
MATH 241 – Course outline

Chapter 1

Derivation of the heat equation for a thin rod:

Thermal energy: cpxqρpxqApxqupx, tq dx (where c is specific heat, ρ is density, A is cross-sectional

area)is thermal energy in a little bit of the rod.

Heat flux: ϕpx, tq per unit area (from left to right), so heat energy per unit time into the little bit

is ϕpx, tqApxq � ϕpx� dxqApx� dxq.

Sources: Qpx, tqApxqdx is heat energy generated per unit time in the little bit.

Conservation of energy:

cpxqρpxqBuBt � �Bϕ
Bx �Qpx, tq.

Fourier’s law: Assume ϕ � �K0pxqpBu{Bxq.

Altogether, as bad as it can get:

cpxqρpxqBuBt �
B
Bx

�
K0pxqBuBx



�Qpx, tq.

If c, ρ,K0 are constants and Q � 0, set k � K0{psρq and get usual heat equation ut � kuxx.

Boundary conditions: Dirichlet conditions give value of temperature at endpoints, e.g., up0, tq � aptq,
upL, tq � bptq. Could also give (directly or indirectly) values of ux at endpoints. (Insulated endpoints:

ux � 0 at ends).

Diffusion equation:

Density: upx, tq, so total amount of chemical is
³b
a
upx, tqApxq dx.

Flux: ϕpx, tq amount moving to right per unit area per unit time, so

d

dt

» b
a

upx, tqApxq dx � ϕpa, tqApaq � ϕpb, tqApbq.

Conservation law (continuity equation): If Apxq is constant then
Bu
Bt �

Bϕ
Bx � 0.

Fick’s law of diffusion: Assume ϕpxq � �k BuBx .

Put last two together to get diffusion equation: ut � kuxx.

Boundary conditions: Dirichlet conditions give density u at endpoints. Can also give flux at end-

points which is �kux.
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Equilibrium: u does not depend on t. Simplifies heat/diffusion equations to ODEs which are (usually)

easily solved together with boundary values. Note: insulated boundaries ux � 0 at both ends and

no sources imply total heat/chemical is constant, so
³
u dx is equal to its initial value for all t.

Higher dimensions: replace uxx with ∇2u. In the plane

∇2u � uxx � uyy � 1

r

B
Br

�
r
Bu
Br


� 1

r2
Bu2
Br2 .

In three dimensions,

∇2u � uxx � uyy � uzz

� 1

r

B
Br

�
r
Bu
Br


� 1

r2
Bu2
Br2 � B2u

Bz2

� 1

ρ2
B
Bρ

�
ρ2
Bu
Bρ


� 1

ρ2 sinϕ

B
Bϕ

�
sinϕ

Bu
Bϕ



� 1

ρ2 sin2 ϕ

B2u
Bθ2 .

(note, if K0pxq is not constant, then instead of ∇2u, get ∇ � pK0pxq∇uq).

Chapter 2

Separation of variables: For ut � kuxx (or even a little more exotic) assume upx, tq � XpxqT ptq,
separate and get eigenvalue problem for X – depending on boundary conditions

Xpxq � sin
�nπx
L

	
, n � 1, 2, . . . λ � n2π2

L2
if Xp0q � XpLq � 0.

Xpxq � sin

� pn� 1
2 qπx
L



n � 0, 1, 2, . . . λ � pn� 1

2 q2π2

L2
if Xp0q � X 1pLq � 0.

Xpxq � cos

� pn� 1
2 qπx
L



n � 0, 1, 2 . . . λ � pn� 1

2 q2π2

L2
if X 1p0q � XpLq � 0.

Xpxq � cos
�nπx
L

	
n � 0, 1, 2, . . . λ � n2π2

L2
if X 1p0q � X 1pLq � 0.

Note particularly for the last one that Xpxq � 1 is the solution for n � 0. Don’t forget this term!

