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A Partial Table of Integrals

∫ x

0

u cos nu du =
cos nx + nx sin nx− 1

n2
for any real n 6= 0

∫ x

0

u sin nu du =
sin nx− nx cos nx

n2
for any real n 6= 0

∫ x

0

emu cos nu du =
emx(m cos nx + n sin nx)−m

m2 + n2
for any real n,m

∫ x

0

emu sin nu du =
emx(−n cos nx + m sin nx) + n

m2 + n2
for any real n,m

∫ x

0

sin nu cos mu du =
m sin nx sin mx + n cos nx cos mx− n

m2 − n2
for any real numbers m 6= n

∫ x

0

cos nu cos mu du =
m cos nx sin mx− n sin nx cos mx

m2 − n2
for any real numbers m 6= n

∫ x

0

sin nu sin mu du =
n cos nx sin mx−m sin nx cos mx

m2 − n2
for any real numbers m 6= n

Laplacian in polar coordinates

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
.

2



(1) 20 points The temperature of a rod is described by the following equations:

∣∣∣∣∣∣∣∣∣

ut = uxx + e−x, 0 ≤ x ≤ 1, t ≥ 0

u(0, t) + 2ux(0, t) = 0

ux(1, t) = 3

u(x, 0) = sin x

When it reaches equilibrium, what is the temperature at x = 0?

(A) 0 (B) −8 + 2e−1 (C) −e−1

(D) sin(1)− e−1 (E) sin(1) (F) 3 + e−1

Answer: The equilibrium temperature u(x) satisfies

u′′(x) + e−x = 0, 0 ≤ x ≤ 1

and the boundary conditions
u(0) + 2u′(0) = 0, u(1) = 3.

Integrating twice, we get
u(x) = −e−x + c1x + c2,

where c1 and c2 are arbitrary constants. The boundary conditions gives

−1 + c2 + 2(1 + c1) = 0

and
e−1 + c1 = 3,

so c1 = 3− e−1, c2 = −7 + 2e−1, and

u(x) = −e−x + (3− e−1)x + (−7 + 2e−1).

Plug in x = 0, we get
u(0) = −1 + (−7 + 2e−1) = −8 + 2e−1.

The correct answer is (B).
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(2) 20 points Let u(x, t) be the solution of the equation

ut = 3uxx, 0 ≤ x ≤ 3, t ≥ 0

satisfying the boundary conditions

ux(0, t) = 0 and ux(3, t) = 0

u(x, 0) = 3− cos(3πx)

Compute u
(

1
2
, 2

)
.

(A) 0 (B) π (C) 3− e−54π2

(D) 3− e−162π2

(E) 3 (F) −e−162π2

Answer: We use separation of variables, let

u(x, t) = φ(x)G(t)

Substituting in the equation we get
dG

dt
φ = 3G

d2φ

dx2
,

so we will have
1

3G

dG

dt
=

1

φ

d2φ

dx2
= −λ

for some constant λ.
The boundary conditions imply φ′(0) = 0 and φ′(3) = 0, so φ must solve

φ′′ + λφ = 0, φ′(0) = 0, φ′(3) = 0

hence

λn =
(nπ

3

)2

, n = 0, 1, 2, · · ·
with the corresponding eigenfunction φn given by

φn(x) = c · cos
nπx

3

and for each eigenvalue λn, Gn(t) satisfies

G′
n = −3λnGn

so
Gn(t) = c · e−3(nπ

3
)2t

By the principle of superposition, we form the general solution

u(x, t) =
∞∑

n=0

An cos
nπx

3
e−3(nπ

3
)2t
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By initial condition u(x, 0) = 3−3 cos(3πx), we can identify A0 = 3, A9 = −3, while other coefficients
are 0. So

u(x, t) = 3− 3 cos(3πx)e−27π2t

Plug in x = 1
2
, t = 2, we get

u(
1

2
, 2) = 3− 3 cos

3π

2
e−54π2

= 3.

So the correct answer is (E).
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(3) 20 points Let f(x) = x2 − 4x for 0 ≤ x ≤ 2, and let

∞∑
n=0

an cos
(nπx

2

)

its Fourier cosine series. What is the value of a4?

