
Practice problems for the Final Exam, Math
241, Fall 2013

This collection of problems is intended to give you practice problems that are comparable
in format and difficulty to those which will appear in the coming final exam. The questions
in the actual exam will be DIFFERENT.

Question 1. Let u(x, t) be the concentration of a chemical per unit volume, and satisfy
the following initial and boundary value problem:

∂u

∂t
= 4

∂2u

∂x2
+

3

25
x2 for 0 < x < 5, t > 0 (1)

∂u

∂x
(0, t) = 0 (2)

∂u

∂x
(5, t) = 1 (3)

u(x, 0) =
1

10
x2. (4)

Denote the total amount/mass of the chemical by

M(t) :=

∫ 5

0

u(x, t) dx.

Answer the following questions:

(i) What is the physical meaning of the boundary condition ∂u
∂x

(5, t) = 1?

(ii) Compute dM
dt

.

(iii) Compute M .
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Answer 1. (i) According to the Fick’s law of diffusion, the flux at the right endpoint
(i.e., x = 5) is

φ(5, t) = −k∂u
∂x

(5, t) = −k < 0.

Therefore, the boundary condition ∂u
∂x

(5, t) = 1 means that the atoms of the chemical migrate
into the one-dimensional region (0 < x < 5) from its right endpoint.

(ii) Using (1) - (3), we have

dM

dt
=

d

dt

∫ 5

0

u(x, t) dx

=

∫ 5

0

∂u

∂t
(x, t) dx

=

∫ 5

0

4
∂2u

∂x2
(x, t) +

3

25
x2 dx

=

[
4
∂u

∂x

]5
x=0

+

[
1

25
x3
]5
x=0

= 4 + 5

= 9.

(iii) Since dM
dt

= 9, we have
M(t) = M(0) + 9t.

In order to compute M(0), we use the initial condition (4) as follows:

M(0) =

∫ 5

0

u(x, 0) dx

=

∫ 5

0

1

10
x2 dx

=

[
1

30
x3
]5
x=0

=
25

6
.

Therefore,

M(t) =
25

6
+ 9t.
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Question 2. Solve the wave equation of u(r, θ, t) on a membrane shaped as a 45o circular
sector of radius 1: ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

utt = ∆u, 0 < r < 1, 0 < θ <
π

4

u(r, 0, t) = 0

uθ

(
r,
π

4
, t
)

= 0

u(1, θ, t) = 0

u(r, θ, 0) = F (r, θ)

ut(r, θ, 0) = 0.

Answer 2. Let u(r, θ, t) = f(r)g(θ)h(t), and get the ODE’s as∣∣∣∣∣∣∣
h′′(t) = −λh(t)

g′′(θ) = −µg(θ)

r
(
rf ′(r)

)′
+ (λr2 − µ)f = 0

First solve the equation of g, it comes with 2 boundary conditions: g(0) = 0 and g′(π
4
) = 0,

therefore we have
µm = (4m− 2)2, m = 1, 2, · · ·

and
gm(θ) = sin(4m− 2)θ.

Next plug in µm = (4m−2)2 to the equation of f , notice that equation comes with boundary
conditions: f(1) = 0 and |f(0)| < +∞, so we get

fm,n(r) = J4m−2(
√
λm,nr), n = 1, 2, · · ·

and
λm,n = z4m−2,n,

where z4m−2,n is the n-th zero of J4m−2(z). Next plug in λm,n to the equation of h, and we
get

hm,n(t) = Am,n cos(
√
λm,n t) +Bm,n sin(

√
λm,n t).

So the general solution is

u(r, θ, t) =
∞∑
n=1

∞∑
m=1

(
Am,n cos(

√
λm,n t) +Bm,n sin(

√
λm,n t)

)
J4m−2(

√
λm,nr) sin(4m− 2)θ
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According to initial conditions, we have

Am,n =

∫ π
4

0

∫ 1

0
F (r, θ)J4m−2(

√
λm,nr) sin(4m− 2)θ rdrdθ∫ π

4

0

∫ 1

0
J2
4m−2(

√
λm,nr) sin2(4m− 2)θ rdrdθ

and
Bm,n = 0

4



Question 3. Decide whether the following statements regarding the Fourier series are
correct or not.

