q(
√
pr)) → Cl(Q(

√
pr))

is an isomorphism on Sylow 2-subgroups. There are no characters of ClP(Q(
√
pr)) which quadrat-

ically ramify at P.

Proof. By classical genus theory, h+
Q(
√

p) and h+
Q(
√

r)
are odd, and a fundamental unit in each of

these fields has norm −1 to Q.
Since the quadratic residue symbol

(
p
r

)
= −1, p is inert in Q(

√
r). Consider the ray classgroup

Cl(p)(Q(
√
r)). Since h+

Q(
√

r)
is odd, so is the class number hQ(

√
r). Hence the Sylow 2-subgroup of

Cl(p)(Q(
√
r)) is isomorphic to the Sylow 2-subgroup of

(6.4)
k((p))∗

Image(O∗Q(
√

r)
)

where k((p)) is the residue field of the ideal (p) of OQ(
√

r). Since p is inert in Q(
√
r), the order of

k((p)) is p2. Here p ≡ 5 mod 8 implies that p2 ≡ 52 = 25 mod 16, so that 8||#k((p))∗ = p2 − 1.
Let εr be a fundamental unit of Q(

√
r). Since p is inert in Q(

√
r), the Frobenius automorphism

of k((p)) is the map α → αp, and this corresponds to the non-trivial element σ of Gal(Q(
√
r)/Q).

Since we have shown εr has norm −1 to Q, we have

(6.5) −1 = NormQ(
√

r)/Q(εr) = ε1+σ
r = ε1+p

r in k((p))∗.

Now 8||p2 − 1 = #k((p))∗ means that the Sylow 2-subgroup of k((p))∗ is cyclic of order 8, and
−1 = ε1+p

r is the element of order 2 in this group. Since 2||(1 + p) ≡ 6 mod 8, we see that the
projection of εr to the Sylow 2-subgroup of k((p))∗ has to have order exactly 4.
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Since −1 is a square in k((p))∗ and 8||#k((p))∗, we conclude that the Sylow 2-subgroup of (6.4)
has order exactly two. Thus the Sylow 2-subgroup of Cl(p)(Q(

√
r)) has order exactly 2. Since

Q(
√
p,
√
r)/Q(

√
r) is an abelian two-extension which is ramified only at (p), this field must be the

maximal abelian two-extension of Q(
√
r) which is unramified outside {(p)}.

If Q(
√
p,
√
r) had even class number, then by considering the maximal quotient of the two-

part of the class group of Q(
√
p,
√
r) on which Gal(Q(

√
p,
√
r)/Q(

√
r)) acts trivially, we would

produce a non-trivial two-extension L of Q(
√
p,
√
r) which is abelian over Q(

√
r) and unramified

over Q(
√
p,
√
r). However, L/Q(

√
r) would then be an abelian two-extension of order at least 4

which is unramified outside of (p), contradicting the fact that the Sylow 2-subgroup of Cl(p)(Q(
√
r))

has order exactly 2. Thus Q(
√
p,
√
r) must have odd class number. Since Q(

√
p,
√
r) is an unramified

quadratic extension of Q(
√
pr), this forces 2||hQ(

√
pr), and Q(

√
p,
√
r) is the two-Hilbert classfield

of Q(
√
pr).

It remains to show that the order of the Sylow 2-subgroup of the ray class group ClP(Q(
√
pr))

is 2 when P is the unique prime over p in Q(
√
pr). Here we have an exact sequence

(6.6) 1 → k(P)∗

Image(O∗Q(
√

pr))
→ ClP(Q(

√
pr)) → Cl(Q(

√
pr)) → 1

in which the Sylow 2-subgroup of Cl(Q(
√
pr)) has order 2 and k(P)∗ is cyclic. Suppose the Sylow 2-

subgroup of ClP(Q(
√
pr)) has order at least 4. Let H be the subgroup of ClP(Q(

√
pr)) generated by

the image of k(P)∗2 in (6.6) together with the Sylow l-subgroups of ClP(Q(
√
pr)) as l ranges over all

odd primes. Since P is stable under Gal(Q(
√
pr)/Q), and the Sylow l-subgroups of ClP(Q(

√
pr)) are

unique, we conclude that H is stable under the action of Gal(Q(
√
pr)/Q). Now ClP(Q(

√
pr))/H

has order 4, and corresponds to an extension L of Q(
√
pr) which is abelian of order 4, at most

quadratically ramified at P and unramified elsewhere, and Galois over Q since H was stable under
the action of Gal(Q(

