## Practice problems for the Second Midterm, Math 241, Fall 2013

Question 1. Let $u(x, t)$ be a solution of the BVP

$$
\begin{aligned}
u_{t t} & =4 u_{x x}, \quad 0<x<1, t>0 \\
u(0, t) & =0 \\
u(1, t) & =1 \\
u(x, 0) & =\sin (\pi x) \\
u_{t}(x, 0) & =0
\end{aligned}
$$

Find the value of $u_{t}\left(\frac{3}{4}, 5\right)$.
(A) $\frac{1}{2}$
(B) 1
(C) 0
(D) $-\frac{2}{\pi}$
(E) $-\frac{2}{5 \pi}$
(F) $\frac{3}{4}-\frac{2}{5 \pi}$

Answer 1.
Since this equation has a non-homogeneous boundary condition, the solution will be equilibrium solution plus solution of a homogeneous problem.
Denote the equilibrium as $v(x)$, it satisfies

$$
\begin{aligned}
0 & =4 v^{\prime \prime}(x), \quad 0<x<1 \\
v(0) & =0 \\
v(1) & =1
\end{aligned}
$$

and we find $v(x)=x$.

Now let $w(x, t)=u(x, t)-v(x)$, then $w$ satisfies the homogeneous equation

$$
\begin{aligned}
w_{t t} & =4 w_{x x}, \quad 0<x<1, t>0, \\
w(0, t) & =0 \\
w(1, t) & =0 \\
w(x, 0) & =\sin (\pi x)-x, \\
w_{t}(x, 0) & =0 .
\end{aligned}
$$

and we get

$$
w(x, t)=\sum_{n=1}^{\infty} \sin (n \pi x)\left(a_{n} \cos (2 n \pi t)+b_{n} \sin (2 n \pi t)\right)
$$

where

$$
a_{n}=2 \int_{0}^{1}(\sin (\pi x)-x) \sin (n \pi x) d x
$$

and

$$
b_{n}=0
$$

Now take time derivative of the solution, we get

$$
u_{t}(x, t)=\sum_{n=1}^{\infty} 2 n \pi a_{n} \sin (n \pi x) \sin (2 n \pi t)
$$

and when $t=5, \sin (2 n \pi t)=0$, so each of the summand above is 0 , thus $u_{t}(x, 5)=0$, and in particular, we know

$$
u_{t}\left(\frac{3}{4}, 5\right)=0
$$

so the correct answer is (C).

Question 2. Let $u(x, t)$ be the vertical displacement of a vibrating string of infinite length. The string has constant density $\rho=1$ and tension with constant magnitude $T=1$. The initial position $u(x, 0)=p(x)$ and velocity $u_{t}(x, 0)=v(x)$ are given by $p(x)=0$ for all $x$, and

$$
v(x)= \begin{cases}1, & \text { when } 0<x<2 \\ 0, & \text { when } x<0 \text { or } x>2\end{cases}
$$

Calculate the total energy

$$
E(t)=\frac{1}{2} \int_{-\infty}^{\infty}\left(\rho u_{t}^{2}+T u_{x}^{2}\right) d x
$$

of the string.
(A) 3
(B) $2 / t$
(C) $16-t^{2}$
(D) 1
(E) $-8 / 3$
(F) $6 t$

## Answer 2.

First we show the total energy is conserved, notice the function $u(x, t)$ satisfies the equation

$$
\rho u_{t t}=T u_{x x}
$$

therefore we have

$$
\begin{aligned}
\frac{d}{d t} E(t) & =\frac{1}{2} \int_{-\infty}^{\infty} \frac{\partial}{\partial t}\left(\rho u_{t}^{2}+T u_{x}^{2}\right) d x \\
& =\int_{-\infty}^{\infty}\left(\rho u_{t} u_{t t}+T u_{x} u_{x t}\right) d x \\
& =\int_{-\infty}^{\infty}\left(T u_{t} u_{x x}+T u_{x} u_{x t}\right) d x \\
& =\int_{-\infty}^{\infty} \frac{\partial}{\partial x}\left(T u_{t} u_{x}\right) d x \\
& =0
\end{aligned}
$$

So total energy doesn't change over time, and in particular $E(t)=E(0)$, we can compute $E(0)$ from initial conditions:

$$
\begin{aligned}
E(0) & =\frac{1}{2} \int_{-\infty}^{\infty}\left(\rho u_{t}^{2}(x, 0)+T u_{x}^{2}(x, 0)\right) d x \\
& =\frac{1}{2} \int_{-\infty}^{\infty} p^{2}(x)+v^{2}(x) d x \\
& =\frac{1}{2} \int_{0}^{2} 1 d x \\
& =1
\end{aligned}
$$

So the correct answer is (D).

