MATH 241 — Course outline

Chapter 1
Derivation of the heat equation for a thin rod:

Thermal energy: c(x)p(x)A(z)u(z,t) dx (where c is specific heat, p is density, A is cross-sectional
area)is thermal energy in a little bit of the rod.

Heat flur: o(z,t) per unit area (from left to right), so heat energy per unit time into the little bit
is p(z,t)A(z) — p(z + dz) A(z + dz).

Sources: Q(x,t)A(x)dx is heat energy generated per unit time in the little bit.

Conservation of energy:

o) o0 = =2 4 Q).

Fourier’s law: Assume ¢ = —Ky(z)(0u/ox).

Altogether, as bad as it can get:

aola) Gy = 3 (Ko@) 52 ) + Qo

If ¢, p, Ky are constants and @ = 0, set k = Ky/(sp) and get usual heat equation u; = kug,.

Boundary conditions: Dirichlet conditions give value of temperature at endpoints, e.g., u(0,t) = a(t),
u(L,t) = b(t). Could also give (directly or indirectly) values of u, at endpoints. (Insulated endpoints:
uy = 0 at ends).

Diffusion equation:

Density: u(x,t), so total amount of chemical is Sz u(z,t)A(z) dx.
Flux: ¢(z,t) amount moving to right per unit area per unit time, so
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Conservation law (continuity equation): If A(x) is constant then it + Fr 0.
, e ou
Fick’s law of diffusion: Assume p(z) = —ka—.
x

Put last two together to get diffusion equation: u; = kugg.

Boundary conditions: Dirichlet conditions give density w at endpoints. Can also give flux at end-
points which is —ku,.




Equilibrium: u does not depend on ¢. Simplifies heat/diffusion equations to ODEs which are (usually)
easily solved together with boundary values. Note: insulated boundaries u, = 0 at both ends and
no sources imply total heat/chemical is constant, so {udz is equal to its initial value for all ¢.

Higher dimensions: replace g, with V2u. In the plane
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In three dimensions,

VU = tgy + Uyy + Uz
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(note, if Ko(x) is not constant, then instead of VZu, get V - (Ko(x)Vu)).

Chapter 2

Separation of variables: For u; = kugy (or even a little more exotic) assume u(x,t) = X(x)T(t),
separate and get eigenvalue problem for X — depending on boundary conditions

2,2

X(x)=sm($),n=1,2,... A:% if X(0) = X(L) = 0.
(n+ 3)mx (n+ 1222 ,
X(x)zsm( L2 =0,1,2, A= L22 if X(0)=X'(L)=0
1 1y2,.2
X () _cos<(” +L2)”> n=012.. A=l +L22) it X(0) = X(L) = 0
nmww n?r? ,
X(x)=cos(T)n=0,172,... )\2? if X'(0) = X'(L) =0.

Note particularly for the last one that X (x) = 1 is the solution for n = 0. Don’t forget this term!
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The corresponding ¢ solutions are T = e~ **! so get series, e.g.,
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u(z,t) = Z ane”™ T RYL gin (T)
n=1

where a,, is determined by initial conditions u(z,0) = f(x):

ap = EJ;L f(x)sin (?) dx

This last formula must be adjusted according to which eigenfunctions are used (i.e., integrate f
against the corresponding eigenfunction — for the A = 0 eigenfunction 1 in the fourth case, the
coefficient in front of integral becomes 1/L.



Laplace equation (equilibrium solutions) on rectangles and disks:

Rectangles. Can only solve problems which have zero conditions (either value of u or normal deriva-
tive) on three sides and non-zero on the fourth. Then get sines or cosines in the direction where there
are two zero sides (depending on boundary conditions as above) and sinh or cosh in the direction
where one side is non-zero (depending on type of condition on the zero side). Example:

For u(0,y) = uy(L,y) = u(x,0) = 0 and u(x, H) = f(z) the z-direction has two zeros, but at L
it is u, which is zero so

)ﬂx . nmy _ (n+ )7rx
Z an sin ( 7 sinh (T) where a, = (mrH)J f(x)sin T dz
Lsinh
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Another example: for u,(0,y) = g(y), uz(L,y) = 0, u(z,0) = 0, u(z, H) = 0, the y direction has
two zeros, so

jos]

L- 2 a
Z SN ( ) cosh <TW(H$)> where b, = ﬁj g(z) sin (%) dzx,
H cosh <H) 0

and so forth.