√
pr)/Q). This L contains Q(

√
p,
√
r), since we have shown Q(

√
p,
√
r) is the

2-Hilbert class field of Q(
√
pr). Since L is a Galois extension of Q of degree 8, and Q(

√
r) ⊂

Q(
√
r,
√
p) ⊂ L, we conclude that L/Q(

√
r) is Galois of degree 4. Thus L is an abelian extension of

Q(
√
r) of degree 4. Now r is quadratically ramified in L, since it quadratically ramifies in Q(

√
pr)

and L/Q(
√
pr) is unramified outside {P}. Furthermore, L/Q is unramified outside {p, r}. Since r is

already quadratically ramified in Q(
√
r), we conclude that L/Q(

√
r) is an abelian quartic extension

which is unramified outside of the unique prime (p) over p in Q(
√
r). This forces the Sylow 2-

subgroup of the ray class group Cl(p)(Q(
√
r)) to have order at least 4, which is a contradiction. We

conclude that no field L of the above kind exists, so the order of the Sylow 2-subgroup of the ray
class group ClP(Q(

√
pr)) is 2. This means that the natural homomorphism

(6.7) ClP(Q(
√
pr)) → Cl(Q(

√
pr))

is an isomorphism on Sylow 2-subgroups. If there were a character χ of ClP(Q(
√
pr)) which quadrat-

ically ramifies at P, we could take an odd power of this character to have a character of two-power
order of ClP(Q(

√
pr)) which does not factor through Cl(Q(

√
pr)). This contradicts the fact that

(6.7) is an isomorphism on Sylow 2-subgroups, so the proof of Lemma 6.5 is complete. �

Proposition 6.6. Suppose that p ≡ 5 mod 8 and r ≡ 1 mod 4 are primes for which the following
is true:

a. There is a quartic field F4 with the properties listed in Proposition 6.2. The class number
hF4 is odd, and there is a unit in O∗F4

which is not a square in at least one of k(P2)∗ or
k(P3)∗, where as in Proposition 6.2, (p) = P2

1P2P3 in F4.
b.

(
r
p

)
= −1.

c. As in Proposition 6.2, let F3 be one of the cubic subfields of the Galois closure N of F4 over
Q. The class number of the field F3(

√
r) is exactly divisible by 2.

Then the field N(
√
pr) is an unramified S4-extension of Q(

√
pr) which has odd class number.
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Proof. By Proposition 6.2, p is quadratically ramified in N and N/Q is unramified outside of p.
Since p is odd, if L1 and L2 are quadratic extensions of Qp which are ramified, then L1L2 is
unramified over L1. It follows that since p is quadratically ramified in Q(

√
pr), the field N(

√
pr)

is unramified over Q(
√
pr). Because r 6= p and Q(

√
p) is the unique quadratic subfield of N , the

fields N and Q(
√
pr) are linearly disjoint over Q. Hence Gal(N(

√
pr)/Q(

√
pr)) is isomorphic to

S4 = Gal(N/Q) and

Gal(N(
√
pr)/Q) ∼= Gal(N/Q)×Gal(Q(

√
pr)/Q) ∼= S4 × Z/2.

The simple Z/2-modules with an action of S4 × Z/2 are the module Z/2 with trivial action and
the inflation V to S4 × Z/2 of the two-dimensional irreducible representation of S4 over Z/2 given
by the matrices in (2.1).

Suppose that the Sylow 2-subgroup of the ideal class group of N(
√
pr) is non-trivial. Consider a

composition series for this Sylow 2-subgroup as a module for the group ring of Gal(N(
√
pr)/Q) over

Z/2. From the above description of the simple modules for Gal(N(
√
pr)/Q) over Z/2 we conclude

that there is a Galois extension L of N(
√
pr) with the following properties. The extension L/Q is

Galois. The group T = Gal(L/N(
√
pr)) is either Z/2 with trivial action by Gal(N(

√
pr)/Q) or the

simple module V = Z/2× Z/2 for Gal(N(
√
pr)/Q) which is described above.

Suppose first that T = Z/2 with trivial action by Gal(N(
√
pr)/Q). We have an exact sequence

1 → T → Gal(L/Q(
√
pr)) → Gal(N(

√
pr))/Q(

√
pr)) → 1.

