
Solutions to the Midterm Exam, Math 214,
Spring 2020

Question 1. True or false. Give a reason or a counter-example

(a) If an R-vector space has a finite generating set, then it is finite dimensional.

(b) A generating subset in a finite dimensional R-vector space must consist of finitely many
vectors.

(c) If S is a finite set, and K is a field, then the vector space Fun(S,K) of all functions
from S to K is finite dimensional.

Answer 1. Statement (a) is True because every finite generating set contains a maximal
linearly independent subset and hence contains a basis.

Statement (b) is False since the set of all vectors in a vectors space is a spanning set. For
instance if we view V = R as an R-vector space, then V contains infinitely many elements
and they trivially genererate V .

Statement (c) is True since the collection of delta functions {δs}s∈S is a basis of Fun(S,K).
2

Question 2. Let V be a vector space over a field K, and let x,y ∈ V be two vectors, and
a, b ∈ K be two scalars. Show that

ax + by = bx + ay

if and only if a = b and/or x = y.
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Answer 2. Since
ax + by = bx + ay

the existence of additive inverses for vector addition gives

ax + by − bx− ay = 0.

Commutativity of addition and distributivity of scaling and addition then give

(a− b)(x− y) = 0.

If a−b 6= 0 we can multiply both sides of the last identity by 1/(a−b) which gives x−y = 0.
2

Question 3. Which of the following subsets of vectors are vector subspaces. In each case
either check the subspace properties or point out a property that fails and explain why.

(a) In the real 2-space R2 the subset S ⊂ R2 of all vectors with integral coordinates:

S =

{(
a
b

)
∈ R2

∣∣∣∣ a, b ∈ Z
}
.

(b) in the complex space C∞ of all sequences (a1, a2, . . . , an, . . .) of complex numbers (with
the term-by-by term addition and scaling) the subset B ⊂ C∞ of all bounded sequences:

B =

{
(ai)

∞
i=1 ∈ C∞

∣∣∣∣ there exists a positive real constant
c > 0 so that |ai| < c for all i

}

Answer 3. In part (a) S is not a subspace. It is closed under addition but it is not closed
under scaling. Specifically if we scale a vector with integral coordinates by a general real
number we will get a vector with non-integral coordinates. For instance

√
2

(
1
0

)
=

(√
2

0

)
.

In part (b) S is a subspace. To check this suppose a = (ai) and b = (bi) are two bounded
sequences of complex numbers and α is a real number.

• Since (ai) is bounded we can find a positive real constant A so that |ai| < A for all
i = 1, 2, . . .. Similarly since (bi) is bounded we can find a positive real constant B so
that |bi| < B for all i = 1, 2, . . ..
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Consider the sum a+b. Since the sum of sequences is defined term by term it follows
that

a + b = (ai + bi)
∞
i=1 .

But by the triangle inequality for the absolute value we have

|ai + bi| ≤ |ai|+ |bi| < A+B,

for all i = 1, 2, . . .. Therefore a + b is a bounded sequence as well. This shows that
the sum in R∞ preserves the condition of being bounded.

• Since the scaling of a sequence is defined term by term we have that

αa = (α · ai)∞i=1 .

Then by the multiplicativity of the absolute value we have

|α · ai| = |α| · |ai| < |α| · A

for all i = 1, 2, . . .. This shows that scaling in R∞ preserves the condition of being
bounded.

2

Question 4. Let Pol be the vector space of all polynomials with real coefficients in one
variable. Suppose that V ⊂ Pol is a vector subspace such that:

• For every k = 0, 1, 2, . . . , n the subspace V contains a polynomial of degree exactly k.
In other words for every k = 0, 1, 2, . . . , n we have a polynomial pk(x) ∈ V such that
pk(x) = ckx

k + lower degree terms, and ck 6= 0.

• V does not contain any polynomials of degree > n.

Show that V nust be equal to the subspace Poln ⊂ Pol of polynomials of degree at most n.

Answer 4. By assumption V does not contain any polynomials of degree > n. Therefore
V ⊂ Poln. To show that V = Poln it suffices to check that V contains a set of polynomials
that spans Poln.

We are given polynomials p0(x), p1(x), . . . , pn(x) in V such that for every k = 0, 1, . . . , n
we have

pk(x) = ckx
k + lower degree terms, and ck 6= 0.

We can use these polynomials to argue that V contains all monomials 1, x, x2, . . . , xn.
We will argue by induction on n.
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Base: n = 0. We need to show that 1 ∈ V . By assumption we know that we have a
polynomial p0(x) ∈ V where

p0(x) = c0, and c0 6= 0.

Since V is a vector subspace we will have that 1
c0
p0(x) ∈ V But 1

c0
p0(x) = 1 hence 1 ∈ V .

Step: Suppose that we know that if V contains polynomials p0(x), . . . pn−1(x) satisfying

pk(x) = ckx
k + lower degree terms, with ck 6= 0.

for k = 1, . . . , n − 1, then V contains the monomials 1, x, . . . , xn−1. Suppose in addition V
contains a polynomial pn(x) such that

pn(x) = cnx
n + lower degree terms, with cn 6= 0.

