MATH 314 - final exam practice problems, part 2

11. The numbers 20604, 53227, 25755, 20927 and 289 are all divisible by 17. Show that the following determinant is also divisible by 17.

- 12. Let $n \ge 2$. Consider the operators

$$\frac{d}{dx}, \frac{d^2}{dx^2} : \operatorname{Pol}_n(\mathbb{R}) \to \operatorname{Pol}_n(\mathbb{R}).$$

True or False. Give a reason or a counter example.

- (a) The operators d/dx and d^2/dx^2 have the same invariant subspaces in $\operatorname{Pol}_n(\mathbb{R})$.
- (b) The operators d/dx and d^2/dx^2 have the same eigenvectors in $\text{Pol}_n(\mathbb{R})$.
- (c) The d/dx and d^2/dx^2 have the same eigenvalues.

13. Let $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ and $B \in \operatorname{Mat}_{m \times m}(\mathbb{C})$ be fixed complex matrices. Consider the vector space $V = \operatorname{Mat}_{m \times n}(\mathbb{C})$ and the linear operator

$$T: V \to V, \qquad T(X) = BXA.$$

- (a) Let $\mathbf{b} \in \mathbb{C}^m$ be an eigenvector of B, and let $\mathbf{a} \in \mathbb{C}^n$ be an eigenvector of A^T . Show that the $m \times n$ matrix $X = \mathbf{b} \cdot \mathbf{a}^T$ is an eigenvector for T.
- (b) Suppose A has distinct eigenvalues $\lambda_1, \ldots, \lambda_n$ and B has distinct eigenvalues μ_1, \ldots, μ_m . Find all eigenvalues of T counting multiplicities.
- (c) Suppose A has (not necessarily distinct) eigenvalues $\lambda_1, \ldots, \lambda_n$ counting multiplicities, and suppose B has (not necessarily distinct) eigenvalues μ_1, \ldots, μ_m counting multiplicities. Find all eigenvalues of T counting multiplicities. **Hint:** Show that you can find sequences of matrices $\{A_k\}_{k=1}^{\infty} \subset \operatorname{Mat}_{n \times n}(\mathbb{C})$, $\{B_\ell\}_{\ell=1}^{\infty} \subset \operatorname{Mat}_{m \times m}(\mathbb{C})$, so that all A_k and B_ℓ have distinct eigenvalues and $\lim_{k \to \infty} A_k = A$, $\lim_{\ell \to \infty} B_\ell = B$. Use this fact together with part (b).

14. Consider the **circulant** matrix

$$A = \begin{pmatrix} a_0 & a_1 & a_2 & \cdots & a_{n-2} & a_{n-1} \\ a_{n-1} & a_0 & a_1 & \cdots & a_{n-3} & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_0 & a_1 \\ a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_0 \end{pmatrix}$$

associated with n numbers $a_0, a_1, \ldots, a_{n-1}$.

(a) Let u_1, u_2, \ldots, u_n be the *n*-th roots of unity, that is the *n* distinct roots of the polynomial $t^n - 1$. Compute the product AW, where W is the Wandermonde matrix

$$W = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ u_1 & u_2 & u_3 & \cdots & u_{n-1} & u_n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ u_1^{n-2} & u_2^{n-2} & u_3^{n-2} & \cdots & u_{n-1}^{n-2} & u_n^{n-2} \\ u_1^{n-1} & u_2^{n-1} & u_3^{n-1} & \cdots & u_{n-1}^{n-1} & u_n^{n-1} \end{pmatrix}.$$

- (b) Use (a) and the multiplicativity of the determinat to show that $det(A) = f(u_1)f(u_2)\cdots f(u_n)$ where $f(t) = a_0 + a_1t + a_1t^2 + \cdots + a_{n-1}t^{n-1}$.
- (c) Find the eigenvalues and eigenvectors of A.
- **15.** True or false. Give a reason or a counter example.
 - (a) If $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$, and **v** is an eigenvector of A with eigenvalue λ , then **v** is an eigenvector of e^A with eigenvalue e^{λ} .
 - (b) If $F: V \to V$ is an operator on a finite dimensional complex vector space, then every F-invariant subspace contains an eigenvector for F.
 - (c) Every permutation matrix in $Mat_{n \times n}(\mathbb{C})$ is diagonalizable.
 - (d) If $P \in Mat_{n \times n}(\mathbb{C})$ is a permutation matrix, then every eigenvalue of P is an eigenvalue of P^{-1} .
 - (e) If a complex 5×5 matrix A has two distinct eigenvalues, then A must have an eigenvalue with geometric multiplicity 2.

16. Consider the subspaces in \mathbb{R}^4 :

$$U = \operatorname{span}\left(\begin{pmatrix}1\\1\\1\\1\end{pmatrix}, \begin{pmatrix}1\\-1\\1\\-1\end{pmatrix}, \begin{pmatrix}1\\3\\1\\3\end{pmatrix}\right), \quad \text{and} \quad V = \operatorname{span}\left(\begin{pmatrix}1\\2\\0\\2\end{pmatrix}, \begin{pmatrix}1\\2\\1\\2\end{pmatrix}, \begin{pmatrix}3\\1\\3\\1\end{pmatrix}\right).$$

Find bases of the subspaces U + V and $U \cap V$ in \mathbb{R}^4 .

- **17.** Let V be a finite dimensional real vector space and let $T: V \to V$ be a linear operator.
 - (a) Suppose that $T id_V$ is nilpotent. Show that the operator T is invertible.
 - (b) Suppose that there exists a polynomial $f(t) \in Pol(\mathbb{R})$ such that $f(0) \neq 0$ and such that f(T) = 0. Show that the operator T is invertible.

18. Solve the initial value problem

$$\begin{vmatrix} \frac{dx_1}{dt} = 3x_1 + 2x_2 - 3x_3, \\ \frac{dx_2}{dt} = 4x_1 + 10x_2 - 12x_3, \\ \frac{dx_3}{dt} = 3x_1 + 6x_2 - 7x_3. \end{vmatrix}$$
$$\begin{vmatrix} x_1(0) = 1, \\ x_2(0) = -1, \\ x_3(0) = 0. \end{vmatrix}$$

19.

- (a) Find the Jordan canonical form of the matrix $J_n(0)^2$.
- (b) Classify all nilpotent 5×5 complex matrices A that have a square root.
- (c) Classify all nilpotent 6×6 complex matrices that have a square root.

20. Let V be an n-dimensional space over \mathbb{C} and let $\Gamma \subset L(V, V)$ be a set of commuting operators. Show that there exists a vector $\mathbf{v} \in V$ which is an eigenvector for all $T \in \Gamma$.