MATH 314 - final exam practice problems, part 1

1. Let X be a finite set with n elements and let \mathbb{K} be a field. Consider the n-dimensional vector space $V=\operatorname{Fun}(X, \mathbb{K})$. Let $0<m \leq n$ and suppose $U \subset V$ is a subspace of dimension m. Show that there exists a subset $Y \subset X$ of m elements so that the restriction map

$$
\begin{aligned}
\text { res }: & U \longrightarrow \operatorname{Fun}(Y, \mathbb{K}) \\
& f \longrightarrow f_{\mid Y}
\end{aligned}
$$

is an isomorphism of vector spaces.
2. Let $V=\operatorname{Pol}_{n}(\mathbb{R})$ be the vector space of all polynomials of degree $\leq n$ with real coefficients. Let $T: V \rightarrow V$ be the linear map $T=\operatorname{id}_{V}-\frac{d^{n}}{d x^{n}}$.
(a) Show that T is invertible.
(b) Find the inverse of T as a combination of id_{V} and the powers of $\frac{d}{d x}$.
(c) Find the Jordan canonical form of T.
3. Consider the vectors

$$
\mathbf{x}_{1}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{x}_{3}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right), \quad \mathbf{x}_{4}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right), \quad \text { in } \mathbb{R}^{4}
$$

Let $V=\operatorname{span}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $W=\operatorname{span}\left(\mathbf{x}_{3}, \mathbf{x}_{4}\right)$. Is it true that $\mathbb{R}^{4}=V \oplus W$? Justify your answer.
4. Find the determinant of the $n \times n$ matrix

$$
A=\left(\begin{array}{llllll}
x & y & 0 & \cdots & 0 & 0 \\
0 & x & y & \cdots & 0 & 0 \\
0 & 0 & x & \cdots & 0 & 0 \\
& & & \cdots & & \\
0 & 0 & 0 & \cdots & x & y \\
y & 0 & 0 & \cdots & 0 & x
\end{array}\right) .
$$

5. True or false. Give a reason or a counter example.
(a) A complex $n \times n$ matrix A is invertible if and only the its minimal polynomial has constant term equal to zero.
(b) If $F: V \rightarrow V$ is a projector operator on a finite dimensional real vector space, then F has only real eigenvalues.
(c) The determinant of a permutation matrix is always positive.
(d) The product of two permuation matrices is a permutation matrix.
(e) If the Jordan canonical form of a 5×5 complex matrix A has only one Jordan block, then A has an eigenvalue of geometric multiplicity 5 .
6. Cconsider the vectors
$\mathbf{a}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right), \quad \mathbf{a}_{2}=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), \quad \mathbf{a}_{3}=\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right), \quad$ and $\quad \mathbf{b}_{1}=\left(\begin{array}{c}1 \\ 2 \\ 2\end{array}\right), \quad \mathbf{b}_{2}=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right), \quad \mathbf{b}_{3}=\left(\begin{array}{c}1 \\ 1 \\ -3\end{array}\right)$.
Set $U=\operatorname{span}\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right)$ and $V=\operatorname{span}\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right)$. Find bases of the subspaces $U+V$ and $U \cap V$ in \mathbb{R}^{3}.
7. Show that if $N \in \operatorname{Mat}_{5 \times 5}(\mathbb{C})$ is a nilpotent matrix of exponent 5 , then there is no 5×5 matrix A satisfying $A^{2}=N$.
8. Compute A^{m} for the matrix

$$
A=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 1 & -1
\end{array}\right)
$$

9. Let A be a complex $n \times n$ matrix. Show that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{trace}(A)}$.
10. Let V be an n-dimensional complex vector space and let $T: V \rightarrow V$ be a linear operator of rank one. Show that $T^{2}=c T$ for some complex number c.