(A)
1

π2
(B) − 1

4π3
(C) 2− 1

4π3

(D) − 1

π2
− 1

4π3
(E) 3 (F)

1

8π3

Answer: From the formula of Fourier cosine coefficients we compute

a4 =
2

2

∫ 2

0

(x2 − 4x) cos
4πx

2
dx

=
1

2π

∫ 2

0

(x2 − 4x)d(sin 2πx)

=
1

2π
(x2 − 4x) sin 2πx

∣∣∣
2

0
− 1

2π

∫ 2

0

sin 2πxd(x2 − 4x)

= − 1

2π

∫ 2

0

(2x− 4) sin 2πxdx

=
1

4π2

∫ 2

0

(2x− 4)d(cos 2πx)

=
1

4π2
(2x− 4) cos 2πx

∣∣∣
2

0
− 1

4π2

∫ 2

0

cos 2πxd(2x− 4)

=
1

4π2
(0− (−4))− 1

4π2

∫ 2

0

2 cos 2πxdx

=
1

π2
− 1

4π2

2

2π
sin 2πx

∣∣∣
2

0

=
1

π2
− 1

4π3
(sin 4π − sin 0)

=
1

π2
.

The correct answer is (A).
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(4) 20 points Solve the Laplace equation of u(r, θ) on a 90o sector of a disk of radius 3:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ r ≤ 3, 0 ≤ θ ≤ π

2

u(r, 0) = 0

u
(
r,

π

2

)
= 0

|u(0, θ)| < +∞
u(3, θ) = 1

Answer: Use separation of variables in polar coordinates, set

u(r, θ) = G(r)φ(θ),

plug in the equation and divide by 1
r2 Gφ, we get

− r

G

d

dr

(
r
dG

dr

)
=

1

φ

d2φ

dθ2
= −λ.

The boundary conditions u(r, 0) = 0 and u(r, π
2
) = 0 implies φ(0) = 0 and φ(π

2
) = 0, so φ should

solve the equation
φ′′ + λφ = 0

together with the boundary conditions

φ(0) = 0, φ
(π

2

)
= 0.

We know the eigenvalues are
λn = 4n2, n = 1, 2, · · ·

and the corresponding eigenfunctions are

φn(θ) = c · sin 2nθ.

Plug each eigenvalue to the equation of G:

r

G

d

dr

(
r
dG

dr

)
= λ

we see that G satisfies the Cauchy-Euler equation:

r(rG′)′ = 4n2G, n = 1, 2, · · ·
so

Gn(r) = c1 · r2n + c2 · r−2n.

Where c1 and c2 are two arbitrary constants. By |u(0, θ) < +∞|, solution has to be bounded at the
origin, so G cannot contain the r−2n term, therefore

Gn(r) = c · r2n.
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By principle of superposition, the general solution is

u(r, θ) =
∞∑

n=1

Bnr
2n sin 2nθ.

The condition u(3, θ) = 1 gives

∞∑
n=1

Bn32n sin 2nθ = 1, 0 ≤ θ ≤ π

2
,

we can compute Bn32n by the formula of Fourier sine coefficients

Bn32n =
2
π
2

∫ π
2

0

1 · sin 2nθdθ

=
4

π

(
− 1

2n
cos 2nθ

)∣∣∣
π
2

0

=
2

nπ
(1− cos nπ)

=
2

nπ
(1− (−1)n)

So

Bn =
2

32nnπ
(1− (−1)n),

and

u(r, θ) =
∞∑

n=1

2

32nnπ
(1− (−1)n)r2n sin 2nθ.
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(5) 20 points

(a) Compute the Fourier series of

f(x) =

{
0, if − π < x < 0,

x, if 0 < x < π

on the interval [−π, π]. Fully simplify your answer - the formula for the coefficients should not
contain any sines or cosines.

(b) What does this Fourier series converge to when x = π? Justify your answer.

Answer:
(a) Fourier series of f(x) on the interval [−π, π] is

a0 +
∞∑

n=1

an cos nx + bn sin nx

where

a0 =
1

2π

∫ π

−π

f(x)dx

=
1

2π

∫ π

0

xdx

=
π

4

an =
1

π

∫ π

−π

f(x) cos nxdx

=
1

π

∫ π

0

x cos nxdx

=
1

π

cos nπ + nπ sin nπ − 1

n2

=
(−1)n − 1

n2π

bn =
1

π

∫ π

−π

f(x) sin nxdx

=
1

π

∫ π

0

x sin nxdx

=
1

π

sin nπ − nπ cos nπ

n2

=
(−1)n+1

n
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So the Fourier series of f(x) is

π

4
+

∞∑
n=1

((−1)n − 1

n2π
cos nx +

(−1)n+1

n
sin nx

)
.

(b) By convergence theorem, denote f̃ as the periodic extension of f , then the Fourier series converges
at x = π to

f̃(π−) + f̃(π+)

2
=

0 + π

2
=

π

2
.
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