Integrability condition: If normal derivatives are prescribed all the way around the boundary of the
region, then they must integrate to zero.

Disks: Separating variables in Laplace equation in polar coordinates gives solution of the form

AN
u(z,t) = ag + Z " (ay, cosnd + by, sinnd)

where ag, a,, b, given by usual Fourier series formula for 27-periodic functions. If half-disk or other
wedge, then boundary conditions for # come from radial edges. Watch out for integrability condition
if normal derivative is prescribed all the way around.

Chapter 3

“Full” Fourier series: Given f(z) for —L < x < L, its full Fourier series is

ap + Z ancos( 2 )+b sin (mlr/x)

where

LL J_LL f(z) dx, ap = EJ_LL f(x) cos (?) dx by, = iJ_LL f(x)sin (%) dx

Assuming f is piecewise smooth, the series converges to the periodic extension of f (with period 2L)
except where this function has jumps, and to the average of the left and right limits at the jumps.
So in general it converges to f only (mostly) on —L <z < L.



Fourier sine series: Given f(z) for 0 < x < L, its Fourier sine series is

= nwT 2 [ nwT
Z by, sin (T) where b, = ZL f(x)sin (T) dx
n=1

which converges to the odd periodic extension of f (with period 2L) except at discontinuities etc..

Fourier cosine series: Given f(x) for 0 < x < L, its Fourier cosine series is

g L L
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ap + T;l an cos (?) where ag = 7 L f(z)dx and a,= 7 L f(x) cos (n—zx) dx

which converges to the even periodic extension of f (with period 2L) except at discontinuities etc..
Complex Fourier series: Given f(x) for —L < & < L its complex Fourier series is

&~ ) 1 L )
Z Cnefz'mrw/L wherec,, = ﬁ J;L f'(x)eln‘n'a:/L da.

n=—uxL

If a Fourier series converges to a continuous function, and if the derivative of the function is
piecewise smooth, then you can differentiate the Fourier series term by term (or differentiate a sine
series to get a cosine series and vice versa).

You can integrate a Fourier series (sine series, cosine series) term by term but you might have
to be careful about the constant of integration and the integral of the constant term if there is one
(which would give apx which is not strictly speaking part of a Fourier series).

Chapter 4

Derivation of the wave equation: Based on F' = ma — String describes a curve given by u(x,t) where
y = u(z,t) for fixed ¢ is the shape of the curve at time ¢. The force in the string is tension with
magnitude T'(x) tangent to the string. Mass of a little bit of string is p(x)Az. Use approximation
sin@ ~ tanf for small values of @ (the angle the string makes with the z-axis, so tanf = u,). The
component of tension forces along the string cancels, so string accelerates only perpendicular to
r-axis, and

ma ~ p(x)Azug(z,t) ~ T(x+Azx) tan (z+Ax)—T (z) tan 6(z) = T(x+Ax)u, (x+Ax, t)—T(x)uy(x,t).
Divide by Az and let Az — 0 and get

(plus p(z)Q(x, t) if there is an external force @ acting on the string, e.g., gravity would have Q = —g
etc). If p and T are constant and @ = 0 we get familiar wave equation uy = c®u,, with ¢ = T'/p.

Initial and boundary conditions: Since the wave equation is about acceleration, need initial position
and velocity (u(z,0) and u.(z,0)). At endpoints, prescribe position of string (Dirichlet conditions)
u(0,t) and u(L,t) or derivatives or some combination.



Separation of variables: Like heat equation except this time ¢ solutions are sines and cosines and (if
u(0,t) = u(L,t) = 0 say):

60
u(z,t) = Z sin (?) [an cos <n7£ct> + by, sin <n7£ct)] .

n=1

The a,, are determined by u(x,0) = f(x), and b,, are determined by u;(z,0) = g(z) after differenti-
ating with respect to ¢ and putting ¢ = 0, so

nmx

—J flx sm ) dr and b, _ 2 Lg(x) sin (T) dx

nmwe Jo

Time (circular) frequencies of vibrations are nwc/L.

Chapter 5

Sturm-Liouville problems: In separation of variables, we need to find eigenfunctions and eigenvalues
of boundary value problems for second-order ODEs. Get a good theory for problems in Sturm-
Liouville form:

7 (r02) + @y + 2ty =0

for a < ¢ < b with two boundary conditions on some combinations of y(a),y(b),y'(a),y'(b) (e.g.,
y(a) = 0 and y'(b) = 0 etc). The problem is called “regular” if p(z) and w(x) are positive on the
entire interval of consideration.

