Practice problems for the Second Midterm, Math 241, Fall 2013

Question 1. Let $u(x, t)$ be a solution of the BVP

$$
\begin{aligned}
u_{t t} & =4 u_{x x}, \quad 0<x<1, t>0 \\
u(0, t) & =0 \\
u(1, t) & =1 \\
u(x, 0) & =\sin (\pi x) \\
u_{t}(x, 0) & =0
\end{aligned}
$$

Find the value of $u_{t}\left(\frac{3}{4}, 5\right)$.
(A) $\frac{1}{2}$
(B) 1
(C) 0
(D) $-\frac{2}{\pi}$
(E) $-\frac{2}{5 \pi}$
(F) $\frac{3}{4}-\frac{2}{5 \pi}$

Question 2. Let $u(x, t)$ be the vertical displacement of a vibrating string of infinite length. The string has constant density $\rho=1$ and tension with constant magnitude $T=1$. The initial position $u(x, 0)=p(x)$ and velocity $u_{t}(x, 0)=v(x)$ are given by $p(x)=0$ for all x, and

$$
v(x)= \begin{cases}1, & \text { when } 0<x<2 \\ 0, & \text { when } x<0 \text { or } x>2\end{cases}
$$

Calculate the total energy

$$
E(t)=\frac{1}{2} \int_{-\infty}^{\infty}\left(\rho u_{t}^{2}+T u_{x}^{2}\right) d x
$$

of the string.
(A) 3
(B) $2 / t$
(C) $16-t^{2}$
(D) 1
(E) $-8 / 3$
(F) $6 t$

Question 3. Let $u(x, t)$ be the solution of the BVP:

$$
u_{t t}=16 u_{x x} \quad \text { for } 0<x<1 \text { and } t>0
$$

satisfying the boundary conditions

$$
\begin{aligned}
u(0, t) & =u_{x}(1, t)=0 \\
u(x, 0) & =\sin \left(\frac{5 \pi x}{2}\right) \text { and } u_{t}(x, 0)=0
\end{aligned}
$$

What is $u\left(\frac{1}{3}, \frac{1}{4}\right)$?
(A) 20π
(B) $5 \pi \sin \left(\frac{5 \pi}{6}\right)$
(C) $\sin \left(\frac{5 \pi}{6}\right)$
(D) $-\pi$
(E) $1+20 \pi$
(F) 0

Question 4. Let

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{-i n \pi x}
$$

be the complex form of the Fourier series of the function $f(x)=1-x^{2}$ on the interval $[-1,1]$. Find the coefficient c_{-3}.
(A) $\frac{2}{9 \pi^{2}}$
(B) $\frac{20}{9 \pi^{2}}$
(C) $\frac{200}{27 \pi^{3}}$
(D) $\frac{1000}{27 \pi^{3}}$
(E) $\frac{100}{81 \pi^{4}}$
(F) $\frac{2000}{81 \pi^{4}}$

Question 5. Consider the Sturm-Liouville equation

$$
\phi^{\prime \prime}+x \phi+\lambda \phi=0
$$

for a function $\phi(x)$ defined for $0 \leq x \leq \pi$ with boundary conditions

$$
\begin{aligned}
\phi^{\prime}(0) & =0 \\
\phi^{\prime}(\pi) & =0
\end{aligned}
$$

Let $\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ be the set of of all eigenvalues of the above equation, and let $\phi_{n}(x)$ be the eigenfunction for the eigenvalue λ_{n} such that $\phi_{n}(0)=1, n \geq 1$. Which one of the following statements is true? Justify your reasoning.
(A) $\int_{0}^{\pi} \phi_{n}^{2}(x) d x=0$ for $n \geq 1$
(B) $\int_{0}^{\pi} x \phi_{n}(x) \phi_{m}(x) d x=0$ for all $n \neq m$
(C) If $n \gg 0$, then $\phi_{n}(x)<0$ for all $0<x<\pi$
(D) If $n \gg 0$, then $\phi_{n}(x) \leq 0$ for all $0<x<\pi$
(E) If $n \gg 0$, then $\left|\phi_{n}(x)\right|>0$ for all $0<x<\pi$
(F) There exist constants $a_{0}, a_{1}, a_{2}, \ldots$, such that the series

$$
\sum_{n=0}^{\infty} a_{n} \phi_{n}(2)
$$

converges to 10 .

Question 6. Express the eigenvalue problem

$$
\begin{aligned}
e^{x} \phi^{\prime \prime} & =-\lambda \phi \quad \text { on }[1,10] \\
\phi^{\prime}(1) & =0 \\
\phi^{\prime}(10) & =0
\end{aligned}
$$

in the standard Sturm-Liouville form. Give an approximate formula for the eigenvalues, valid as $\lambda \rightarrow \infty$.

Question 7. Solve the following problem posed for $-\infty<x<\infty$ and $t>0$:
PDE: $u_{t t}=9 u_{x x}$
IC: $\quad u(x, 0)=x^{2}-1, \quad$ and $\quad u_{t}(x, 0)=3 \cos (x)$.

Question 8. Explicitly show that the eigenvalue problem

$$
e^{x^{2}} \phi^{\prime \prime}+x \phi^{\prime}=-\lambda x^{2} \phi \quad \text { on } \quad[1,2] \quad \text { with } \quad \phi(1)=\phi(2)=0,
$$

is a regular Sturm-Liouville problem. Write down the orthogonality condition on the eigenfunctions, and an asymptotic expression for the eigenvalues, valid as $\lambda \rightarrow \infty$.