Thus Gal(L/Q(
√
pr) must be one of the groups considered in Lemma 4.2. In case (a) of Lemma 4.2,

there would have to be a quartic abelian extension F of Q(
√
pr) which is contained in L. Because

L/Q(
√
pr) is unramified, this would imply that the class number of Q(

√
pr) is divisible by 4, which

is not the case by Lemma 6.5. Thus Gal(L/Q(
√
pr)) is one of the groups appearing in case (b) of

Lemma 4.2.
Let

ρ̃ : GQ → PGL2(C)
be a projective representation which factors through a faithful projective representation of Gal(N/Q)
into PGL2(C), as in Lemma 6.3. Let ρ̃pr be the restriction of ρ̃ to GQ(

√
pr) ⊂ GQ. Since Q(

√
pr)

is linearly disjoint from N over Q, ρ̃pr factors through a faithful projective representation of
Gal(N(

√
pr)/Q(

√
pr)) into PGL2(C).

Because Gal(L/Q(
√
pr)) is one of the groups appearing in case (b) of Lemma 4.2, there is a

two-dimensional Galois representation

ρL : GQ(
√

pr) → GL2(C)

which lifts the projective representation ρ̃pr. Let

ρ : GQ → GL2(C)

be the representation specified in Lemma 6.3, so that ρ is a lifting of ρ̃. Because of hypothesis (a)
of Proposition 6.6, we must be in case (b) of Lemma 6.3. The restriction ρpr of ρ to GQ(

√
pr) is also

a lifting of ρ̃pr. Thus there must be a one-dimensional character χ : GQ(
√

pr) → C∗ such that

(6.8) ρL = χ⊗ ρpr.

Let P be the unique prime over p in Q(
√
pr). Since ρpr and ρL are unramified outside {p}, χ

must be unramified outside {P}. Because we are in case (b) of Lemma 6.3, N ′/N is ramified
above p, so that ρpr is ramified at all places above P. Since ρL is everywhere unramified and both
N ′/N and L/N(

√
pr) are of degree 2, the character χ in (6.8) must be quadratically ramified at P.

However, Lemma 6.5 shows that no such χ exist. The contradiction shows that it is impossible for
T = Gal(L/N(

√
pr)) to be Z/2.

It remains to consider the possibility that T = V is isomorphic to Z/2 × Z/2 with action by
Gal(N(

√
pr)/Q) = S4 × Z/2 inflated from the two-dimensional simple represention of S4 over Z/2.

Note that Q(
√
r) ⊂ N(

√
pr) since Q(

√
p) ⊂ N , so N(

√
pr) = N(

√
r). The composition

Gal(N(
√
pr)/Q(

√
r)) → Gal(N(

√
pr)/Q) → Gal(N/Q) = S4
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is an isomorphism, where the first map is the natural inclusion and the second one is restriction
of automorphisms from N(

√
pr) to N . This is because an automorphism in the kernel of this map

would fix both N and Q(
√
r) elementwise, and hence would fix N(

√
pr) = N(

√
r). Since L is Galois

over Q, it is Galois over Q(
√
r), and we get an exact sequence

1 → Gal(L/N(
√
pr)) → Gal(L/Q(

√
r)) → Gal(N(

√
pr)/Q(

√
r)) → 1

which has the form
1 → V → Gal(L/Q(

√
r)) → S4 → 1.

With this identification, V still corresponds to the simple module for S4 over Z/2 of order 4, since a
group element of order 3 in S4 has to act non-trivially on V . Thus the possibilities for Gal(L/Q(

√
r))

are described in Lemma 4.3. Let F3 be a cubic subfield of N , so that F3(
√
r) is a cubic extension of

Q(
√
r) inside N(

√
r). From Lemma 4.3, we see that there must be a degree eight abelian extension

F ′ of F3(
√
r) which lies inside L.

Since L/Q(
√
pr) is unramified, p and r are quadratically ramified in L. Since every prime over

r is already quadratically ramified in F3(
√
r), we see that F ′ cannot ramify over any prime over

r in F3(
√
r). It follows that F ′/F3(

√
r) is unramified outside the primes over p in F3(

√
r). By

Proposition 6.2, p splits in F3 as Q2
1Q2, where Q1 and Q2 are degree 1 primes. Now r is not a

square mod p by assumption, and the residue fields of each of Q1 and Q2 are isomorphic to Z/p.
Hence in F3(

√
r), Q1 and Q2 are inert, and p splits as (p) = (Q′1)2Q′2 where Q′1 and Q′2 have degree

2. Since Q′1 is already quadratically ramified in F3(
√
r), and the primes over p in F ′ can be at

most quadratically ramified, we conclude that F ′/F3(
√
r) can be ramified only at Q′2, and that this

extension is at most quadratically ramified over Q′2.
As usual, we have an exact sequence

(6.9) 1 → k(Q′2)∗

Image(O∗
F3(

√
r)

)
→ ClQ′2(F3(

√
r)) → Cl(F3(

√
r)) → 1

The group
k(Q′2)∗

k(Q′2)∗2
has order 2 and we have assumed that 2 exactly divides the order of Cl(F3(

√
r)).

