Practice problems for the Second Midterm, Math 241, Fall 2013

Question 1. Let u(x,t) be a solution of the BVP

$$u_{tt} = 4u_{xx}, \quad 0 < x < 1, \ t > 0,$$

$$u(0,t) = 0,$$

$$u(1,t) = 1,$$

$$u(x,0) = \sin(\pi x),$$

$$u_t(x,0) = 0.$$

Find the value of $u_t\left(\frac{3}{4},5\right)$.

(A)
$$\frac{1}{2}$$
 (B) 1 (C) 0
(D) $-\frac{2}{\pi}$ (E) $-\frac{2}{5\pi}$ (F) $\frac{3}{4} - \frac{2}{5\pi}$

Question 2. Let u(x,t) be the vertical displacement of a vibrating string of infinite length. The string has constant density $\rho = 1$ and tension with constant magnitude T = 1. The initial position u(x,0) = p(x) and velocity $u_t(x,0) = v(x)$ are given by p(x) = 0 for all x, and

$$v(x) = \begin{cases} 1, & \text{when } 0 < x < 2, \\ 0, & \text{when } x < 0 \text{ or } x > 2. \end{cases}$$

Calculate the total energy

$$E(t) = \frac{1}{2} \int_{-\infty}^{\infty} \left(\rho u_t^2 + T u_x^2\right) dx,$$

of the string.

(A) 3 (B)
$$2/t$$
 (C) $16 - t^2$
(D) 1 (E) $-8/3$ (F) $6t$

Question 3. Let u(x,t) be the solution of the BVP:

$$u_{tt} = 16u_{xx}$$
 for $0 < x < 1$ and $t > 0$

satisfying the boundary conditions

$$u(0,t) = u_x(1,t) = 0$$

 $u(x,0) = \sin\left(\frac{5\pi x}{2}\right)$ and $u_t(x,0) = 0$

What is $u\left(\frac{1}{3}, \frac{1}{4}\right)$?

(A)
$$20\pi$$
 (B) $5\pi \sin\left(\frac{5\pi}{6}\right)$ (C) $\sin\left(\frac{5\pi}{6}\right)$
(D) $-\pi$ (E) $1 + 20\pi$ (F) 0

Question 4. Let

$$\sum_{n=-\infty}^{\infty} c_n e^{-in\pi x}$$

be the complex form of the Fourier series of the function $f(x) = 1 - x^2$ on the interval [-1, 1]. Find the coefficient c_{-3} .

(A)
$$\frac{2}{9\pi^2}$$
 (B) $\frac{20}{9\pi^2}$ (C) $\frac{200}{27\pi^3}$
(D) $\frac{1000}{27\pi^3}$ (E) $\frac{100}{81\pi^4}$ (F) $\frac{2000}{81\pi^4}$

Question 5. Consider the Sturm-Liouville equation

$$\phi'' + x\phi + \lambda\phi = 0$$

for a function $\phi(x)$ defined for $0 \le x \le \pi$ with boundary conditions

$$\phi'(0) = 0,$$

 $\phi'(\pi) = 0.$

Let $\lambda_0 < \lambda_1 < \lambda_2 < \cdots$ be the set of all eigenvalues of the above equation, and let $\phi_n(x)$ be the eigenfunction for the eigenvalue λ_n such that $\phi_n(0) = 1$, $n \ge 1$. Which one of the following statements is true? Justify your reasoning.

(A)
$$\int_0^{\pi} \phi_n^2(x) dx = 0 \text{ for } n \ge 1$$

(B)
$$\int_0^{\pi} x \phi_n(x) \phi_m(x) dx = 0 \text{ for all } n \neq m$$

- (C) If $n \gg 0$, then $\phi_n(x) < 0$ for all $0 < x < \pi$
- (D) If $n \gg 0$, then $\phi_n(x) \le 0$ for all $0 < x < \pi$
- (E) If $n \gg 0$, then $|\phi_n(x)| > 0$ for all $0 < x < \pi$
- (F) There exist constants a_0, a_1, a_2, \ldots , such that the series

$$\sum_{n=0}^{\infty} a_n \phi_n(2)$$

converges to 10.

Question 6. Express the eigenvalue problem

$$e^x \phi'' = -\lambda \phi$$
 on $[1, 10]$
 $\phi'(1) = 0$
 $\phi'(10) = 0$

in the standard Sturm-Liouville form. Give an approximate formula for the eigenvalues, valid as $\lambda \to \infty$.

Question 7. Solve the following problem posed for $-\infty < x < \infty$ and t > 0:

PDE:
$$u_{tt} = 9u_{xx}$$

IC: $u(x, 0) = x^2 - 1$, and $u_t(x, 0) = 3\cos(x)$.

Question 8. Explicitly show that the eigenvalue problem

 $e^{x^2}\phi'' + x\phi' = -\lambda x^2\phi$ on [1,2] with $\phi(1) = \phi(2) = 0$,

is a regular Sturm-Liouville problem. Write down the orthogonality condition on the eigenfunctions, and an asymptotic expression for the eigenvalues, valid as $\lambda \to \infty$.