(i) The Fourier cosine series of an odd function is always odd. Y / N

(ii) The Fourier series of f(x) := x is bounded. Y / N

(iii) The coefficients of the Fourier sine series of a bounded function are always bounded.
Y / N

Answer 3. (i) No! A counter example is f(x) := sinπx, which is an odd function.
According to the procedure stated on page 104 of the textbook, one can sketch its Fourier
cosine series on [0, 1] as follows:

Indeed, the Fourier cosine series of f is even instead of odd.

(ii) Yes! Let us sketch the Fourier series of f(x) := x on [−L,L] as follows:

According to the above graph, the Fourier series of f(x) := x is bounded.

(iii) Yes! Assume that f is bounded, i.e., there exists a constant M > 0 such that

|f(x)| ≤M.
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Suppose that f(x) ∼
∑∞

n=1 bn sin nπx
L

. Then

|bn| :=
∣∣∣∣ 2L
∫ L

0

f(x) sin
nπx

L
dx

∣∣∣∣
≤ 2

L

∫ L

0

|f(x)| dx

≤ 2

L

∫ L

0

M dx

= 2M.
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Question 4. The function u(r, θ) describes the steady state temperature distribution
in a thin plate R shaped as an anulus with outer radius 2 and inner radius 1. Suppose
that heat flux across the boundary of R is given by ur(1, θ) = 2 for the inner circle, and
ur(2, θ) = c sin2(3θ) for the outer circle.

(a) What must the value of the constant c be? That is: what must the value of c be so that
the boundary value problem ∣∣∣∣∣∣∣∣

∇2u = 0

ur(1, θ) = 2

ur(2, θ) = c sin2(3θ)

will have a solution.

(b) Find the general solution u(r, θ), you don’t need to compute the coefficients.

Answer 4. (a) In order for this system to reach its steady state, we need the net heat
flux to be zero, i.e., ∫ 2π

0

ur(1, θ)− 2ur(2, θ) dθ = 0

so we have

2c

∫ 2π

0

sin2(3θ) dθ =

∫ 2π

0

2 dθ = 4π

and ∫ 2π

0

sin(3θ) =

∫ 2π

0

1− cos(6θ)

2
dθ = π

therefore c = 2.

(b) Let u(r, θ) = f(r)g(θ), then we get the ODE’s:∣∣∣∣∣ g′′(θ) = −λg(θ)

r
(
rf ′(r)

)′
= λf(r)

For the equation of g, it comes with periodic boundary conditions:

g(−π) = g(π), g′(−π) = g′(π)

so we know
λn = n2, n = 0, 1, 2, · · ·
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and
g0 = A0

gn(θ) = An cosnθ +Bn sinnθ, n ≥ 1

Next plug in λn = n2 to the equation of f , we get

f0(r) = C0 +D0 ln r

fn(r) = Cnr
n +Dnr

−n, n ≥ 1

So the general solution is

u(r, θ) = (C0 +D0 ln r) +
∞∑
n=1

(Cnr
n +Dnr

−n)(An cosnθ +Bn sinnθ)
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Question 5. Consider the following eigenvalue problem
d2φ

dx2
+ 2

dφ

dx
+ λe2xφ = 0 for 0 < x < 1

φ(0) = 0

dφ

dx
(1) + 2φ(1) = 0,

and answer the following questions.

(i) Rewrite the ordinary differential equation into the Sturm-Liouville form.

(ii) Are all eigenvalues λ ≥ 0?

(iii) Estimate the large eigenvalues.