Question 3. Let $u(x, t)$ be the solution of the BVP:

$$
u_{t t}=16 u_{x x} \quad \text { for } 0<x<1 \text { and } t>0
$$

satisfying the boundary conditions

$$
\begin{aligned}
u(0, t) & =u_{x}(1, t)=0 \\
u(x, 0) & =\sin \left(\frac{5 \pi x}{2}\right) \text { and } u_{t}(x, 0)=0
\end{aligned}
$$

What is $u\left(\frac{1}{3}, \frac{1}{4}\right)$ ?
(A) $20 \pi$
(B) $5 \pi \sin \left(\frac{5 \pi}{6}\right)$
(C) $\sin \left(\frac{5 \pi}{6}\right)$
(D) $-\pi$
(E) $1+20 \pi$
(F) 0

Answer 3.
We have the general solution to be

$$
u(x, t)=\sum_{n=1}^{\infty} \sin ((n-1 / 2) \pi x)\left(a_{n} \cos (4 n-2) \pi t+b_{n} \sin (4 n-2) \pi t\right)
$$

according to initial conditions, $a_{3}=1$ while all other coefficients are 0 , so

$$
u(x, t)=\sin \left(\frac{5 \pi x}{2}\right) \cos 10 \pi t
$$

and

$$
u\left(\frac{1}{3}, \frac{1}{4}\right)=\sin \left(\frac{5 \pi}{6}\right) \cos \frac{5 \pi}{2}=0
$$

the correct answer is ( F ).

Question 4. Let

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{-i n \pi x}
$$

be the complex form of the Fourier series of the function $f(x)=1-x^{2}$ on the interval $[-1,1]$. Find the coefficient $c_{-3}$.
(A) $\frac{2}{9 \pi^{2}}$
(B) $\frac{20}{9 \pi^{2}}$
(C) $\frac{200}{27 \pi^{3}}$
(D) $\frac{1000}{27 \pi^{3}}$
(E) $\frac{100}{81 \pi^{4}}$
(F) $\frac{2000}{81 \pi^{4}}$

Answer 4.
By formula of complex Fourier coefficients, we have

$$
\begin{aligned}
c_{n} & =\frac{1}{2} \int_{-1}^{1}\left(1-x^{2}\right) e^{n \pi i x} d x \\
& =\frac{1}{2} \int_{-1}^{1}\left(1-x^{2}\right) \frac{1}{n \pi i} d\left(e^{n \pi i x}\right) \\
& =\left.\frac{1}{2}\left(1-x^{2}\right) \frac{1}{n \pi i} e^{n \pi i x}\right|_{-1} ^{1}-\frac{1}{2 n \pi i} \int_{-1}^{1} e^{n \pi i x} d\left(1-x^{2}\right) \\
& =0-0-\frac{1}{2 n \pi i} \int_{-1}^{1}(-2 x) e^{-n \pi x} d x \\
& =\frac{1}{n \pi i} \int_{-1}^{1} \frac{x}{n \pi i} d\left(e^{n \pi i x}\right) \\
& =\left.\frac{1}{n \pi i} \frac{x}{n \pi i} e^{n \pi i x}\right|_{-1} ^{1}-\frac{1}{n^{2} \pi^{2} i^{2}} \int_{-1}^{1} e^{n \pi i x} d x \\
& =\frac{1}{n^{2} \pi^{2} i^{2}} e^{n \pi i}+\frac{1}{n^{2} \pi^{2} i^{2}} e^{-n \pi i}-\frac{1}{n^{3} \pi^{3} i^{3}}\left(e^{n \pi i}-e^{-n \pi i}\right)
\end{aligned}
$$

Now plug in $n=-3$, and notice $i^{2}=-1, e^{3 \pi i}=e^{-3 \pi i}=-1$, we get

$$
c_{-3}=\frac{2}{9 \pi^{2}}
$$

So the correct answer is (A).