The corresponding t solutions are T � e�λkt so get series, e.g.,

upx, tq �
8̧

n�1

ane
�n2π2kt{L2

sin
�nπx
L

	

where an is determined by initial conditions upx, 0q � fpxq:

an � 2

L

» L
0

fpxq sin
�nπx
L

	
dx

This last formula must be adjusted according to which eigenfunctions are used (i.e., integrate f

against the corresponding eigenfunction – for the λ � 0 eigenfunction 1 in the fourth case, the

coefficient in front of integral becomes 1{L.
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Laplace equation (equilibrium solutions) on rectangles and disks:

Rectangles. Can only solve problems which have zero conditions (either value of u or normal deriva-

tive) on three sides and non-zero on the fourth. Then get sines or cosines in the direction where there

are two zero sides (depending on boundary conditions as above) and sinh or cosh in the direction

where one side is non-zero (depending on type of condition on the zero side). Example:

For up0, yq � uxpL, yq � upx, 0q � 0 and upx,Hq � fpxq the x-direction has two zeros, but at L

it is ux which is zero so

upx, yq �
8̧

n�0

an sin

� pn� 1
2 qπx
L



sinh

�nπy
L

	
where an � 2

L sinh

�
nπH

L


 » L
0

fpxq sin

� pn� 1
2 qπx
L



dx.

Another example: for uxp0, yq � gpyq, uxpL, yq � 0, upx, 0q � 0, upx,Hq � 0, the y direction has

two zeros, so

upx, yq �
8̧

n�1

bn sin
�nπy
H

	
cosh

�
nπpL� xq

H



where bn � 2

H cosh

�
nπL

H


 » H
0

gpxq sin
�nπy
H

	
dx,

and so forth.

Integrability condition: If normal derivatives are prescribed all the way around the boundary of the

region, then they must integrate to zero.

Disks: Separating variables in Laplace equation in polar coordinates gives solution of the form

upx, tq � a0 �
8̧

n�1

rnpan cosnθ � bn sinnθq

where a0, an, bn given by usual Fourier series formula for 2π-periodic functions. If half-disk or other

wedge, then boundary conditions for θ come from radial edges. Watch out for integrability condition

if normal derivative is prescribed all the way around.

Chapter 3

“Full” Fourier series: Given fpxq for �L   x   L, its full Fourier series is

a0 �
8̧

n�1

an cos
�nπx
L

	
� bn sin

�nπx
L

	

where

a0 � 1

2L

» L
�L

fpxq dx, an � 1

L

» L
�L

fpxq cos
�nπx
L

	
dx bn � 1

L

» L
�L

fpxq sin
�nπx
L

	
dx

Assuming f is piecewise smooth, the series converges to the periodic extension of f (with period 2L)

except where this function has jumps, and to the average of the left and right limits at the jumps.

So in general it converges to f only (mostly) on �L   x   L.
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Fourier sine series: Given fpxq for 0   x   L, its Fourier sine series is

8̧

n�1

bn sin
�nπx
L

	
where bn � 2

L

» L
0

fpxq sin
�nπx
L

	
dx

which converges to the odd periodic extension of f (with period 2L) except at discontinuities etc..

Fourier cosine series: Given fpxq for 0   x   L, its Fourier cosine series is

a0 �
8̧

n�1

an cos
�nπx
L

	
where a0 � 1

L

» L
0

fpxq dx and an � 2

L

» L
0

fpxq cos
�nπx
L

	
dx

which converges to the even periodic extension of f (with period 2L) except at discontinuities etc..

Complex Fourier series: Given fpxq for �L   x   L its complex Fourier series is

8̧

n��8

cne
�inπx{L wherecn � 1

2L

» L
�L

fpxqeinπx{L dx.

If a Fourier series converges to a continuous function, and if the derivative of the function is

piecewise smooth, then you can differentiate the Fourier series term by term (or differentiate a sine

series to get a cosine series and vice versa).

You can integrate a Fourier series (sine series, cosine series) term by term but you might have

to be careful about the constant of integration and the integral of the constant term if there is one

(which would give a0x which is not strictly speaking part of a Fourier series).

Chapter 4

Derivation of the wave equation: Based on F � ma – String describes a curve given by upx, tq where

y � upx, tq for fixed t is the shape of the curve at time t. The force in the string is tension with

magnitude T pxq tangent to the string. Mass of a little bit of string is ρpxq∆x. Use approximation

sin θ � tan θ for small values of θ (the angle the string makes with the x-axis, so tan θ � ux). The

component of tension forces along the string cancels, so string accelerates only perpendicular to

x-axis, and

ma � ρpxq∆xuttpx, tq � T px�∆xq tan θpx�∆xq�T pxq tan θpxq � T px�∆xquxpx�∆x, tq�T pxquxpx, tq.

Divide by ∆x and let ∆xÑ 0 and get

ρpxqutt � pT pxquxqx

(plus ρpxqQpx, tq if there is an external force Q acting on the string, e.g., gravity would have Q � �g
etc). If ρ and T are constant and Q � 0 we get familiar wave equation utt � c2uxx with c2 � T {ρ.

