FALL 2013

NAME:
Recitation Number and Day/Time:

Please turn off and put away all electronic devices. You may use both sides of a $8.5^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper for handwritten notes while you take this exam. No calculators, no course notes, no books, no help from your neighbors. Show all work. Please clearly mark your final answer. Remember to put your name at the top of this page. Good luck!

My signature below certifies that I have complied with the University of Pennsylvania's Code of Academic Integrity in completing this examination.

Your signature

Question Number	Points Possible	Your Score
1	20	
2	20	
3	20	
4	20	
5	20	

Midterm 1 Total Score	$/ 100$

A Partial Table of Integrals

$$
\begin{aligned}
& \int_{0}^{x} u \cos n u d u=\frac{\cos n x+n x \sin n x-1}{n^{2}} \quad \text { for any real } n \neq 0 \\
& \int_{0}^{x} u \sin n u d u=\frac{\sin n x-n x \cos n x}{n^{2}} \quad \text { for any real } n \neq 0 \\
& \int_{0}^{x} e^{m u} \cos n u d u=\frac{e^{m x}(m \cos n x+n \sin n x)-m}{m^{2}+n^{2}} \quad \text { for any real } n, m \\
& \int_{0}^{x} e^{m u} \sin n u d u=\frac{e^{m x}(-n \cos n x+m \sin n x)+n}{m^{2}+n^{2}} \quad \text { for any real } n, m \\
& \int_{0}^{x} \sin n u \cos m u d u=\frac{m \sin n x \sin m x+n \cos n x \cos m x-n}{m^{2}-n^{2}} \quad \text { for any real numbers } m \neq n \\
& \int_{0}^{x} \cos n u \cos m u d u=\frac{m \cos n x \sin m x-n \sin n x \cos m x}{m^{2}-n^{2}} \quad \text { for any real numbers } m \neq n \\
& \int_{0}^{x} \sin n u \sin m u d u=\frac{n \cos n x \sin m x-m \sin n x \cos m x}{m^{2}-n^{2}} \quad \text { for any real numbers } m \neq n
\end{aligned}
$$

Laplacian in polar coordinates

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}
$$

(1) 20 POINTS The temperature of a rod is described by the following equations:

$$
\left\lvert\, \begin{aligned}
& u_{t}=u_{x x}+e^{-x}, \quad 0 \leq x \leq 1, \quad t \geq 0 \\
& u(0, t)+2 u_{x}(0, t)=0 \\
& u_{x}(1, t)=3 \\
& u(x, 0)=\sin x
\end{aligned}\right.
$$

When it reaches equilibrium, what is the temperature at $x=0$?
(A) 0
(B) $-8+2 e^{-1}$
(C) $-e^{-1}$
(D) $\sin (1)-e^{-1}$
(E) $\sin (1)$
(F) $3+e^{-1}$

Answer: The equilibrium temperature $u(x)$ satisfies

$$
u^{\prime \prime}(x)+e^{-x}=0,0 \leq x \leq 1
$$

and the boundary conditions

$$
u(0)+2 u^{\prime}(0)=0, u(1)=3
$$

Integrating twice, we get

$$
u(x)=-e^{-x}+c_{1} x+c_{2}
$$

where c_{1} and c_{2} are arbitrary constants. The boundary conditions gives

$$
-1+c_{2}+2\left(1+c_{1}\right)=0
$$

and

$$
e^{-1}+c_{1}=3
$$

so $c_{1}=3-e^{-1}, c_{2}=-7+2 e^{-1}$, and

$$
u(x)=-e^{-x}+\left(3-e^{-1}\right) x+\left(-7+2 e^{-1}\right)
$$

Plug in $x=0$, we get

$$
u(0)=-1+\left(-7+2 e^{-1}\right)=-8+2 e^{-1}
$$

The correct answer is (B).
(2) 20 POINTS Let $u(x, t)$ be the solution of the equation

$$
u_{t}=3 u_{x x}, \quad 0 \leq x \leq 3, \quad t \geq 0
$$

satisfying the boundary conditions

$$
\begin{aligned}
& u_{x}(0, t)=0 \quad \text { and } \quad u_{x}(3, t)=0 \\
& u(x, 0)=3-\cos (3 \pi x)
\end{aligned}
$$

Compute $u\left(\frac{1}{2}, 2\right)$.
(A) 0
(B) π
(C) $3-e^{-54 \pi^{2}}$
(D) $3-e^{-162 \pi^{2}}$
(E) 3
(F) $-e^{-162 \pi^{2}}$

Answer: We use separation of variables, let

$$
u(x, t)=\phi(x) G(t)
$$

Substituting in the equation we get

$$
\frac{d G}{d t} \phi=3 G \frac{d^{2} \phi}{d x^{2}}
$$

so we will have

$$
\frac{1}{3 G} \frac{d G}{d t}=\frac{1}{\phi} \frac{d^{2} \phi}{d x^{2}}=-\lambda
$$

for some constant λ.
The boundary conditions imply $\phi^{\prime}(0)=0$ and $\phi^{\prime}(3)=0$, so ϕ must solve

