
Practice problems for the First Midterm,
Math 241, Fall 2013

Question 1. Let u(x, y) be a function of two variables satisfying the Laplace equation

uxx + uyy = 0.

Suppose that u is a radial function, that is: in polar coordinates, the function u depends on
the coordinate r but is indepenendant of the coordinate θ. Suppose also that u(1, 0) = 0
and u(0, e) = 1/2. What is the value of u(e2, 0)?

(A) e/2 (B) e+ 1 (C) 1
(D) e (E) e2 (F) e2 + 1

Answer 1. In polar coordinates (r, θ) the two dimensional Laplace equation reads

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0.

If u is a function that only depends on r, then ∂2u/∂θ = 0. Hence u(r) is a solution of the
ODE BVP: ∣∣∣∣∣∣∣∣∣∣

1

r

d

dr

(
r
du

dr

)
= 0,

u(1) = 0,

u(e) = 1/2.

Multiplying both sides of the equation by r and integrating we get∫
d

dr

(
r
du

dr

)
dr = a

for some constant a. Thus du/dr = a/r and integrating once again we get

u(r) = a ln(r) + b,
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for some constants a and b. Now from the boundary conditions we get

0 = a ln(1) + b = b, and
1

2
= a ln(e) = a.

Hence

u(r) =
1

2
ln(r),

and since the point (e2, 0) has polar coordinates r = e2, θ = 0 we get

u(e2, 0) =
1

2
ln(e2) = 1.

The correct answer is (C). 2

Question 2. Heat is flowing through a thin wire of length 2 meters, so that one end of
the wire is at x = 0 and the other end is at x = 2. Let u(x, t) be the temeperature at point
x and time t, and suppose u(x, t) satisfies the inhomogeneous heat equation

ut =
1

4
uxx + 4− x2, for 0 < x < 2, and t > 0.

If the boundary conditions are

u(0, t) = 0 and ux(2, t) = 0,

then what is
lim
t→+∞

u(2, t),

that is what is the equilibrium temperature at the insulated end of the wire?

(A) 0 (B) 1/2 (C) 16
(D) 4 (E) 8/3 (F) 6

Answer 2. Since we are looking for a value of the equilibrium temperature we can
solve the problem by finding the equilibrium solution and evaluating it. The equilibrium
temperature U(x) := limt→+∞ u(x, t) will satisfy

1

4
U”(x) + 4− x2, for0 ≤ x ≤ 2

and the boundary conditions

U(0) = 0 and U ′(2) = 0.
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Integrating twice we get

U(x) = −8x2 +
1

3
x4 + c1x+ c2,

where c1 and c2 are arbitrary constants. The boundary condition U(0) = 0 implies c2 = 0,
while U ′(2) = 0 gives

0 = U ′(2) = −32 +
32

3
+ c1,

or c1 = 64/3.
Therefore

U(x) = −8x2 +
1

3
x4 +

64

3
x

and

lim
t+∞

u(2, t) = U(2) = −32 +
16

3
+

128

3
= 16.

The correct answer is (C).

Different solution: We can find all solutions to the given BVP. The heat equation is
inhomogeneous and so, before we can use separation of variables, we have to reduce to the
homogeneous case.

For this it suffices to find some particular solution s(x, t) of the inhomogeneous equation.
Indeed if s is such solution, and if u(x, t) is the function we are interested in, then for the
difference v(x, t) = u(x, t)− s(x, t) we get

vt = ut − st =

(
1

4
uxx + 4− x2

)
−
(

1

4
sxx + 4− x2

)
=

1

4
(uxx − sxx) =

1

4
vxx.

In other words v will satisfy the homogeneous equation

vt =
1

4
vxx,

and the boundary conditions

v(0, t) = −s(0, t) and vx(2, t) = −sx(2, t).

The right hand side of the inhomogeneous equation depends on x only, which suggests that
we should look for s(x, t) which depends only on x. If s = s(x), then the inhomogeneous
equation reads

0 =
1

4
s′′(x) + 4− x2.