Initial and boundary conditions: Since the wave equation is about acceleration, need initial position

and velocity (upx, 0q and utpx, 0q). At endpoints, prescribe position of string (Dirichlet conditions)

up0, tq and upL, tq or derivatives or some combination.
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Separation of variables: Like heat equation except this time t solutions are sines and cosines and (if

up0, tq � upL, tq � 0 say):

upx, tq �
8̧

n�1

sin
�nπx
L

	�
an cos

�
nπct

L



� bn sin

�
nπct

L


�
.

The an are determined by upx, 0q � fpxq, and bn are determined by utpx, 0q � gpxq after differenti-

ating with respect to t and putting t � 0, so

an � 2

L

» L
0

fpxq sin
�nπx
L

	
dx and bn � 2

nπc

» L
0

gpxq sin
�nπx
L

	
dx

Time (circular) frequencies of vibrations are nπc{L.

Chapter 5

Sturm-Liouville problems: In separation of variables, we need to find eigenfunctions and eigenvalues

of boundary value problems for second-order ODEs. Get a good theory for problems in Sturm-

Liouville form:
d

dx

�
ppxqdy

dx



� qpxqy � λwpxqy � 0

for a ¤ x ¤ b with two boundary conditions on some combinations of ypaq, ypbq, y1paq, y1pbq (e.g.,

ypaq � 0 and y1pbq � 0 etc). The problem is called “regular” if ppxq and wpxq are positive on the

entire interval of consideration.

Eigenfunctions of Sturm-Liouville problems: Many problems can be put into this form after multipli-

cation by a function. Such a problem has an infinite sequence of eigenvalues λ1   λ2 ¤ λ3 ¤ � � � and

corresponding eigenfunctions ϕ1pxq, ϕ2pxq, . . .. Eigenfunctions corresponding to distinct eigenvalues

are orthogonal with respect to the weight function wpxq, so

xϕmpxq , ϕnpxqy �
» b
a

ϕmpxqϕnpxqwpxq dx � 0

and “any” function on ra, bs can be expanded in a Fourier-like series:

fpxq �
8̧

n�1

anϕnpxq with an � xf , ϕny
xϕn , ϕny .

Chapter 7

Higher-dimensional wave and heat equation problems: For ut � k∇2u or utt � c2∇2u with Dirichlet

or Neumann (normal derivative � 0) boundary conditions, we separate out the time variable and

get
T 1ptq
kT ptq �

∇2Zpxq
Zpxq � �λ or

T 2ptq
c2T ptq �

∇2Zpxq
Zpxq � �λ
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for t ¡ 0 and x in the 2 or 3-dimensional domain. The solution will be

upx, tq �
8̧

n�1

ane
�kλntϕnpxq or upx, tq �

8̧

n�1

ran cospc
a
λn tq � bn sinpc

a
λn tqsϕnpxq

where ∇2ϕnpxq � λnϕnpxq � 0. The circular frequencis for the wave equation are c
?
λn. Three

main examples:

Rectangles and boxes: Say 0   x   L, 0   y   H (could have z as well), if Dirichlet conditions on

edges, get

upx, y, tq �
8̧

n�1

8̧

m�1

amne
�kpn2�m2qt sin

�mπx
L

	
sin

�nπy
H

	
where amn � 4

HL

» H
0

» L
0

fpx, yq sin
�mπx

L

	
dx dy

for the heat equation with upx, y, 0q � fpx, yq and something similar for the wave equation except

with sines and cosines of t.

Disks: This time the eigenfunctions are of the form ϕmnpr, θq � Jm pzmnrq cosmθ for m � 0, 1, 2, . . .

and Jm pzmnrq sinmθ for m � 1, 2, 3, . . ., where Jm is the Bessel function (of the first kind) of order

m and zmn is the nth positive zero of Jm. The corresponding eigenvalues are z2mn. So the solution

is

upx, y, tq �
8̧

m�0

8̧

n�1

Jmpzmnrq cosmθramn cospczmntq � bmn sinpczmntqs

�
8̧

m�1

8̧

n�1

Jmpzmnrq sinmθrcmn cospczmntq � dmn sinpczmntqs,

where amn and cmn are determined from the initial position and bmn and dmn are determined from

the initial velocity. The circular frequencies are czmn.

