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A Partial Table of Integrals
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(1) The temperature of a rod is described by the following equations:

Up = U +€ 7, 0<2 <1, t>0
u(0,t) + 2u,(0,t) =0
uz(1,6) =3

u(z,0) =sinz

When it reaches equilibrium, what is the temperature at x = 07

(A) 0 (B) —8 + 2¢~ (C) —e!

(D) sin(1) —e™? (E) sin(1) (F) 34!

: The equilibrium temperature u(z) satisfies
u(z)+e =0, 0<zx<1
and the boundary conditions

Integrating twice, we get
u(x) = —e " + cx + ¢,

where ¢; and ¢y are arbitrary constants. The boundary conditions gives

—l+c+2(1+c¢)=0

and
e+ =3,

socp =3—e 1t cg=—T+2! and
u(z) = —e*+ (3 —e N+ (=7+2e7).

Plug in z = 0, we get
u(0) = =14 (=7+2e 1) = -8 +2e .

The correct answer is (B).



(2) Let u(x,t) be the solution of the equation
Up = Uge, 0< <3, £20
satisfying the boundary conditions
ur(0,t) =0 and wu,(3,t)=0
u(z,0) = 3 — cos(3mx)

Compute u (%, 2).

(A) 0 (B) m (C) 3 — e

(D) 3 — 1027 (E) 3 (F) —e~to2"

: We use separation of variables, let

u(z,t) = ¢(x)G(1)

Substituting in the equation we get

dG d*¢
T3
so we will have
1 d@ 1 d*¢ L
3G dt ¢ dx? N

for some constant .
The boundary conditions imply ¢'(0) = 0 and ¢/(3) = 0, so ¢ must solve

"+ Xp =0, ¢'(0)=0, ¢'(3)=0

hence

2
Ao = (%) n=0,1,2, -

with the corresponding eigenfunction ¢,, given by

dn (@) = - cos ot
3
and for each eigenvalue \,, G,,(t) satisfies
Gl = =3\.G,

S0
Go(t) = - e 35

By the principle of superposition, we form the general solution

nmxr _3(737#)275

u(zx,t) = Z A, cos ¢
n=0
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By initial condition u(z,0) = 3—3 cos(3mz), we can identify Ay = 3, Ag = —3, while other coefficients
are 0. So .
u(z,t) = 3 — 3cos(3mw)e ™"

Pluginx:%,t:lweget X ;
u(é, 2) =3 —3cos 56754”2 = 3.

So the correct answer is (E).



(3) Let f(z) = 2* — 4z for 0 <z < 2, and let

OOE a,, COS (_7”11’)
" 2
n=0

its Fourier cosine series. What is the value of a4?

: From the formula of Fourier cosine coefficients we compute

a4 — =

The correct answer is (A).
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(4) Solve the Laplace equation of u(r, ) on a 90° sector of a disk of radius 3:

10 ou 1 0%u T
- - —— = <r< <0< —
rar(rﬁr)—i_ﬂaﬁg 0. 0srss, 0_0_2
u(r,0) =
T
u(r,§ =0
[u(0,6)] < +o0
u(3,0) =1

: Use separation of variables in polar coordinates, set

u(r,0) = G(r)o(0),
plug in the equation and divide by T%ng, we get

T d< dG)lngb_
Gar\' dr) ~ Gadez ~ "

The boundary conditions u(r,0) = 0 and u(r, 5) = 0 implies ¢(0) = 0 and ¢(5) = 0, so ¢ should
solve the equation
#4230 =0

together with the boundary conditions

We know the eigenvalues are
Ap=4n* n=12---

and the corresponding eigenfunctions are
On(0) = c - sin2nb.
Plug each eigenvalue to the equation of G:
rd/ dG
— (=) =0
G dr (T dr )
we see that G satisfies the Cauchy-Euler equation:

r(rG") = 4n*G, n=1,2,---

SO

Gu(r)=cy 1" 4+ ¢y - 172"

Where ¢; and ¢y are two arbitrary constants. By |u(0,6) < 4o00l, solution has to be bounded at the
origin, so G cannot contain the 72" term, therefore

Gn(r) =c-r™".
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By principle of superposition, the general solution is
u(r,0) = Z B,r*"sin 2nf.
n=1
The condition u(3,60) = 1 gives

)

> By3*sin2nf =1, 0<6 <

n=1

| X

we can compute B,3%" by the formula of Fourier sine coefficients

2 2
B,3*" = = / 1 - sin 2nfdf

2 J0

jus
2

= é(— Zicost?)

n

0

So

and
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(5)

(a) Compute the Fourier series of

f(x)_{o, if —7m<a<O0,

r, if0<z<nm

on the interval [—7, 7|. Fully simplify your answer - the formula for the coefficients should not
contain any sines or cosines.

(b) What does this Fourier series converge to when x = 77 Justify your answer.

(a) Fourier series of f(z) on the interval [—7, 7] is

o0
ag + E a, cosnx + b, sinnx

n=1

where

1 ™
ag = %/_ﬂ f(z)dz
1 ™

= — xdx
2 Jo
oo
4
1 ™
ap = — f(x) cosnxdx
ﬂ- —T
1 /7T
= — x cosnxdxr
™ Jo
B 1cosnm +nrsinnm — 1
o n?
e
N n2m
1 [7 )
b, = — f(z)sinnzdx
Tr —T

1 s
= — x sin nxdx
™ Jo

1 sinnm — nmwcosnm

s n?
(_1)n+1

n



So the Fourier series of f(z) is

= /(=) —1 —1)ntt
%—kZ(%cosnx—i—(

n=1

sin nx) .
n

(b) By convergence theorem, denote f as the periodic extension of f, then the Fourier series converges
at z =7 to

fa)+fx") _04m
2 2

™
5 .
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