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A Partial Table of Integrals

∫ x

0

u cosnu du =
cosnx+ nx sinnx− 1

n2
for any real n 6= 0∫ x

0

u sinnu du =
sinnx− nx cosnx

n2
for any real n 6= 0∫ x

0

emu cosnu du =
emx(m cosnx+ n sinnx)−m

m2 + n2
for any real n,m∫ x

0

emu sinnu du =
emx(−n cosnx+m sinnx) + n

m2 + n2
for any real n,m∫ x

0

sinnu cosmu du =
m sinnx sinmx+ n cosnx cosmx− n

m2 − n2
for any real numbers m 6= n∫ x

0

cosnu cosmu du =
m cosnx sinmx− n sinnx cosmx

m2 − n2
for any real numbers m 6= n∫ x

0

sinnu sinmu du =
n cosnx sinmx−m sinnx cosmx

m2 − n2
for any real numbers m 6= n

Laplacian in polar coordinates

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
.
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(1) 20 points Let u(x, t) be a solution of the BVP∣∣∣∣∣∣∣∣∣∣∣∣

utt = uxx, 0 < x < π, t > 0,

u(0, t) = 1,

u(π, t) = 2π + 1,

u(x, 0) = 1− sin(x),

ut(x, 0) = 0.

Find the value of u
(π

2
,
π

2

)
.

(A)
π

2
(B) 0 (C) −1

(D)
1

π
(E) 1 + π (F)

1

4
− 3π

2

Answer 1.
Since this equation has a non-homogeneous boundary condition, the solution will be equilibrium
solution plus solution of a homogeneous problem.
Denote the equilibrium as v(x), it satisfies∣∣∣∣∣∣∣

0 = v′′(x), 0 < x < π

v(0) = 1,

v(π) = 2π + 1,

and we find v(x) = 2x+ 1.
Now let w(x, t) = u(x, t)− v(x), then w satisfies the homogeneous equation∣∣∣∣∣∣∣∣∣∣∣∣

wtt = wxx, 0 < x < π, t > 0,

w(0, t) = 0,

w(π, t) = 0,

w(x, 0) = − sinx− 2x,

wt(x, 0) = 0.

and we get

w(x, t) =
∞∑
n=1

sin(nx)
(
an cos(nt) + bn sin(nt)

)
where

an =
2

π

∫ π

0

(− sinx− 2x) sin(nx)dx

and
bn = 0
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so

u(x, t) = v(x) + w(x, t) = 2x+ 1 +
∞∑
n=1

an sin(nx) cos(nt)

and

u
(π

2
,
π

2

)
= π + 1 +

∞∑
n=1

an sin
nπ

2
cos

nπ

2
= π + 1

The last identity holds because for any integer n, either sin nπ
2

or cos nπ
2

is zero. The correct answer
is (E).
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(2) 20 points Let u(x, t) be the vertical displacement of a vibrating string of infinite length. The
string has constant density ρ = 1 and tension with constant magnitude T = 9. The initial position
u(x, 0) = p(x) and velocity ut(x, 0) = v(x) are given by and

p(x) =

1− |2x− 1|, when 0 < x < 1,

0, when x < 0 or x > 1,

and v(x) = 0 for all x. Calculate u
(
1
2
, 1
2

)
.

(A)
3

2
(B) 0 (C)

3

4

(D) 1 (E)
1

6
(F)

1

2

Answer 2.
The equation of this vibrating string is

utt = 9uxx

By d’Alembert’s formula,

u(x, t) =
1

2

(
p(x+ 3t) + p(x− 3t)

)
+

1

6

∫ x+3t

x−3t
v(s)ds

notice v(x) = 0, so

u(x, t) =
1

2

(
p(x+ 3t) + p(x− 3t)

)
and

u
(1

2
,
1

2

)
=

1

2

(
p(2) + p(−1)

)
= 0

So the correct answer is (B).
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(3) 20 points Consider the Sturm-Liouville equation

φ′′ − 7φ+ λ(x2 + 2)φ = 0

for a function φ(x) defined for 0 ≤ x ≤ 1 with boundary conditions

φ(0) = 0,

φ′(1) = 0.

Let λ1 < λ2 < λ3 < · · · be the set of of all eigenvalues of the above equation, and let φn(x) be an

eigenfunction for the eigenvalue λn chosen so that
∫ 1

0
φ2
n(x)(x2 + 2)dx = 1, n ≥ 1. Which one of the

following statements is true? Justify your reasoning.

(A)

∫ 1

0

φ2
n(x)dx = 0 for n ≥ 1.