Question 5. Consider the Sturm-Liouville equation

$$
\phi^{\prime \prime}+x \phi+\lambda \phi=0
$$

for a function $\phi(x)$ defined for $0 \leq x \leq \pi$ with boundary conditions

$$
\begin{aligned}
\phi^{\prime}(0) & =0 \\
\phi^{\prime}(\pi) & =0
\end{aligned}
$$

Let $\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ be the set of of all eigenvalues of the above equation, and let $\phi_{n}(x)$ be the eigenfunction for the eigenvalue $\lambda_{n}$ such that $\phi_{n}(0)=1, n \geq 1$. Which one of the following statements is true? Justify your reasoning.
(A) $\int_{0}^{\pi} \phi_{n}^{2}(x) d x=0$ for $n \geq 1$
(B) $\int_{0}^{\pi} x \phi_{n}(x) \phi_{m}(x) d x=0$ for all $n \neq m$
(C) If $n \gg 0$, then $\phi_{n}(x)<0$ for all $0<x<\pi$
(D) If $n \gg 0$, then $\phi_{n}(x) \leq 0$ for all $0<x<\pi$
(E) If $n \gg 0$, then $\left|\phi_{n}(x)\right|>0$ for all $0<x<\pi$
(F) There exist constants $a_{0}, a_{1}, a_{2}, \ldots$, such that the series

$$
\sum_{n=0}^{\infty} a_{n} \phi_{n}(x)
$$

converges to 10 .

## Answer 5.

We see this is a regular Sturm-Liouville problem, with $p(x)=1, q(x)=x$ and $\sigma(x)=1$. (A) is not true because we are integrating a square of a non-zero continuous function, and we cannot get zero from it.
(B) is not true: according to Sturm-Liouville theorem, we have the orthogonality conditions to be

$$
\int_{0}^{\pi} \phi_{n}(x) \phi_{m}(x) d x=0, \quad n \neq m
$$

if in addition, we have

$$
\int_{0}^{\pi} x \phi_{n}(x) \phi_{m}(x) d x=0, \quad n \neq m
$$

then $\phi_{n}(x)$ and $x \phi_{n}(x)$ must be linearly dependent, because $\phi_{n}$ form a complete orthonomal basis, but $c \phi_{n}(x)=x \phi_{n}(x)$ has no solution for any constant $c$ if $\phi_{n}$ is a non-zero continuous function, so (B) cannot be true.
(C), (E) are not true because $\phi_{n}(x)$ has exactly $n-1$ zeros in the interval [ $0, \pi$ ], so it cannot be always negative or always positive, and therefore $\left|\phi_{n}\right|$ cannot be always positive as well.
(D) is not true because when $n$ large enough, $\phi_{n}$ is asymptotic to some cosine function, which is oscilating, and cannot always be non-positive.
(F) is true because $\phi_{n}$ forms a complete basis, for any continuous function $f$ of period $\pi$, we are able to expand it under such a basis, and the expansion converges to the function itself because the $f$ is continuous. If in particular, we take the function $f$ to be constantly 10 , and have the expansion

$$
10 \sim \sum_{n=1}^{\infty} a_{n} \phi_{n}(x)
$$

then we can compute the coefficients by orthogonality:

$$
a_{n}=\frac{\int_{0}^{\pi} 10 \phi_{n}(x) d x}{\int_{0}^{\pi} \phi_{n}^{2}(x) d x}
$$

then the convergence property tells us

$$
10=\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)
$$

So only statement (F) is true.

Question 6. Express the eigenvalue problem

$$
\begin{aligned}
e^{x} \phi^{\prime \prime} & =-\lambda \phi \quad \text { on }[1,10] \\
\phi^{\prime}(1) & =0 \\
\phi^{\prime}(10) & =0
\end{aligned}
$$

in the standard Sturm-Liouville form. Give an approximate formula for the eigenvalues, valid as $\lambda \rightarrow \infty$.

