1.

(a) Let $T: V \rightarrow W$ be a linear map between finite dimensional vector spaces over a field \mathbb{K}. Let $T^{\vee}: W^{\vee} \rightarrow V^{\vee}$ be the dual map, i.e. $T^{\vee}(f)=f \circ T$ for any linear function $f: W \rightarrow \mathbb{K}$. Show that the rank of T is equal to the rank of T^{\vee}.
(b) Let $A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ be an $m \times n$ matrix with entries in \mathbb{K}. Show that the rank of A equals the rank of A^{T}.
2. Let $T: V \rightarrow W$ be a linear map between finite dimensional vector spaces over a field \mathbb{K} and let $T^{\vee}: W^{\vee} \rightarrow V^{\vee}$ be its dual.
(a) Show that T is injective if and only if T^{\vee} is surjective.
(b) Show that T is surjective if and only if T^{\vee} is injective.
3. Let $V=\mathrm{Pol}_{n}$ be the vector space of polynomials of degree $\leq n$ with coefficients in \mathbb{R}. For every $a=0,1, \ldots, n$ consider the linear function

$$
\begin{aligned}
& \vartheta^{a}: \quad V \longrightarrow \mathbb{R}, \\
& p(x) \longrightarrow \frac{d^{a} p}{d x^{a}}(0) .
\end{aligned}
$$

(a) Show that $\left\{\gamma^{0}, \gamma^{1}, \ldots, \gamma^{n}\right\}$ is a basis of the dual space V^{\vee}.
(b) Find the unique basis of V for which $\left\{\gamma^{0}, \gamma^{1}, \ldots, \gamma^{n}\right\}$ is the dual basis.
4. Let V be a finite dimensional vector space over \mathbb{K} and let V^{\vee} be its dual space. Suppose $U \subset V$ is any subset and define a subset $U^{\perp} \subset V^{\vee}$ by setting

$$
U^{\perp}=\left\{f \in V^{\vee} \mid f(x)=0 \text { for all } x \in U\right\} .
$$

(a) Show that $U^{\perp} \subset V^{\vee}$ is always a subspace.
(b) Suppose that $U \subset V$ is a subspace. Show that $\operatorname{dim} U+\operatorname{dim} U^{\perp}=\operatorname{dim} V$.