Integrating once we get

s′(x) =

∫
(−16 + 4x2)dx = −16x+

4

3
x3 + c,
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and integrating a second time we get

s(x) =

∫ (
−16x+

4

3
x3 + c

)
dx = −8x2 +

1

3
x4 + cx+ d.

For the separation of variables we need homogeneous boundary conditions so we choose c
and d so that s(0) = s′(2) = 0. This gives d = 0, c = 64/3 and

s(x) = −8x2 +
1

3
x4 +

64

3
x.

With such a choice of particular solution the function v will satisfy∣∣∣∣∣∣∣∣∣
vt =

1

4
vxx,

v(0, t) = 0,

vx(2, t) = 0.

We first look for separated solutions

v(t, x) = G(t)ϕ(x).

Substituting in the equation we get

dG

dt
· ϕ =

1

4
G
d2ϕ

dx2
,

and so we will have
4

G

dG

dt
=

1

ϕ

d2ϕ

dx2
= µ

for some constant µ.
Furthermore, the boundary conditions imply ϕ(0) = ϕ′(2) = 0 and so ϕ must solve∣∣∣∣∣∣∣

ϕ
′′

= λϕ,

ϕ(0) = 0,

ϕ′(2) = 0.

Considering the various possibilities for λ we se that we must have

λ = −
(

(2n+ 1)π

4

)2

, n = 0, 1, 2, . . .

with the corresponding ϕ given by

ϕ(x) = c · sin
(

(2n+ 1)πx

4

)
.
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By the principle of superposition we conclude that

v(x, t) =
∞∑
n=0

an sin

(
(2n+ 1)πx

4

)
exp

(
−
(

(2n+ 1)π

4

)2
t

4

)
,

and so

v(2, t) =
∞∑
n=0

an sin

(
(2n+ 1)π

2

)
exp

(
−
(

(2n+ 1)π

4

)2
t

4

)

=
∞∑
n=0

an(−1)n exp

(
−
(

(2n+ 1)π

4

)2
t

4

)
.

But for every n ≥ 0 we have

lim
t→+∞

exp

(
−
(

(2n+ 1)π

4

)2
t

4

)
= 0,

so
lim
t→+∞

v(2, t) = 0,

and hence
lim
t→+∞

u(2, t) = lim
t→+∞

(v(2, t) + s(2)) = 0 + 16 = 16.

The correct answer is (C). 2

Question 3. Let u(x, t) be the solution of the equation:

ut = uxx for 0 < x < 4 and t > 0

satisfying the boundary conditions

u(0, t) = 0 and u(4, t) = 0

u(x, 0) = 3 sin 8πx

What is u
(

3
16
, 3
)
?

(A) 3e−π
2

(B) 3e−64π2
(C) 3e−192π2

(D) −3e−π
2

(E) −3e−64π2
(F) −3e−192π2
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Answer 3. This is a heat equation with homogeneous Dirichlet boundary conditions at
the ends of the interval. From the separation of variables analysis we carried out in class,
we know that any function of the form

u(x, t) =
+∞∑
n=1

an sin
(nπx

4

)
exp

(
−
(nπ

4

)2

t

)
will solve the equation and will satisfy the homogeneous boundary conditions. Thus we only
need to choose the coefficients an so that

3 sin 8πx = u(x, 0) =
+∞∑
n=1

an sin
(nπx

4

)
.

Since the Fourier coefficients are uniquely determined by the orthogonality of the sine func-
tions and sin 8πx appears in the right hand side as the term corresponding to n = 32, we
must have that an = 0 for n 6= 32, and a32 = 3.

In other words
u(x, t) = 3 sin(8πx)e(−64π2t).

Evaluating at x = 3/16, t = 3 we get

u

(
3

16
, 3

)
= 3 sin

(
3π

2

)
e−192π2

= −3e−192π2

.

The correct answer is (F). 2

Question 4. If, for 0 ≤ x ≤ 5, we have

+∞∑
n=1

bn sin
(nπx

5

)
= 5x− x2,

what is the value of b3?