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi^{\prime}(0)=0, \quad \phi^{\prime}(3)=0
$$

hence

$$
\lambda_{n}=\left(\frac{n \pi}{3}\right)^{2}, n=0,1,2, \cdots
$$

with the corresponding eigenfunction ϕ_{n} given by

$$
\phi_{n}(x)=c \cdot \cos \frac{n \pi x}{3}
$$

and for each eigenvalue $\lambda_{n}, G_{n}(t)$ satisfies

$$
G_{n}^{\prime}=-3 \lambda_{n} G_{n}
$$

so

$$
G_{n}(t)=c \cdot e^{-3\left(\frac{n \pi}{3}\right)^{2} t}
$$

By the principle of superposition, we form the general solution

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} \cos \frac{n \pi x}{3} e^{-3\left(\frac{n \pi}{3}\right)^{2} t}
$$

By initial condition $u(x, 0)=3-3 \cos (3 \pi x)$, we can identify $A_{0}=3, A_{9}=-3$, while other coefficients are 0 . So

$$
u(x, t)=3-3 \cos (3 \pi x) e^{-27 \pi^{2} t}
$$

Plug in $x=\frac{1}{2}, t=2$, we get

$$
u\left(\frac{1}{2}, 2\right)=3-3 \cos \frac{3 \pi}{2} e^{-54 \pi^{2}}=3
$$

So the correct answer is (E).
(3) 20 POINTS Let $f(x)=x^{2}-4 x$ for $0 \leq x \leq 2$, and let

$$
\sum_{n=0}^{\infty} a_{n} \cos \left(\frac{n \pi x}{2}\right)
$$

its Fourier cosine series. What is the value of a_{4} ?
(A) $\frac{1}{\pi^{2}}$
(B) $-\frac{1}{4 \pi^{3}}$
(C) $2-\frac{1}{4 \pi^{3}}$
(D) $-\frac{1}{\pi^{2}}-\frac{1}{4 \pi^{3}}$
(E) 3
(F) $\frac{1}{8 \pi^{3}}$

Answer: From the formula of Fourier cosine coefficients we compute

$$
\begin{aligned}
a_{4} & =\frac{2}{2} \int_{0}^{2}\left(x^{2}-4 x\right) \cos \frac{4 \pi x}{2} d x \\
& =\frac{1}{2 \pi} \int_{0}^{2}\left(x^{2}-4 x\right) d(\sin 2 \pi x) \\
& =\left.\frac{1}{2 \pi}\left(x^{2}-4 x\right) \sin 2 \pi x\right|_{0} ^{2}-\frac{1}{2 \pi} \int_{0}^{2} \sin 2 \pi x d\left(x^{2}-4 x\right) \\
& =-\frac{1}{2 \pi} \int_{0}^{2}(2 x-4) \sin 2 \pi x d x \\
& =\frac{1}{4 \pi^{2}} \int_{0}^{2}(2 x-4) d(\cos 2 \pi x) \\
& =\left.\frac{1}{4 \pi^{2}}(2 x-4) \cos 2 \pi x\right|_{0} ^{2}-\frac{1}{4 \pi^{2}} \int_{0}^{2} \cos 2 \pi x d(2 x-4) \\
& =\frac{1}{4 \pi^{2}}(0-(-4))-\frac{1}{4 \pi^{2}} \int_{0}^{2} 2 \cos 2 \pi x d x \\
& =\frac{1}{\pi^{2}}-\left.\frac{1}{4 \pi^{2}} \frac{2}{2 \pi} \sin 2 \pi x\right|_{0} ^{2} \\
& =\frac{1}{\pi^{2}}-\frac{1}{4 \pi^{3}}(\sin 4 \pi-\sin 0) \\
& =\frac{1}{\pi^{2}} .
\end{aligned}
$$

The correct answer is (A).
(4) 20 POINTS Solve the Laplace equation of $u(r, \theta)$ on a 90° sector of a disk of radius 3:

$$
\begin{aligned}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}} & =0,0 \leq r \leq 3, \quad 0 \leq \theta \leq \frac{\pi}{2} \\
u(r, 0) & =0 \\
u\left(r, \frac{\pi}{2}\right) & =0 \\
|u(0, \theta)| & <+\infty \\
u(3, \theta) & =1
\end{aligned}
$$

Answer: Use separation of variables in polar coordinates, set

$$
u(r, \theta)=G(r) \phi(\theta)
$$

plug in the equation and divide by $\frac{1}{r^{2}} G \phi$, we get

$$
-\frac{r}{G} \frac{d}{d r}\left(r \frac{d G}{d r}\right)=\frac{1}{\phi} \frac{d^{2} \phi}{d \theta^{2}}=-\lambda
$$