FEigenfunctions of Sturm-Liouville problems: Many problems can be put into this form after multipli-
cation by a function. Such a problem has an infinite sequence of eigenvalues \; < Ay < A3 < --- and
corresponding eigenfunctions o1 (z), p2(z), . ... Eigenfunctions corresponding to distinct eigenvalues
are orthogonal with respect to the weight function w(x), so

b
n(@), eal@) = [ en(@)pnlau(@)ds =0
and “any” function on [a,b] can be expanded in a Fourier-like series:

Lfspn)

Z anen(x) with a, = Com oy’

Chapter 7

Higher-dimensional wave and heat equation problems: For u; = kV?u or uy = ¢2V2u with Dirichlet
or Neumann (normal derivative = 0) boundary conditions, we separate out the time variable and
get

T'(t)  V2Z(x) \ T(t)  V?Z(x)

KT Z(x) o orwy T Zx)




for t > 0 and x in the 2 or 3-dimensional domain. The solution will be
oL
(x,t) = Z ety (x) or u(x,t) = Z [an cos(cA/ Ap t) + by, sin(c/ An t)]on (%)
n=1

where V20, (x) + A\ypn(x) = 0. The circular frequencis for the wave equation are c\/A,. Three
main examples:

Rectangles and boxes: Say 0 < x < L, 0 < y < H (could have z as well), if Dirichlet conditions on
edges, get

S Is] H oL
4
u(z,y,t Z Z Amne SHm*)t gin (?) sin (%) where @, = ﬁf f f(z,y)sin (@
n=lm=1 o Jo

for the heat equation with u(z,y,0) = f(z,y) and something similar for the wave equation except
with sines and cosines of t.

Disks: This time the eigenfunctions are of the form @, (r,0) = Ju (2mnr) cosmb for m =0,1,2, ...
and Jp, (zmnr) sinmé for m = 1,2,3, ..., where J,, is the Bessel function (of the first kind) of order
m and 2, is the nth positive zero of J . The corresponding eigenvalues are 22,,. So the solution
is

a$L

u(zx,y,t) Z Z I (ZmnT) €08 MO c0S(C2Zmnt) + bmp SIn(CZmnt)]

m=0n=1
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Z (ZmnT) SINMO[Cpn c0S(C2mnt) + dmp sin(czmnt)],

where a,,, and c¢,,, are determined from the initial position and b,,, and d,,, are determined from
the initial velocity. The circular frequencies are cz,,.

If the initial data are circularly symmetric (i.e., do not depend on ), then only the m = 0 terms
appear (so only Jp).

Cylinders: Equilibrium (Laplace equation): The solution of the problem
1 a Taj 4+ l@ + i =0
ror \| or r2 002 022
for0<r<a,0<6<27and 0 <z < H together with boundary conditions
u(r,0,H) = f(r,0) on the top
u(r,0,0) = g(r,0) on the bottom
u(a,0,z) = h(0,z) on the side
is
U(T‘, 9) Z) = U](T, 97 Z) + UQ(Ta 97 Z) + ’11/3(7"7 97 Z)7

where (with z,,, being the mth positive zero of the Bessel function J,(z))

1(r,0,2) = i i In (znmr> sinh (anz) [@nm cosnb + by, sin nd)],

n=0m=1 a

) dx dy



H—
Z"m(z)> [crm cos N + dpm sin nd)],

o8] vel
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and
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(mm") sin (%) [€nm cosnb + frm sinnd].

uz(r,0,z) = Z Z I,

n=0m=1

The coefficients anm, bnm, Cnm, Anm, €nm and fr., are given by

J J rf(r,0)Jo (Zomr> dr df
—m-0 “ forn=0,m=>1
rn=0mz>
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v H
mnz
h(0,z)sin (| —— ) dzdf
JL (0,72) (H)
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€om = forn=0m=>=>1

THI, (mga)

T " mmz
QJ f h(6, z) sin cosnf dz df
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Cnm = forn=1mz>=1

T H
2[ h(, z) sin (m;frz) sin nf dz df
fnm: — forn)l,m;l.

In uz and its coefficients, I,, is the nth modified Bessel function (hyperbolic Bessel function). For
the corresponding heat and wave equations, you can figure out the eigenfunctions of V2 which are
similar to the pieces of these series (but no I, only .J,,).