(A)
2

9π2
(B)

20

9π2
(C)

200

27π3

(D)
1000

27π3
(E)

100

81π4
(F)

2000

81π4
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Answer 4. From the formula for the coefficients of the Fourier sine series we compute

b3 =
2

5

∫ 5

0

(5x− x2) sin

(
3πx

5

)
dx

= − 2

3π

∫ 5

0

(5x− x2)d cos

(
3πx

5

)

= − 2

3π
(5x− x2) cos

(
3πx

5

) ∣∣∣∣5
0

+
2

3π

∫ 5

0

cos

(
3πx

5

)
d(5x− x2)

=
2

3π

∫ 5

0

cos

(
3πx

5

)
(5− 2x)dx

=
10

9π2

∫ 5

0

(5− 2x)d sin

(
3πx

5

)

=
10

9π2
(5− 2x) sin

(
3πx

5

) ∣∣∣∣5
0

− 10

9π2

∫ 5

0

sin

(
3πx

5

)
d(5− 2x)

=
20

9π2

∫ 5

0

sin

(
3πx

5

)
dx

= − 100

27π3
cos

(
3πx

5

)∣∣∣∣5
0

= − 100

27π3
((−1)− 1)

=
200

27π3
.

The correct answer is (C). 2

Question 5. Suppose the heat flux at every point of the outer circle of an annulus with
inner radius R1 = 2 and outer radius R2 = 5 points directly out of the annulus and has
magnitude 4. Also, suppose that at every point of the inner circle of the annulus the flux
points directly into the annulus and has the same magnitude all around the circle. What
must the magnitude of this latter flux be so that the temperature of the annulus will be at
equilibrium? (In other words, so that there is a solution of the Laplace equation with these
flux values.)
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(A) −4 (B) 0 (C) 4
(D) −10 (E) 10 (F) 8

Answer 5. In polar coordinates a point (r, θ) belongs to the annulus if 2 ≤ r ≤ 5 and
−π ≤ θ ≤ π. Since at the points of the outer circle r = 5 the heat flux points outside and in
the radial direction it follows that the heat flux is computed by the partial derivative ∂u/∂r.
Similarly, at the points of the inner circle r = 2, the heat flux points inside the annulus in
the radial direction, and so it is again computed by the partial derivative ∂u/∂r. Write c
for the constant value of the heat flux at the points of the inner circle. Then the boundary
conditions given by the flux conditions are

ur(5, θ) = 4, ur(2, θ) = c.

Taking into account the fact that the temperature and the heat flux have to be continuous
inside the annulus we get the following boundary value problem on u(r, θ):∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0

u(r,−π) = u(r, π)

uθ(r,−π) = uθ(r, π)

ur(5, θ) = 4

ur(2, θ) = c

(1)

We look for a product solution
u(r, θ) = G(r)ϕ(θ).

The variables in the PDE separate after dividing with (1/r2)Gϕ, and we get

r

G

d

dr

(
r
dG

dr

)
= − 1

ϕ

d2ϕ

dθ2
= λ.

Requiring that this product solution of the Laplace equation satisfies the periodic boundary
conditions in (1) gives the ODE boundary value problem∣∣∣∣∣∣∣∣∣∣∣∣

d2ϕ

dθ2
= −λϕ,

ϕ(−π) = ϕ(π),

dϕ

dθ
(−π) =

dϕ

dθ
(π).

(2)

This problem has a solution only when λ = n2, n = 0, 1, 2, . . . Furthermore
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• if ϕ is a solution of (2) corresponding to λ = n2 6= 0, then ϕ is a linear combination of
cos(nθ) and sin(nθ);

• if ϕ is a solution of (2) corresponding to λ = 0, then ϕ is constant.

If we also require that the product solution u = G(r)ϕ(θ) satisfies the remaining conditions
ur(5, θ) = 4 and ur(2, θ) = c, then we have to use a ϕ(θ) which is constant, i.e. we have to
be in the case λ = 0.

For λ = 0, the equation on G becomes the separable ODE

r

G

d

dr

(
r
dG

dr

)
= 0.

Dividing both sides by r/G and integrating we get

G(r) = c1 + c2 ln(r).