If the initial data are circularly symmetric (i.e., do not depend on θ), then only the m � 0 terms

appear (so only J0).

Cylinders: Equilibrium (Laplace equation): The solution of the problem

1

r

B
Br

�
r
Bu
Br


� 1

r2
B2u
Bθ2 � B2u

Bz2 � 0

for 0 ¤ r ¤ a, 0 ¤ θ ¤ 2π and 0 ¤ z ¤ H together with boundary conditions

upr, θ,Hq � fpr, θq on the top

upr, θ, 0q � gpr, θq on the bottom

upa, θ, zq � hpθ, zq on the side

is

upr, θ, zq � u1pr, θ, zq � u2pr, θ, zq � u3pr, θ, zq,
where (with znm being the mth positive zero of the Bessel function Jnpxq)

u1pr, θ, zq �
8̧

n�0

8̧

m�1

Jn

�znmr
a

	
sinh

�znmz
a

	
ranm cosnθ � bnm sinnθs,
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u2pr, θ, zq �
8̧

n�0

8̧

m�1

Jn

�znmr
a

	
sinh

�
znmpH � zq

a



rcnm cosnθ � dnm sinnθs,

and

u3pr, θ, zq �
8̧

n�0

8̧

m�1

In

�mπr
H

	
sin

�mπz
H

	
renm cosnθ � fnm sinnθs.

The coefficients anm, bnm, cnm, dnm, enm and fnm are given by

a0m �

» π
�π

» a
0

rfpr, θqJ0
�z0mr

a

	
dr dθ

πa2J1pz0mq2sinh

�
z0mH

a


 for n � 0,m ¥ 1

anm �
2

» π
�π

» a
0

rfpr, θqJn
�znmr

a

	
cosnθ dr dθ

πa2Jn�1pznmq2sinh

�
znmH

a


 for n ¥ 0,m ¥ 1

bnm �
2

» π
�π

» a
0

rfpr, θqJn
�znmr

a

	
sinnθ dr dθ

πa2Jn�1pznmq2sinh

�
znmH

a


 for n ¥ 0,m ¥ 1

c0m �

» π
�π

» a
0

rgpr, θqJ0
�z0mr

a

	
dr dθ

πa2J1pz0mq2sinh

�
z0mH

a


 for n � 0,m ¥ 1

cnm �
2

» π
�π

» a
0

rgpr, θqJn
�znmr

a

	
cosnθ dr dθ

πa2Jn�1pznmq2sinh

�
znmH

a


 for n ¥ 1,m ¥ 1

dnm �
2

» π
�π

» a
0

rgpr, θqJn
�znmr

a

	
sinnθ dr dθ

πa2Jn�1pznmq2sinh

�
znmH

a


 for n ¥ 1,m ¥ 1
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e0m �

» π
�π

» H
0

hpθ, zq sin
�mπz
H

	
dz dθ

πHI0

�mπa
H

	 for n � 0,m ¥ 1

enm �
2

» π
�π

» H
0

hpθ, zq sin
�mπz
H

	
cosnθ dz dθ

πHIn

�mπa
H

	 for n ¥ 1,m ¥ 1

fnm �
2

» π
�π

» H
0

hpθ, zq sin
�mπz
H

	
sinnθ dz dθ

πHIn

�mπa
H

	 for n ¥ 1,m ¥ 1.

In u3 and its coefficients, In is the nth modified Bessel function (hyperbolic Bessel function). For

the corresponding heat and wave equations, you can figure out the eigenfunctions of ∇2 which are

similar to the pieces of these series (but no In, only Jn).

Balls: The spherical Laplace equation has solution

upρ, ϕ, θq �
8̧

m�0

8̧

n�m

ρnramn cosmθ � bmn sinmθsPmn pcosϕq

where Pmn pxq is the associated Legendre function

Pmn pxq � px2 � 1qm{2 d
m

dxm
Pnpxq

where Pnpxq � P 0
npxq is the nth Legendre polynomial. (The first few Pn are P0pxq � 1, P1pxq � x,

P2pxq � 1
2 p3x2 � 1q, P3pxq � 1

2 p5x3 � 3xq, etc.. They are orthogonal on r�1, 1s with respect to

wpxq � 1. If the boundary data are independent of θ, then only the P 0
npcosϕq � Pnpcosϕq terms

appear, no associated ones.