Answer 5. (i) Multiplying the differential equation by e2x, we have

e2x
d2φ

dx2
+ 2e2x

dφ

dx
+ λe4xφ = 0.

Using the fact that
d

dx

(
e2x

dφ

dx

)
= e2x

d2φ

dx2
+ 2e2x

dφ

dx
,

we obtain
d

dx

(
e2x

dφ

dx

)
+ λe4xφ = 0,

which is in the Sturm-Liouville form

d

dx

(
p(x)

dφ

dx

)
+ q(x)φ+ λσ(x)φ = 0

with p(x) = e2x, q(x) ≡ 0, and σ(x) = e4x.

(ii) Since the eigenvalue problem is a regular Sturm-Liouville eigenvalue problem, we can
apply the Rayleigh quotient to study its eigenvalues:

λ =
−pφdφ

dx

∣∣∣1
x=0

+
∫ 1

0
p
∣∣dφ
dx

∣∣2 − qφ2 dx∫ 1

0
φ2σ dx

=
2e2|φ(1)|2 +

∫ 1

0
e2x
∣∣dφ
dx

∣∣2 dx∫ 1

0
φ2e4x dx

≥ 0.
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Remark 1 (λ > 0) Indeed, one can also prove that all eigenvalue λ must be positive. The
reasoning is as follows.

Seeking for a contradiction, suppose that λ = 0 is an eigenvalue. Due to the Rayleigh
quotient

0 = λ =
2e2|φ(1)|2 +

∫ 1

0
e2x
∣∣dφ
dx

∣∣2 dx∫ 1

0
φ2e4x dx

,

we know that the corresponding eigenfunction φ must satisfy∫ 1

0

e2x
∣∣∣∣dφdx

∣∣∣∣2 dx = 0 (5)

|φ(1)| = 0 (6)

since both terms in the numerator of the Rayleigh quotient are non-negative. Since the

integrand e2x
∣∣dφ
dx

∣∣2 is non-negative, (5) implies

dφ

dx
≡ 0,

which implies
φ ≡ constant.

By (6),
φ ≡ 0,

which contradicts with the fact that φ is an eigenfunction. Therefore, λ = 0 is not an
eigenvalue. Combining this fact with what we have already proved in part (ii), we know that
all eigenvalues λ > 0.

(iii) According to the WKB theory, when the eigenvalue λ is large, the eigenfunction φ
can be approximated by

φ(x) ≈ (σp)−
1
4 sin

(
√
λ

∫ x

α

(
σ

p

) 1
2

dx0

)
+ · · ·

≈ e−
3x
2 sin

(√
λ

∫ x

α

ex0 dx0

)
+ · · ·

where α is a parameter that will be determined by the boundary condition, and the symbol
· · · represents the lower terms that the reader should ignore at this moment.

Using the boundary condition φ(0) = 0, we have

0 ≈ sin

(√
λ

∫ 0

α

ex0 dx0

)
+ · · · .

If we want to choose α so that the above identity holds and α is independent of λ, then the
only possible choice will be

α = 0.
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That is,

φ(x) ≈ e−
3x
2 sin

(√
λ

∫ x

0

ex0 dx0

)
+ · · · .

Using the boundary condition dφ
dx

(1) + 2φ(1) = 0, we have

0 ≈
√
λe−

1
2
x cos

(√
λ

∫ x

0

ex0 dx0

) ∣∣∣
x=1

+ 2e−
3x
2 sin

(√
λ

∫ x

0

ex0 dx0

) ∣∣∣
x=1

+ · · ·

≈
√
λe−

1
2 cos

(√
λ

∫ 1

0

ex0 dx0

)
+ 2e−

3
2 sin

(√
λ

∫ 1

0

ex0 dx0

)
+ · · · ,

and hence,

tan

(√
λ

∫ 1

0

ex0 dx0

)
≈ −
√
λe

2
+ · · · .