The boundary conditions $u(r, 0)=0$ and $u\left(r, \frac{\pi}{2}\right)=0$ implies $\phi(0)=0$ and $\phi\left(\frac{\pi}{2}\right)=0$, so ϕ should solve the equation

$$
\phi^{\prime \prime}+\lambda \phi=0
$$

together with the boundary conditions

$$
\phi(0)=0, \phi\left(\frac{\pi}{2}\right)=0
$$

We know the eigenvalues are

$$
\lambda_{n}=4 n^{2}, n=1,2, \cdots
$$

and the corresponding eigenfunctions are

$$
\phi_{n}(\theta)=c \cdot \sin 2 n \theta .
$$

Plug each eigenvalue to the equation of G :

$$
\frac{r}{G} \frac{d}{d r}\left(r \frac{d G}{d r}\right)=\lambda
$$

we see that G satisfies the Cauchy-Euler equation:

$$
r\left(r G^{\prime}\right)^{\prime}=4 n^{2} G, n=1,2, \cdots
$$

so

$$
G_{n}(r)=c_{1} \cdot r^{2 n}+c_{2} \cdot r^{-2 n}
$$

Where c_{1} and c_{2} are two arbitrary constants. By $|u(0, \theta)<+\infty|$, solution has to be bounded at the origin, so G cannot contain the $r^{-2 n}$ term, therefore

$$
G_{n}(r)=c \cdot r^{2 n}
$$

By principle of superposition, the general solution is

$$
u(r, \theta)=\sum_{n=1}^{\infty} B_{n} r^{2 n} \sin 2 n \theta
$$

The condition $u(3, \theta)=1$ gives

$$
\sum_{n=1}^{\infty} B_{n} 3^{2 n} \sin 2 n \theta=1,0 \leq \theta \leq \frac{\pi}{2}
$$

we can compute $B_{n} 3^{2 n}$ by the formula of Fourier sine coefficients

$$
\begin{aligned}
B_{n} 3^{2 n} & =\frac{2}{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} 1 \cdot \sin 2 n \theta d \theta \\
& =\left.\frac{4}{\pi}\left(-\frac{1}{2 n} \cos 2 n \theta\right)\right|_{0} ^{\frac{\pi}{2}} \\
& =\frac{2}{n \pi}(1-\cos n \pi) \\
& =\frac{2}{n \pi}\left(1-(-1)^{n}\right)
\end{aligned}
$$

So

$$
B_{n}=\frac{2}{3^{2 n} n \pi}\left(1-(-1)^{n}\right),
$$

and

$$
u(r, \theta)=\sum_{n=1}^{\infty} \frac{2}{3^{2 n} n \pi}\left(1-(-1)^{n}\right) r^{2 n} \sin 2 n \theta
$$

(5) 20 POINTS
(a) Compute the Fourier series of

$$
f(x)= \begin{cases}0, & \text { if }-\pi<x<0 \\ x, & \text { if } 0<x<\pi\end{cases}
$$

on the interval $[-\pi, \pi]$. Fully simplify your answer - the formula for the coefficients should not contain any sines or cosines.
(b) What does this Fourier series converge to when $x=\pi$? Justify your answer.

Answer:
(a) Fourier series of $f(x)$ on the interval $[-\pi, \pi]$ is

$$
a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+b_{n} \sin n x
$$

where

$$
\begin{aligned}
a_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
& =\frac{1}{2 \pi} \int_{0}^{\pi} x d x \\
& =\frac{\pi}{4} \\
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& =\frac{1}{\pi} \frac{\cos n \pi+n \pi \sin n \pi-1}{n^{2}} \\
& =\frac{(-1)^{n}-1}{n^{2} \pi}
\end{aligned}
$$

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
$$

$$
=\frac{1}{\pi} \int_{0}^{\pi} x \sin n x d x
$$

$$
=\frac{1}{\pi} \frac{\sin n \pi-n \pi \cos n \pi}{n^{2}}
$$

$$
=\frac{(-1)^{n+1}}{n}
$$

So the Fourier series of $f(x)$ is

$$
\frac{\pi}{4}+\sum_{n=1}^{\infty}\left(\frac{(-1)^{n}-1}{n^{2} \pi} \cos n x+\frac{(-1)^{n+1}}{n} \sin n x\right)
$$

(b) By convergence theorem, denote \tilde{f} as the periodic extension of f, then the Fourier series converges at $x=\pi$ to

$$
\frac{\tilde{f}\left(\pi^{-}\right)+\tilde{f}\left(\pi^{+}\right)}{2}=\frac{0+\pi}{2}=\frac{\pi}{2} .
$$