Balls: The spherical Laplace equation has solution

o8]
u(p, e, 0 Z Z [@mn cOsMO + by, sin mO| P, (cos )
m=0n=m

where P™(x) is the associated Legendre function

Pe) = (2 = ) P(0)
dx™
where P,(x) = P?(x) is the nth Legendre polynomial. (The first few P, are Py(x) = 1, Pi(z) = =,
Py(z) = £(32® — 1), P3(z) = 3(5a® — 3x), etc.. They are orthogonal on [—1,1] with respect to
w(z) = 1. If the boundary data are independent of 6, then only the PY(cos ) = P, (cos¢) terms
appear, no associated ones.

Solutions of the heat and wave equations have terms like

J (%éﬂ) 7 (Znép)
n+3 et n+i\ " p
e kznt/R* 2N R T oo mOP"(cosp) and cos (CZ 4 ) R 7 cos mO P (cos p)
NG R NG
where the cosmf could be sinmf and the cos(cz,t/R) could be sin(cz,t/R), R is the radius of the
sphere, zp¢ is the ¢th positive zero of J, 1. Circular frequencies for the wave equation are cz,./R.
(Note: in the n = 0 term, Ji (z) = smx/\/f S0 zgg = {m.)

Chapter 8

Inhomogeneous equations and boundary conditions: If a problem for the wave or heat (or related)
equation for u(z, t) has an inhomogeneous source or boundary condition, first consider whether there
is an equilibrium solution wueq(z), and subtract it from u(z,t) — set v(x,t) = u(z,t) — ueq(x) and get
a simpler equation for v. If there’s no equilibrium solution, find a relatively simple function upq(z, t)
that satisfies the inhomogeneous boundary conditions, and subtract that from wu(z,t) and so get a
problem for v(z,t) that has homogeneous boundary conditions.



The second step is to seek v(x,t) in the form

ool
vz, t) = D an(t)en(x)
n=1
where @, (z) is the nth eigenfunction of the z-part of the differential equation and get and solve
differential equations for a,(t). Initial conditions for a,(0) will usually involve finding Fourier series
for the initial data of v.

Chapter 10
Fourier transforms:

Flo) = F@) = FU@I@) = 5 [ s s
and . )

F@) = f(@) = FF@)@) = [ )™ e
Properties:

1. Linearity: F [af(z) + Bg(x)] = oF [f(z)] + BF [g9(z)]-

2. Translation (or shifting): F[f(z —a)](w) = e“*F[f(x)] (w). And in the other direction,
Fle e f(@)] (w) = F[f(2)] (w + a).

3. Scaling: ]-"[éf (%)] (w) = F[f(x)] (aw), and likewise F [ f(az)] (w) = %f[f(x)] (%)

4. Operational property (derivatives): F[f/(z)] (w) = —iwF [f(z)] (w), and F [z f(z)] (w) =
—ige (F [f(@)] ().

5. FLf(@)](w) = 5 7 [f(=9)] (w).
6. F 1 [F(w)] (z) = 2xF [F(=a)] (x)

7. Convolutions:

and o
FUF G (@) = F(a)G(a)

8. Parseval:
(fogy=2(f.5)
and

£ = 2] FI*.

Examples:
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FlSu] @) = 5 Lle dp= &2 _ M
and ] .
F [Sm““"] (@) = 5= Salw).
T 2
2.

F [e_MQ/Q] (w) =

In particular,

and

1 1
r _ L e
[aQ—i—xQ] 2q°

To solve PDE problems where one of the variables (usually z) goes from —o to oo, take the
Fourier transform of everything in that variable (could do it in more than one variable) — doing this
usually gets rid of differentiation in that variable (so can convert PDE to ODE or from ODE to
algebra). Solve the resulting simplified equation for u and attempt to do inverse transform to get wu.
Two important formulas to come from this:

Solution of initial value problem for heat equation: us = kug, with u(x,0) = f(x) Solution is

1 * 2
+*G(r,t) = —— e (@=y)7/4kt g
fr6a == fw) y

G(z,t) is the fundamental solution of the heat equation (or heat kernel).

D’Alembert’s solution of initial value problem for the wave equation: uy = c*uz, with u(z,0) = f(x)
and u;(x,0) = g(x). Solution is

r+ct
u(w,t)=%[f(x+ct)+f(m—ct)]+—f g(u) du.

e T—ct