Let Cl′ be the quotient of ClQ′2(F3(
√
r)) by the image of k(Q′2)∗2 under the homomorphism coming

from (6.9). We conclude from (6.9) that the order of the Sylow 2-subgroup of Cl′ is at most
4. However, the Artin map ClQ′2(F3(

√
r)) → Gal(F ′/F3(

√
r)) is surjective, and is trivial on the

image of k(Q′2)∗2 since Q′2 is at most quadratically ramified in F ′. Thus the Artin map should
factor through Cl′. This is impossible because Gal(F ′/F3(

√
r)) is supposed to have order 8. The

contradiction completes the proof of Proposition 6.6. �

Proof of Theorem 6.1.
We first produce one pair of primes (p, r) for which the hypotheses of Proposition 6.6 hold. Let
p = 14197 and r = 5. Then p ≡ 5 mod 8, r ≡ 1 mod 4 and

(
p
5

)
=

(
2
5

)
= 1. From the tables

of quartic fields computed using PARI (see [21]), the polynomial f(x) = x4 − 6x2 − 3x + 1 has
four real roots, and if x1 is one of these then F4 = Q(x1) has discriminant p. We also see from
these tables that the Galois closure N of F4 over Q has Galois group S4 over Q, the class number
of F4 is one, the ring of integers of F4 is OF4 = Z[x1] and the unit group O∗F4

is generated by
{±1, x1, 1 + x1,−2− 2x1 + x2

1}. Factoring f(x) mod p gives

f(x) ≡ (x+ 6607)2 · (x+ 5272) · (x+ 9908) mod pZ.
Define P1, P2 and P3 to be the unique primes over p in OF4 for which x1 is congruent to −6607,
−5272 and −9908, respectively. The residue field k(P2) is isomorphic to Z/p, and 3549 = (p−1)/4 =
#k(P2)∗/4. Hence the map α → α3549 maps k(P2)∗ onto the group of fourth roots of unity in
k(P2)∗ and is an isomorphism on the Sylow 2-subgroup of k(P2)∗. This map sends the unit 1 + x1

to (1 − 5272)3549 ≡ 2386 mod p, which is not ±1 mod p. Hence 1 + x1 is not a square in k(P2)∗.
A cubic subfield F3 of N is Q(y1) when y1 is one of the roots of y3 − 16y − 9. The field F3(

√
5)

is generated over Q by
√

5y1, which has minimal polynomial g(y) = y6 − 160y4 + 6400y2 − 10125
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over Q. We would like to thank Jing Long for using PARI to check unconditionally that the class
number of the field F3(

√
5) is 2. We see from these computations that all of the hypotheses of

Proposition 6.6 are satisfied when (p, r) = (14197, 5). Theorem 6.1 now follows from the following
result.

Proposition 6.7. Suppose that p and r are primes satisfying the conditions of Proposition 6.6.
Let N be the field described in Proposition 6.2. Fixing p, there is a set of odd primes q 6= p having
positive Dirichlet density for which N(

√
pq) is an unramified S4-extension of Q(

√
pq) which has odd

class number. For all such q, the resulting surjection

π : GQ(
√

pq),∅ → Gal(N(
√
pq)/Q(

√
pq)) ∼= S4

shows that S4 caps GQ(
√

pq),∅ for ` = 2.

Proof. Let L be the extension of N obtained by adjoining the square roots of all the units of N .
Then Gal(L/N) is a finite elementary abelian two-group, and L/Q is a finite Galois extension which
is unramified outside {2, p,∞}. We aim to show that if the Frobenius conjugacy classes of r and of
q in Gal(L/Q) are the same, then N(

√
pq) has the properties stated in the Proposition.

