MATH 314 - final exam practice problems, part 2

11. The numbers 20604, 53227, 25755, 20927 and 289 are all divisible by 17 . Show that the following determinant is also divisible by 17 .

$$
\left|\begin{array}{lllll}
2 & 0 & 6 & 0 & 4 \\
5 & 3 & 2 & 2 & 7 \\
2 & 5 & 7 & 5 & 5 \\
2 & 0 & 9 & 2 & 7 \\
0 & 0 & 2 & 8 & 9
\end{array}\right|
$$

12. Let $n \geq 2$. Consider the operators

$$
\frac{d}{d x}, \frac{d^{2}}{d x^{2}}: \operatorname{Pol}_{n}(\mathbb{R}) \rightarrow \operatorname{Pol}_{n}(\mathbb{R})
$$

True or False. Give a reason or a counter example.
(a) The operators $d / d x$ and $d^{2} / d x^{2}$ have the same invariant subspaces in $\operatorname{Pol}_{n}(\mathbb{R})$.
(b) The operators $d / d x$ and $d^{2} / d x^{2}$ have the same eigenvectors in $\operatorname{Pol}_{n}(\mathbb{R})$.
(c) The $d / d x$ and $d^{2} / d x^{2}$ have the same eigenvalues.
13. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ and $B \in \operatorname{Mat}_{m \times m}(\mathbb{C})$ be fixed complex matrices. Consider the vector space $V=\operatorname{Mat}_{m \times n}(\mathbb{C})$ and the linear operator

$$
T: V \rightarrow V, \quad T(X)=B X A
$$

(a) Let $\mathbf{b} \in \mathbb{C}^{m}$ be an eigenvector of B, and let $\mathbf{a} \in \mathbb{C}^{n}$ be an eigenvector of A^{T}. Show that the $m \times n$ matrix $X=\mathbf{b} \cdot \mathbf{a}^{T}$ is an eigenvector for T.
(b) Suppose A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and B has distinct eigenvalues μ_{1}, \ldots, μ_{m}. Find all eigenvalues of T counting multiplicities.
(c) Suppose A has (not necessarily distinct) eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ counting multiplicities, and suppose B has (not necessarily distinct) eigenvalues μ_{1}, \ldots, μ_{m} counting multiplicities. Find all eigenvalues of T counting multiplicities.
Hint: Show that you can find sequences of matrices $\left\{A_{k}\right\}_{k=1}^{\infty} \subset \operatorname{Mat}_{n \times n}(\mathbb{C})$, $\left\{B_{\ell}\right\}_{\ell=1}^{\infty} \subset \operatorname{Mat}_{m \times m}(\mathbb{C})$, so that all A_{k} and B_{ℓ} have distinct eigenvalues and $\lim _{k \rightarrow \infty} A_{k}=A, \lim _{\ell \rightarrow \infty} B_{\ell}=B$. Use this fact together with part (b).
14. Consider the circulant matrix

$$
A=\left(\begin{array}{cccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-2} & a_{n-1} \\
a_{n-1} & a_{0} & a_{1} & \cdots & a_{n-3} & a_{n-2} \\
\vdots & \vdots & \ddots & & \vdots & \vdots \\
\vdots & \vdots & & \ddots & \vdots & \vdots \\
a_{2} & a_{3} & a_{4} & \cdots & a_{0} & a_{1} \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n-1} & a_{0}
\end{array}\right)
$$

associated with n numbers $a_{0}, a_{1}, \ldots, a_{n-1}$.
(a) Let $u_{1}, u_{2}, \ldots, u_{n}$ be the n-th roots of unity, that is the n distinct roots of the polynomial $t^{n}-1$. Compute the product $A W$, where W is the Wandermonde matrix

$$
W=\left(\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
u_{1} & u_{2} & u_{3} & \cdots & u_{n-1} & u_{n} \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
u_{1}^{n-2} & u_{2}^{n-2} & u_{3}^{n-2} & \cdots & u_{n-1}^{n-2} & u_{n}^{n-2} \\
u_{1}^{n-1} & u_{2}^{n-1} & u_{3}^{n-1} & \cdots & u_{n-1}^{n-1} & u_{n}^{n-1}
\end{array}\right) .
$$

(b) Use (a) and the multiplicativity of the determinat to show that $\operatorname{det}(A)=f\left(u_{1}\right) f\left(u_{2}\right) \cdots f\left(u_{n}\right)$ where $f(t)=a_{0}+a_{1} t+a_{1} t^{2}+\cdots+a_{n-1} t^{n-1}$.
(c) Find the eigenvalues and eigenvectors of A.
15. True or false. Give a reason or a counter example.
(a) If $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$, and \mathbf{v} is an eigenverctor of A with eigenvalue λ, then \mathbf{v} is an eigenvector of e^{A} with eigenvalue e^{λ}.
(b) If $F: V \rightarrow V$ is an operator on a finite dimensional complex vector space, then every F-invariant subspace contains an eigenvector for F.
(c) Every permutation matrix in $\operatorname{Mat}_{n \times n}(\mathbb{C})$ is diagonalizable.
(d) If $P \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ is a permutation matrix, then every eigenvalue of P is an eigenvalue of P^{-1}.
(e) If a complex 5×5 matrix A has two distinct eigenvalues, then A must have an eigenvalue with geometric multiplicity 2.
16. Consider the subspaces in \mathbb{R}^{4} :

$$
U=\operatorname{span}\left(\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
1 \\
3
\end{array}\right)\right), \quad \text { and } \quad V=\operatorname{span}\left(\left(\begin{array}{l}
1 \\
2 \\
0 \\
2
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1 \\
2
\end{array}\right),\left(\begin{array}{l}
3 \\
1 \\
3 \\
1
\end{array}\right)\right)
$$

Find bases of the subspaces $U+V$ and $U \cap V$ in \mathbb{R}^{4}.
17. Let V be a finite dimensional real vector space and let $T: V \rightarrow V$ be a linear operator.
(a) Suppose that $T-\mathrm{id}_{V}$ is nilpotent. Show that the operator T is invertible.
(b) Suppose that there existes a polynomial $f(t) \in \operatorname{Pol}(\mathbb{R})$ such that $f(0) \neq 0$ and such that $f(T)=0$. Show that the operator T is invertible.
18. Solve the initial value problem

$$
\begin{array}{|l|l}
\frac{d x_{1}}{d t}=3 x_{1}+2 x_{2}-3 x_{3}, & x_{1}(0)=1 \\
\frac{d x_{2}}{d t}=4 x_{1}+10 x_{2}-12 x_{3}, & x_{2}(0)=-1 \\
\frac{d x_{3}}{d t}=3 x_{1}+6 x_{2}-7 x_{3} . & x_{3}(0)=0
\end{array}
$$

19.

(a) Find the Jordan canonical form of the matrix $J_{n}(0)^{2}$.
(b) Classify all nilpotent 5×5 complex matrices A that have a square root.
(c) Classify all nilpotent 6×6 complex matrices that have a square root.
20. Let V be an n-dimensional space over \mathbb{C} and let $\Gamma \subset L(V, V)$ be a set of commuting operators. Show that there exists a vector $\mathbf{v} \in V$ which is an eigenvector for all $T \in \Gamma$.