Answer 6.
Divide by $e^{x}$, and we can identify the equation with standard Sturm-Liouville form, with $p(x)=1, q(x)=0$, and $\sigma(x)=e^{-x}$. Then the large eigenvalues $\lambda_{n}$ 's are asymptoticly

$$
\lambda_{n} \sim\left(\frac{n \pi}{\int_{1}^{10}\left(\frac{\sigma}{p}\right)^{\frac{1}{2}} d x}\right)^{2}=\left(\frac{n \pi}{\int_{1}^{10} e^{-\frac{x}{2}} d x}\right)^{2}=\left(\frac{n \pi}{2 e^{-\frac{1}{2}}-2 e^{-5}}\right)^{2}
$$

Question 7. Solve the following problem posed for $-\infty<x<\infty$ and $t>0$ :

$$
\begin{aligned}
\text { PDE: } & u_{t t}=9 u_{x x} \\
\mathrm{IC}: & u(x, 0)=x^{2}-1, \quad \text { and } \quad u_{t}(x, 0)=3 \cos (x)
\end{aligned}
$$

Answer 7.
By d'Alembert's formula

$$
\begin{aligned}
u(x, t) & =\frac{1}{2}\left((x-3 t)^{2}-1+(x+3 t)^{2}-1\right)+\frac{1}{6} \int_{x-3 t}^{x+3 t} 3 \cos s d s \\
& =\frac{1}{2}\left((x-3 t)^{2}+(x+3 t)^{2}-2\right)+\frac{1}{6}(-3 \sin (x+3 t)+3 \sin (x-3 t)) \\
& =x^{2}+9 t^{2}-1+\frac{1}{2}(3 \sin (x-3 t)-3 \sin (x+3 t))
\end{aligned}
$$

Question 8. Explicitly show that the eigenvalue problem

$$
e^{x^{2}} \phi^{\prime \prime}+x \phi^{\prime}=-\lambda x^{2} \phi \quad \text { on } \quad[1,2] \quad \text { with } \quad \phi(1)=\phi(2)=0
$$

is a regular Sturm-Liouville problem. Write down the orthogonality condition on the eigenfunctions, and an asymptotic expression for the eigenvalues, valid as $\lambda \rightarrow \infty$.

## Answer 8.

In order to identify it with standard Sturm-Liouville problem, we have to multiply the equation by a integrating factor, let that be $f(x)$, so the equation becomes

$$
f(x) e^{x^{2}} \phi^{\prime \prime}+f(x) x \phi^{\prime}+\lambda f(x) x^{2} \phi=0
$$

comparing with standard form

$$
p(x) \phi^{\prime \prime}+p^{\prime}(x) \phi^{\prime}+q(x) \phi+\lambda \sigma(x) \phi=0
$$

we need the coefficient of $\phi^{\prime}$ term to be the derivative of the coefficient of $\phi^{\prime \prime}$ term, i.e.

$$
\left(e^{x^{2}} f(x)\right)^{\prime}=x f(x)
$$

and we get the equation

$$
e^{x^{2}} f^{\prime}+2 x e^{x^{2}} f=x f
$$

separate $x$ and $f$, we get

$$
\frac{f^{\prime}}{f}=\frac{x-2 x e^{x^{2}}}{e^{x^{2}}}=x e^{-x^{2}}-2 x
$$

the left hand side is $(\ln f)^{\prime}$, so we get

$$
\ln f=\int_{0}^{x}\left(s e^{-s^{2}}-2 s\right) d s=-\frac{1}{2} e^{-x^{2}}-x^{2}
$$

and

$$
f(x)=e^{-\frac{1}{2} e^{-x^{2}}-x^{2}}
$$

therefore we can identify this equation with standard Sturm-Liouville equation by letting

$$
p(x)=e^{x^{2}} f(x)=e^{-\frac{1}{2} e^{-x^{2}}}, \quad q(x)=0, \quad \sigma(x)=f(x) x^{2}=x^{2} e^{-\frac{1}{2} e^{-x^{2}}-x^{2}}
$$

Since exponential functions are continuous, and non-negative, also the boundary conditions satisfiy the requirement, so this is a regular Sturm-Liouville problem. The orthogonality condition is

$$
\int_{1}^{2} \phi_{m}(x) \phi_{n}(x) x^{2} e^{-\frac{1}{2} e^{-x^{2}}-x^{2}} d x=0, \quad m \neq n
$$

and large eigenvalues are asymptotic to

$$
\lambda_{n} \sim\left(\frac{n \pi}{\int_{1}^{2}\left(\frac{\sigma(x)}{p(x)}\right)^{\frac{1}{2}} d x}\right)^{2}=\left(\frac{n \pi}{\int_{1}^{2} x e^{-\frac{x^{2}}{2}} d x}\right)^{2}=\left(\frac{n \pi}{e^{-\frac{1}{2}}-e^{-2}}\right)^{2}
$$