Note first that since N(
√
pr) has odd class number and is a quadratic extension of N which

ramifies over the primes of N lying over r, the class number of N must also be odd. Suppose that
Q1, . . . ,Qm are the distinct primes over q in N . Since Q(

√
p) ⊂ N we have N(

√
pq) = N(

√
q). The

primes of N which ramify in N(
√
pq) = N(

√
q) are thus exactly Q1, . . . ,Qm, and each of these is

quadratically ramified. By genus theory, to show that N(
√
pq) has odd class number, it will suffice

to show that the cokernel of the natural homomorphism

(6.10) O∗N →
m⊕

i=1

k(Qi)∗

k(Qi)∗2

has order 2. More precisely, it will suffice to show that the image of this homomorphism is exactly
the kernel of the homomorphism

(6.11)
m⊕

i=1

k(Qi)∗

k(Qi)∗2
→ {±1}

which is induced by identifying each factor
k(Qi)∗

k(Qi)∗2
with {±1} and which comes from the quadratic

extension N(
√
pq)/N .

Let Q = Q1, and let GQ be the decomposition group of Q in G = Gal(N/Q) ∼= S4. Let Ω be a
set of left coset representatives for GQ in G. Then each of the Qi equals ωiQ for a unique ωi ∈ Ω.
Let t = #Ω = 24/m and suppose α =

∑t
i=1 aiωi is an element of the group ring of G over Z/2

which is a sum of elements of Ω. To α we can associate the homomorphism

lα :
m⊕

i=1

k(Qi)∗

k(Qi)∗2
→ {±1}

defined by

lα(⊕m
i=1βi) =

m∏
i=1

βai
i

where as before we identify each
k(Qi)∗

k(Qi)∗2
with {±1}. We have to show that the only α for which

lα(O∗N ) = 1 are α = 0 and α =
∑t

i=1 ωi.
Suppose that α is such that lα(O∗N ) = 1. This means that for all units β ∈ O∗N we have

lα(β) =
m∏

i=1

(
β

ωiQ

)ai

= 1
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where
(

∗
ωiQ

)
is the quadratic residue symbol associated to the prime ideal ωiQ. By definition,(

β

ωiQ

)
=

(
ω−1

i (β)
Q

)
.

Thus lα(O∗N ) = 1 if and only if (
zα(β)
Q

)
= 1

for all units β ∈ O∗N , where zα : O∗N → O∗N is the homomorphism defined by

zα(β) =
m∏

i=1

ω−1
i (β)ai .

This is equivalent to the statement that every unit in zα(O∗N ) is a square in k(Q). It follows that
lα(O∗N ) = 1 if and only if Q splits in the extension N(

√
zα(O∗N )) of N obtained by adjoining the

square roots of all units in the subgroup zα(O∗N ) of O∗N .
We can thus say that N(

√
pq) has odd class number if and only if the following is true. Suppose

α is a formal combination α =
∑t

i=1 aiωi in which the ai are in Z/2, and that ai 6= aj for some i
and j. Then Q does not split completely in the extension N(

√
zα(O∗N )) of N .

We now suppose that q and r are primes different from 2 and p which have the same Frobenius
conjugacy class in Gal(L/Q) when L is the extension of N obtained by adjoining the square roots
of all the units of N . We can then choose primes R̂ over r and Q̂ over q in L which have the
same Frobenius automorphism in Gal(L/Q); call this Frobenius σ. Let R and Q be the primes
of N determined by R̂ and Q̂. The image of σ in Gal(N/Q) is then the Frobenius automorphism
for both R and Q, so these primes have the same decomposition group D(G,Q) = D(G,R) in
G = Gal(N/Q). We fix a set of coset representatives Ω for D(G,Q) = D(G,R) as above. Because
we know that N(

√
pr) has odd class number, we know that for every α =

∑t
i=1 aiωi as above such

that ai 6= aj for some i and j, the prime R does not split in the extension N(
√
zα(O∗N )). Suppose

FrobN/Q(Q) = FrobN/Q(R) = σ

has order s. Then FrobL/N (Q̂) = σs = FrobL/N (R̂). The statement that R does not split in the
extension N(

√
zα(O∗N )) is the same as saying that FrobL/N (R̂) = σs does not lie in the subgroup

Gal(L/N(
√
zα(O∗N ))) of Gal(L/N). Since the truth or falsity of this last statement for a given α

does not change if we replace R by Q, we conclude that N(
√
pq) has to have odd class number

because N(
√
pr) does. The last statement of Proposition 6.7 follows from Remark 3.8. �

7. Singularities of deformation rings

In this section we consider the following Question which was mentioned in the introduction:

Question 7.1. Suppose k is a field of characteristic ` > 0, G is a finite group and that V is a kG-
module of finite dimension over k which belongs to a block B of kG having a defect group D which has
nilpotency r. Suppose further that the stable endomorphism ring EndkG(V ) of V is one-dimensional
over k, so that R(G,V ) is well defined. Is it the case that dim(R(G,V ))−depth(R(G,V )) ≤ r− 1?