Thus for λ = 0 we get a product solution u(r, θ) = c1 + c2 ln(r) of the Laplace equation
which by construction satisfies the homogeneous boundary conditions u(r,−π) = u(r, π),
uθ(r,−π) = uθ(r, π). To satisfy the boundary condition ur(5, θ) = 4 we must choose c1 and
c2 so that

4 = ur(5, θ) =
c2
5
.

This gives c2 = 20 and so u(r, θ) = c1 + 20 ln(r).
In particular

ur(r, θ) =
20

r

and so
c = ur(2, θ) = 10.

The correct answer is (E).

Different solution: We can use conservation of energy to determine the value of c. Since
the equilibrium temeperature u satisfies the Laplace equation ∇2u = 0 on the annulus
R = {(r, θ) | 2 ≤ r ≤ 5, −π ≤ θ ≤ π} we have that∫∫

R

(
∇2u

)
dA = 0.
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Computing this integral in polar coordinates we get

0 =

∫∫
R

(
∇2u

)
dA

=

∫ π

θ=−π

∫ 5

r=2

(
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2

)
rdrdθ

=

∫ π

θ=−π

[∫ 5

r=2

(
1

r

∂

∂r

(
r
∂u

∂r

))
rdr

]
dθ +

∫ 5

r=2

[∫ π

θ=−π

1

r2

∂2u

∂θ2
dθ

]
rdr

=

∫ π

θ=−π

[∫ 5

r=2

∂

∂r

(
r
∂u

∂r

)
dr

]
dθ +

∫ 5

r=2

[∫ π

θ=−π

∂2u

∂θ2
dθ

]
1

r
dr

=

∫ π

θ=−π

[(
r
∂u

∂r

)∣∣∣∣5
r=2

]
dθ +

∫ 5

r=2

[
∂u

∂θ

∣∣∣∣π
θ=−π

]
1

r
dr

=

∫ π

θ=−π
[5ur(5, θ)− 2ur(2, θ)] dθ +

∫ 5

r=2

[uθ(r, π)− uθ(r,−π)]
1

r
dr

=

∫ π

θ=−π
(20− 2c) dθ +

∫ 5

r=2

0 · 1

r
dr

= 2π(20− 2c).

Therefore we must have c = 10 and the correct answer is (E). 2
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Question 6.

(a) Compute the Fourier cosine series for the function f(x) = x2 on the interval [0, π].

(b) Fully simplify your answer - the formula for the coefficients should not involve sines or
cosines.

(c) Does the Fourier cosine series converge to the function f at the point x = 0? Justify
your answer.

Answer 6. (a) The Fourier cosine series of f(x) = x2 is

∞∑
n=0

an cos(nx), (3)

where

a0 =
1

π

∫ π

0

x2dx,

an =
2

π

∫ π

0

x2 cos(nx)dx, for n > 0.

(b) To simplify the formulas for the coefficients we compute the integrals. For n = 0 we
have

a0 =
1

π

∫ π

0

x2dx =
π2

3
,

and for n > 0 we have

=
2

nπ

∫ π

0

x2d sin(nx)

=
2

nπ
x2 sin(nx)

∣∣∣∣π
0

− 4

nπ

∫ π

0

x sin(nx)dx

=
4

n2π

∫ π

0

xd cos(nx)

=
4

n2π
xd cos(nx)

∣∣∣∣π
0

=
4

n2π
πd cos(nπ)

=
(−1)n4

n2
.
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Thus the Fourier cosine series of x2 is

π2

3
+
∞∑
n=1

(−1)n4

n2
cos(nx).

(c) Yes, the Fourier series of f(x) = x2 converges to f(0) = 0 at x = 0. This follows from
the convergence theorem and the fact that the even extension of x2 on [−π, π] is continuous
at x = 0. The last statement is clear since the even extension of f is given by the formula
f(x) = x2 for all −π ≤ x ≤ π. 2

Question 7. Consider the following BVP posed for 0 < x < L and t > 0:

PDE: ut = uxx + 2ux + u

BC: u(0, t) = 0, and u(L, t) + ux(L, t) = 0

Apply the method of separation of variables to determine what ordinary differential equations
are implied for functions of x and t and what boundary conditions (if any) are necessary for
each of those ODEs. You do not need to solve these ODEs.

