1.

- (a) Let $T: V \to W$ be a linear map between finite dimensional vector spaces over a field \mathbb{K} . Let $T^{\vee}: W^{\vee} \to V^{\vee}$ be the dual map, i.e. $T^{\vee}(f) = f \circ T$ for any linear function $f: W \to \mathbb{K}$. Show that the rank of T is equal to the rank of T^{\vee} .
- (b) Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ be an $m \times n$ matrix with entries in \mathbb{K} . Show that the rank of A equals the rank of A^T .

2. Let $T: V \to W$ be a linear map between finite dimensional vector spaces over a field \mathbb{K} and let $T^{\vee}: W^{\vee} \to V^{\vee}$ be its dual.

- (a) Show that T is injective if and only if T^{\vee} is surjective.
- (b) Show that T is surjective if and only if T^{\vee} is injective.

3. Let $V = \text{Pol}_n$ be the vector space of polynomials of degree $\leq n$ with coefficients in \mathbb{R} . For every $a = 0, 1, \ldots, n$ consider the linear function

$$\gamma^{a}: \qquad V \longrightarrow \mathbb{R},$$
$$p(x) \longrightarrow \frac{d^{a}p}{dx^{a}}(0)$$

- (a) Show that $\{\gamma^0, \gamma^1, \dots, \gamma^n\}$ is a basis of the dual space V^{\vee} .
- (b) Find the unique basis of V for which $\{\gamma^0, \gamma^1, \dots, \gamma^n\}$ is the dual basis.

4. Let V be a finite dimensional vector space over \mathbb{K} and let V^{\vee} be its dual space. Suppose $U \subset V$ is any subset and define a subset $U^{\perp} \subset V^{\vee}$ by setting

$$U^{\perp} = \{ f \in V^{\vee} \mid f(x) = 0 \text{ for all } x \in U \}.$$

- (a) Show that $U^{\perp} \subset V^{\vee}$ is always a subspace.
- (b) Suppose that $U \subset V$ is a subspace. Show that $\dim U + \dim U^{\perp} = \dim V$.