Since λ is very large, the right hand side can be approximated by −∞. Therefore,

√
λ

∫ 1

0

ex0 dx0 ≈ nπ +
π

2

where n is any sufficiently large integer. Hence, the large eigenvalue λ can be approximated
by

λ ≈

(
nπ + π

2∫ 1

0
ex0 dx0

)2

=

(
nπ + π

2

e− 1

)2

for any sufficiently large integer n.
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Question 6. Solve the Laplace equation on the interior of a sphere of radius π centered
at the origin, subject to the boundary condition u(π, θ, φ) = cos(3φ).

Answer 6. Let u(ρ, θ, φ) = f(ρ)g(θ)h(φ), we get the ODE’s∣∣∣∣∣∣∣∣∣
g′′(θ) = −µg(θ)(

sinφ h′(φ)
)′

+
(
λ sinφ− µ

sinφ

)
h(φ) = 0(

ρ2f ′(ρ)
)′ − λf(ρ) = 0

For the equation of g, it comes with the periodic boundary conditions g(−π) = g(π), g′(−π) =
g′(π), so

µm = m2, m = 0, 1, 2, · · ·

and
gm(θ) = Am cosmθ +Bm sinmθ.

Plug in µm = m2 to the equation of h, together with the boundedness requirements |h(0)| <
+∞ and |h(π)| < +∞, we get

λn = n(n+ 1), n ≥ m,

and
h(φ) = Pm

n (cosφ).

Next plug in λn = n(n+1) to the equation of f , and according to boundedness at the origin:
|f(0)| < +∞, we get

f(ρ) = ρn

therefore the general solution is

u(ρ, θ, φ) =
∞∑
m=0

∞∑
n=m

(
Am,nρ

nPm
n (cosφ) cosmθ +Bm,nρ

nPm
n (cosφ) sinmθ

)
Notice the boundary condition u(π, θ, φ) = cos(3φ) doesn’t depend on θ, therefore we throw
away the terms containning θ, i.e., the terms with m ≥ 1, so

u(ρ, θ, φ) =
∞∑
n=0

Anρ
nP 0

n(cosφ)

and

cos(3φ) = u(π, θ, φ) =
∞∑
n=3

Anπ
nP 0

n(cosφ)
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hence by orthogonality, we get

Anπ
n =

∫ π
0

cos(3φ)P 0
n(cosφ) sinφdφ∫ π

0

(
P 0
n(cosφ)

)2
sinφdφ
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Question 7. Solve the following initial and boundary value problem:

∂u

∂t
=
∂2u

∂x2
+ 1− 1

2
x+ tx+ t sin πx for 0 < x < 2, t > 0

u(0, t) = t

u(2, t) = t2

u(x, 0) = 3 sin 4πx.

Answer 7. Let r(x, t) := t− 1
2
tx+ 1

2
t2x, and v(x, t) := u(x, t)− r(x, t). Then v satisfies

∂v

∂t
=
∂2v

∂x2
+ t sin πx

v(0, t) = 0

v(2, t) = 0

v(x, 0) = 3 sin 4πx.

(7)

To solve (7), we apply the eigenfunction expansion

v(x, t) =
∞∑
n=1

an(t) sin
nπx

2
. (8)

Substituting (8) into the equation (7)1, we have

∞∑
n=1

a′n sin
nπx

2
= −

∞∑
n=1

n2π2

4
an sin

nπx

2
+ t sin πx

∞∑
n=1

{
a′n +

n2π2

4
an

}
sin

nπx

2
= t sin πx.

Comparing the coefficients, we have

a′n +
n2π2

4
an =

{
t if n = 2

0 otherwise.

Solving these ordinary differential equations, we obtain

an(t) =

{(
a2(0) + 1

π4

)
e−π

2t + π2t−1
π4 if n = 2

an(0)e−
n2π2

4
t otherwise.