Solutions of the heat and wave equations have terms like

e�kz
2
n`t{R

2
Jn� 1

2

�zn`ρ
R

	
?
ρ

cosmθPmn pcosϕq and cos

�
czn`t

R


 Jn� 1
2

�zn`ρ
R

	
?
ρ

cosmθPmn pcosϕq

where the cosmθ could be sinmθ and the cospcznt{Rq could be sinpcznt{Rq, R is the radius of the

sphere, zn` is the `th positive zero of Jn� 1
2
. Circular frequencies for the wave equation are czn`{R.

(Note: in the n � 0 term, J 1
2
pxq � sinx{?x so z0` � `π.)

Chapter 8

Inhomogeneous equations and boundary conditions: If a problem for the wave or heat (or related)

equation for upx, tq has an inhomogeneous source or boundary condition, first consider whether there

is an equilibrium solution ueqpxq, and subtract it from upx, tq – set vpx, tq � upx, tq�ueqpxq and get

a simpler equation for v. If there’s no equilibrium solution, find a relatively simple function ubdpx, tq
that satisfies the inhomogeneous boundary conditions, and subtract that from upx, tq and so get a

problem for vpx, tq that has homogeneous boundary conditions.
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The second step is to seek vpx, tq in the form

vpx, tq �
8̧

n�1

anptqϕnpxq

where ϕnpxq is the nth eigenfunction of the x-part of the differential equation and get and solve

differential equations for anptq. Initial conditions for anp0q will usually involve finding Fourier series

for the initial data of v.

Chapter 10

Fourier transforms:

f̂pωq � F pωq � Frfpxqspωq � 1

2π

» 8

�8

fpxqeixω dx

and qF pxq � fpxq � F�1rF pωqspxq �
» 8

�8

F pωqe�ixω dω.

Properties:

1. Linearity: F rαfpxq � βgpxqs � αF rfpxqs � βF rgpxqs.

2. Translation (or shifting): F rfpx� aqs pωq � eiωaF rfpxqs pωq. And in the other direction,

F
�
eiaxfpxq� pωq � F rfpxqs pω � aq.

3. Scaling: F
�
1
af

�
x
a

�� pωq � F rfpxqs paωq, and likewise F rfpaxqs pωq � 1
aF rfpxqs �ωa �.

4. Operational property (derivatives): F rf 1pxqs pωq � �iωF rfpxqs pωq, and F rxfpxqs pωq �
�i ddω pF rfpxqs pωqq.

5. F rfpxqs pωq � 1
2πF

�1 rfp�yqs pωq.

6. F �1 rF pωqs pxq � 2πF rF p�αqs pxq

7. Convolutions:

F rf � gs pωq � 2πF rf s pωqF rgs pωq or p̂f � gqpωq � 2πf̂pωqĝpωq

and

F �1 rF �Gs pxq � qF pxq qGpxq
8. Parseval:

xf , gy � 2π
A
f̂ , ĝ

E
and

}f}2 � 2π}f̂}2.

Examples:
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1. If

Sapxq �
"

1 if |x|   a
0 otherwise

then

F rSapxqs pωq � 1

2π

» a
�a

eiωx dx � eiωa � e�iωa

2πiω
� sin aω

πω

and

F
�

sin ax

πx

�
pωq � 1

2π
Sapωq.

2.

F
�
e�ax

2{2
�
pωq � 1?

2πa
e�ω

2{p2aq

In particular,

F
�
e�x

2{2
�
� 1?

2π
e�ω

2{2.

3.

F
�
e�a|x|

�
pωq � a

πpa2 � ω2q
and

F
�

1

a2 � x2

�
� 1

2a
e�a|ω|.

To solve PDE problems where one of the variables (usually x) goes from �8 to 8, take the

Fourier transform of everything in that variable (could do it in more than one variable) – doing this

usually gets rid of differentiation in that variable (so can convert PDE to ODE or from ODE to

algebra). Solve the resulting simplified equation for û and attempt to do inverse transform to get u.

Two important formulas to come from this:

Solution of initial value problem for heat equation: ut � kuxx with upx, 0q � fpxq Solution is

f �Gpx, tq � 1?
4πkt

» 8

�8

fpyqe�px�yq2{4kt dy

Gpx, tq is the fundamental solution of the heat equation (or heat kernel).

D’Alembert’s solution of initial value problem for the wave equation: utt � c2uxx with upx, 0q � fpxq
and utpx, 0q � gpxq. Solution is

upx, tq � 1

2
rfpx� ctq � fpx� ctqs � 1

2c

» x�ct
x�ct

gpuq du.