Theorem 7.2. Suppose k is algebraically closed. Question 7.1 has an affirmative answer in the
following cases:

i. dimk(V ) = 1.
ii. D is cyclic or a Klein four group.
iii. V is the two-dimensional irreducible representation of S4 and ` = 2.
iv. D is dihedral of order at least 8, ` = 2 and B is Morita equivalent to the principal 2-block

of a finite simple group.
In cases (i) and (ii), r = 1 and R(G,V ) is a complete intersection. In cases (iii) and (iv), r = 2.
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Proof. Suppose first that dimk(V ) = 1 as in part (i) of the Theorem, so that R(G,V ) = WGab,`

by [20, §1.4]. Since Gab,` is a finite abelian `-group, it is a direct sum of cyclic `-groups Z/`n for
various integers n ≥ 0. There is an isomorphism W [[t]]/((t+1)`n−1) →W (Z/`n) sending t to σ−1
if σ generates Z/`n. Therefore, WGab,` is isomorphic to the tensor product over W of W -algebras
of the form W [[t]]/((t+ 1)`n − 1), and is thus a complete intersection.

Suppose now thatD is cyclic of order `d. Then the number e of non-isomorphic simple B-modules
is a divisor of `− 1. Let E be the unique cyclic subgroup of Aut(D) of order e. Then E acts on the
group ring WD. Let s =

∑
x∈D x ∈ WD. It follows from [3] that the universal deformation ring

R(G,V ) is isomorphic to one of the following W -algebras: W , W/`d, WD or (WD)E/Ws, where
(WD)E is the subring of E-invariants in WD. The rings W , W/`d and WD ∼= W [[t]]/((t+1)`d −1)
are complete intersections. Suppose now that R = R(G,V ) = (WD)E/Ws as in the remaining case.
By [3, §4], R/`R is isomorphic to k[t]/(tr) as a W -algebra when r = rankWR. Hence there is a
surjection π : W [[t]] → R. Since R is free of rank r over W , there is a monic polynomial g(t) ∈W [t]
of degree r contained in Ker(π). Hence there is a surjection W [[t]]/(g(t)) → R/`R = k[t]/(tr)
sending t to t. This forces all of the non-leading coefficients of g(t) to be divisible by `, so g(t) is
a distinguished polynomial in W [[t]], and W [[t]]/(g(t)) = W [t]/(g(t)). Now we have a surjection
W [t]/(g(t)) → R, so since these rings are free W -modules of the same rank r, this surjection must
be an isomorphism. Because R has dimension 1, this shows that R is a complete intersection.

If D is a Klein four group, so that ` = 2, it follows from [1, §3] that R(G,V ) is isomorphic to
either W , k or WD. The rings W and k are complete intersections. Using the same argument as
in the dimk(V ) = 1 case, it follows that WD is also a complete intersection.

We now suppose that V is the two-dimensional irreducible representation of G = S4 in charac-
teristic ` = 2. Then R(G,V ) = W [[t]]/(t2, 2t) by Theorem 2.3. Since the defect groups of the block
of V are dihedral groups of order 8, their nilpotency is r = 2. Thus case (iii) follows from the fact
that

dim(R(G,V ))− depth(R(G,V )) = 1− 0 = r − 1.
Finally suppose V is as in case (iv) of Theorem 7.2. It follows from [2] that R(G,V ) is either W ,

W/2m for some m ≥ 1 or W [[t]]/(t · f(t), 2 · f(t)) for some distinguished polynomial f(t) ∈ W [[t]].
The rings W and W/2m are complete intersections. Suppose now that R(G,V ) ∼= W [[t]]/I where
I = (t·f(t), 2·f(t)) as in the remaining case. Since W [[t]] has dimension 2, and (t·f(t)) ⊂ I ⊂ (f(t)),
we see that dim(R(G,V )) = 1. Because the defect groups of the block of V have nilpotency 2, we
conclude that

dim(R(G,V ))− depth(R(G,V )) ≤ 1 = r − 1.
This completes the proof of Theorem 7.2. �
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