(9)

Now, using the initial condition v(x, 0) = 3 sin 4πx, we have

3 sin 4πx =
∞∑
n=1

an(0) sin
nπx

2
.
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Comparing the coefficients, we have

an(0) =

{
3 if n = 8

0 otherwise.
(10)

Comparing (9) and (10), we finally obtain

an(t) =


1
π4 e
−π2t + π2t−1

π4 if n = 2

3e−16π
2t if n = 8

0 otherwise.

Therefore, by (8),

v(x, t) =

(
1

π4
e−π

2t +
π2t− 1

π4

)
sin πx+ 3e−16π

2t sin 4πx,

and hence,

u(x, t) = v(x, t) + r(x, t)

=

(
1

π4
e−π

2t +
π2t− 1

π4

)
sin πx+ 3e−16π

2t sin 4πx+ t− 1

2
tx+

1

2
t2x.
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Question 8. Use the Fourier transform in x to solve the initial value problem∣∣∣∣∣ ut = 2ux − u,

u(x, 0) = 7x

Answer 8. Apply Fourier transform on x, and denote

U(w, t) = F [u]

then U(w, t) satisfies ∣∣∣∣∣∣
∂

∂t
U(w, t) = −2iwU(w, t)− U(w, t)

U(w, 0) = F [7x]

Therefore we have
U(w, t) = U(w, 0)e(−2iw−1)t = F [7x]e(−2iw−1)t

Apply inverse Fourier transform, we have

u(x, t) = F−1[U(w, t)]

= F−1[F [7x]e(−2iw−1)t]

=
1

2π
F−1[F [7x]] ∗ F−1[e(−2iw−1)t]

=
1

2π
(7x) ∗ F−1[e(−2iw−1)t]

=
1

2π
e−t(7x) ∗ F−1[e−2iwt]

=
1

2π
e−t(7x) ∗ (2πδ−2t(x))

= e−t
∫ ∞
−∞

7(x− y)δ−2t(y) dy

= e−t7(x+ 2t)

= 7(x+ 2t)e−t.
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Question 9. Solve∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= r for r < 2, −π ≤ θ ≤ π

u(2, θ) = 16 cos 3θ.

Answer 9. First of all, let us decompose u := u1 + u2 where u1 and u2 satisfy
∇2u1 = r

u1(2, θ) = 0

|u1(0, θ)| <∞
and


∇2u2 = 0

u2(2, θ) = 16 cos 3θ

|u2(0, θ)| <∞.
Following the computations in subsection 2.5.2, one may solve ∇2u2 = 0 in the disk by

the general solution formula

u2(r, θ) =
∞∑
n=0

Anr
n cosnθ +

∞∑
n=1

Bnr
n sinnθ.

We will skip the derivation of this solution formula here, but you MUST provide the skipped
details in the exam to show your understanding.

Using the boundary condition of u2, we have

16 cos 3θ =
∞∑
n=0

2nAn cosnθ +
∞∑
n=1

2nBn sinnθ.

Comparing coefficients, we have

An =

{
2 if n = 3

0 otherwise
and Bn ≡ 0.

Therefore,
u2(r, θ) = 2r3 cos 3θ.

To solve u1, we observe that due to the symmetry of the equation and boundary condition,
we can assume that u1 is independent of θ, i.e., u1 = u1(r). Therefore, we can solve u1 as
follows:

1

r

∂

∂r

(
r
∂u1
∂r

)
= r

∂

∂r

(
r
∂u1
∂r

)
= r2

r
∂u1
∂r

=
1

3
r3 + c1

∂u1
∂r

=
1

3
r2 +

c1
r

u1 =
1

9
r3 + c1 ln r + c2.
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Using the boundary conditions of u1, we have

c1 = 0 and c2 = −8

9
.

Therefore,

u1(r, θ) =
r3 − 8

9
.

As a result, the final answer is

u(r, θ) = u1(r, θ) + u2(r, θ)

=
r3 − 8

9
+ 2r3 cos 3θ.

18