(B) φ4(x)φ5(x) > 0 for all 0 < x < 1.

(C) this is a singular Sturm-Liouville BVP.

(D) lim
n→+∞

λn = +∞.

(E) If n� 0, then |φn(x)| > 0 for all 0 < x < 1

(F) If an =
∫ 1

0
(2x− x2)φn(x)(x2 + 2)dx, then

∞∑
n=1

anφn

(
1

2

)
converges to 2.

Answer 3.
(A) is not true because φn(x) is continuous and not identically zero for n ≥ 1, and therefore it’s
square integration cannot be zero.
(B) is not true because φn(x) has (n − 1) zeros in 0 < x < 1, and in particular, φ4(x)φ5(x) has at
least 5 zeros in the interval (0, 1), thus cannot be always positive.
(C) is not true because we can identify

p(x) = 1, q(x) = −7, σ(x) = x2 + 2

all of them are continuous in the closed interval [0, 1], and p(x) > 0, σ(x) > 0, also the boundary
conditions are homogeneous, hence this is a regular Sturm-Liouville BVP.
(D) is true because of Sturm-Liouville theorem.
(E) is not true because |φn(x)| has (n− 1) zeros in (0, 1) and cannot be always positive.
(F) is not true.Since 1

2
is a continuous point of the function 2x − x2, according to Sturm-Liouville

theorem, the series converges to the function plug in x = 1
2
, which is 3

4
.

So the correct answer is (D).
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(4) 20 points Explicitly show that the eigenvalue problem

√
1 + x2φ′′ + xφ′ = −λ · 3

√
1 + x2φ on [0, 1] with φ(0) = φ(1) = 0,

is a regular Sturm-Liouville problem. Write down the orthogonality condition on the eigenfunctions,
and an asymptotic expression for the eigenvalues, valid as λ→∞.

Answer 4.
We want to multiply the equation by f(x) so that it becomes a standard Sturm-Liouville equation,
this requires f(x) to satisfy (√

1 + x2f(x)
)′

= xf(x)

which is √
1 + x2f ′(x) +

x√
1 + x2

f(x) = xf(x)

so
f ′(x)

f(x)
=

x√
1 + x2

− x

1 + x2

notice the left hand side is (ln f(x))′. Integrating about x, we get

ln f(x) =

∫ ( x√
1 + x2

− x

1 + x2

)
dx =

√
1 + x2 − 1

2
ln(1 + x2)

and

f(x) = e
√
1+x2− 1

2
ln(1+x2) =

e
√
1+x2

√
1 + x2

Multiply the original differential equation by f(x), we get

e
√
1+x2φ′′ +

xe
√
1+x2

√
1 + x2

φ′ + λ3e
√
1+x2φ = 0

therefore
p(x) = e

√
1+x2 , q(x) = 0, σ(x) = 3e

√
1+x2

we see that p, q, σ are continuous in [0, 1], and p(x) > 0, σ(x) > 0 as they are exponential functions,
also the boundary conditions are homogeneous, so this is a regular Sturm-Liouville equation.
If we denote φn as the n-th eigenfunction, then the orthogonality condition is∫ 1

0

φnφm3e
√
1+x2dx = 0, m 6= n

Denote λn as the n-th eigenvalue, then as n→∞

λn ∼
( nπ∫ 1

0

(
σ(x)
p(x)

) 1
2
dx

)2
=
( nπ∫ 1

0

√
3dx

)2
=
n2π2

3
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(5) 20 points Let
∞∑

n=−∞

cne
−inx

be the complex form of the Fourier series of the function

f(x) = x+ 1

on the interval [−π, π]. What is the value of the sum c−2 + c1?

Answer 5.
For n 6= 0, we have

cn =
1

2π

∫ π

−π
(x+ 1)einxdx

=
1

2π

∫ π

−π
(x+ 1)

1

in
deinx

=
1

2nπi
(x+ 1)einx

∣∣∣π
−π
− 1

2nπi

∫ π

−π
einxdx

=
1

2nπi
(π + 1)einπ − 1

2nπi
(−π + 1)e−inπ − 1

2nπi

∫ π

−π
einxdx

=
2πeinπ

2nπi
− 1

2nπi

∫ π

−π
einxdx

=
einπ

ni
− 1

2n2πi2
einx
∣∣∣π
−π

=
einπ

ni

So

c1 =
eiπ

i
=
−1

i
= i

c−2 =
e−2πi

−2i
=

1

−2i
=
i

2

and

c−2 + c1 =
i

2
+ i =

3i

2

8