Answer 7. We look for a special product solution of the form u(x, t) = G(t)ϕ(x). Sub-
stituting the product in the PDE we get

dG

dt
ϕ = G

d2ϕ

dx2
+ 2G

dϕ

dx
+Gϕ.

Dividing both sides by Gϕ separates the variables:

1

G

dG

dt
=

1

ϕ

(
d2ϕ

dx2
+ 2

dϕ

dx
+ ϕ

)
.

Since the left hand side in this equation is a function of t only, the right hand side is a
function of t only, and x and t are independent variables, it follows that both sides must be
constant. In other words, there exists some constant µ so that

1

G

dG

dt
=

1

ϕ

(
d2ϕ

dx2
+ 2

dϕ

dx
+ ϕ

)
= µ.

These gives two ODE - one for G(t) and one for ϕ(x). Explicitly the ODE are:

dG

dt
= µG

d2ϕ

dx2
+ 2

dϕ

dx
+ (1− µ)ϕ = 0.
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The boundary conditions on u give boundary conditions for ϕ(x). Indeed, to have u(0, t) = 0
for all t > 0 we must to have G(t)ϕ(0) = 0 for all t > 0. Thus we will either have ϕ(0) = 0
or G(t) = 0 for all t > 0. But if G(t) is identically zero, then u(x, t) will be identically zero,
i.e.will be a trivial solution. Thus, to have a non-trivial solution we must have ϕ(0) = 0.
Similarly, to have u(L, t) + ux(L, t) = 0 we must have G(t)(ϕ(L) + ϕ′(L)) = 0, and so for a
non-trivial solution we must have ϕ(L) + ϕ′(L) = 0. In summary, for G(t) we get the ODE

G′(t) = µG(t)

with no initial or boundary conditions, while for ϕ(x) we get the BVP∣∣∣∣∣∣∣
ϕ” + 2ϕ+ (1− µ)ϕ = 0

ϕ(0) = 0

ϕ(L) + ϕ′(L) = 0.

2

Question 8. Show that for 0 < x < 1 and t > 0, the function

u(x, t) = e−
x2

4t+4 (t+ 1)−
1
2

is a solution of the heat equation
ut = uxx.

Give one example of a homogeneous boundary condition that this solution satisfies on the
specified domain.

Answer 8. We compute

ut =
∂

∂t

(
e−

x2

4t+4 (t+ 1)−
1
2

)
=

x2

4(t+ 1)2
e−

x2

4t+4 (t+ 1)−
1
2 + e−

x2

4t+4 ·
(
−1

2

)
· (t+ 1)−

3
2

=
x2

4
e−

x2

4t+4 (t+ 1)−
5
2 − 1

2
e−

x2

4t+4 (t+ 1)−
3
2 .

(4)
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and

uxx =
∂

∂x

(
∂

∂x

(
e−

x2

4t+4 (t+ 1)−
1
2

))
=

∂

∂x

(
− 2x

4t+ 4
e−

x2

4t+4 (t+ 1)−
1
2

)
= − 2

4t+ 4
e−

x2

4t+4 (t+ 1)−
1
2 +

4x2

(4t+ 4)2
e−

x2

4t+4 (t+ 1)−
1
2

= −1

2
e−

x2

4t+4 (t+ 1)−
3
2 +

x2

4
e−

x2

4t+4 (t+ 1)−
5
2 .

(5)

Together (4) and (5) show that ut = uxx, i.e. that u satisfies the heat equation.
Also, in the first step in (5) we got that

ux(x, t) = − 2x

4t+ 4
e−

x2

4t+4 (t+ 1)−
1
2 .

Thus the heat flux at x = 0 vanishes, i.e. u(x, t) satisfies the homogeneous boundary
condition ux(0, t) = 0 for all t ≥ 0. 2
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