We need to show that V contains the monomial xn.
Explicitly

pn(x) = cnx
n + an−1x

n−1 + an−2x
n−2 · · · a1x+ a0,

and so

xn =
1

cn
pn(x)− an−1

cn
xn−1 − · · · − a1

cn
x− a0

cn
.

Since pn(x) ∈ V and by the inductive assumption 1, x, . . . , xn−1 it follows that the right
hand side is a linear combination of polynomials in V . Since V is a vector space this implies
xn ∈ V and completes the check.

2

Question 5. Let U ⊂ Mat2×2(R) be the subspace of all symmetric matrices and V ⊂
Mat2×2(R) be the subspace of all strictly upper triangular matrices:

U =

{(
a b
b c

) ∣∣∣∣ a, b, c ∈ R
}
,

V =

{(
0 d
0 0

) ∣∣∣∣ d ∈ R
}
.

(a) Show that U ⊕ V = Mat2×2(R).

(b) Decompose the matrix E =

(
1 1
2 −1

)
into a sum E = A + B

with A ∈ U and B ∈ U
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Answer 5. For part (a) consider the subspace W := U+V ⊂ Mat2×2(R). Note that U∩V = {0}.
Indeed, if X ∈ U ∩ V is a matrix which is both in U and V , then on one hand we have

X =

(
a b
b c

)
,

and on the other

X =

(
0 d
0 0

)
.

Therefore we must have b = d, and a = 0, b = 0, and c = 0. This shows that W = U ⊕ V . But
every matrix in U can be written uniquely as(

a b
b c

)
= a ·

(
1 0
0 0

)
+ b ·

(
0 1
1 0

)
+ c ·

(
0 0
0 1

)
.

Therefore {(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)}
is a basis of U and so dimU = 3. Similarly, note that every matrix in V is a scaling of

(
0 1
0 0

)
and thus dimV = 1. Since W = U ⊕ V this imples that dimW = dimU + dimV = 3 + 1 = 4. But
dim Mat2×2(R) is also equal to 4 and since W is a subspace we must have W = Mat2×2(R). This
proves part (a).

For part (b) we need to solve the equation(
1 1
2 −1

)
=

(
a b
b c

)
+

(
0 d
0 0

)
.

This is equivalent to 1 = a, 1 = b+ d, 2 = b, and −1 = c, and so we get(
1 1
2 −1

)
=

(
1 2
2 −1

)
+

(
0 −1
0 0

)
.

2

Question 6. Let S be a finite set and let V = (P(S),+, ·) be the power set of S considered as
a vector space over F2 where for A,B ⊂ S, and α ∈ F2 we have

A+B = A∆B = A ∪B −A ∩B

α ·A =

{
A, if α = 1,

∅, if α = 0,

Suppose that X, Y , Z are subsets in S such that X 6⊂ Y ∪ Z, Y 6⊂ X ∪ Z, and Z 6⊂ X ∪ Y . Show
that X, Y , and Z are linearly independent when viewed as vectors in V .
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Answer 6. We have to check that there is no non-trivial linear combination of X, Y , and Z which
is equal to 0 ∈ V . Since the coefficients in any linear combination can be equal to either 0 or 1 the
non-trivial linear combinations are

1 ·X + 0 · Y + 0 · Z = X,

0 ·X + 1 · Y + 0 · Z = Y,

0 ·X + 0 · Y + 1 · Z = Z,

1 ·X + 1 · Y + 0 · Z = X + Y,

1 ·X + 0 · Y + 1 · Z = X + Z,

0 ·X + 1 · Y + 1 · Z = Y + Z,

1 ·X + 1 · Y + 1 · Z = X + Y + Z.

(1)

Since in V the zero vector corresponds to the empty subset ∅ ⊂ S, we need to show that the
subsets in the (1) are never empty.

First note that ∅ is contained in every subset, and so the conditions X 6⊂ Y ∪ Z, Y 6⊂ X ∪ Z,
and Z 6⊂ X ∪ Y imply that none of X, Y , and Z can be empty.

Let us examine X + Y next. By definition X + Y = (X ∪ Y ) − (X ∩ Y ) consists of all points
in the unon of X and Y which do not belong simultaneoously in X and Y . But we know that
X 6⊂ Y ∪Z so we know that there is a point x ∈ X which does not belong to Y and does not belong
to Z. Hence x 6∈ X ∩ Y and so x ∈ (X ∪ Y ) − (X ∩ Y ). This shows that (X ∪ Y ) − (X ∩ Y ) is
not empty or equivalently that X + Y 6= 0. The same reasoning shows that X + Z 6= 0 and that
Y + Z 6= 0.

Finally note that we chose x ∈ X such that x 6∈ Y and x 6∈ Z. Thus x ∈ X+Y = (X∪Y )−(X∩
Y ) but x 6∈ (X ∪Y )∩Z ⊃ (X+Y )∩Z. Therefore x ∈ X+Y +Z = ((X+Y )∪Z)− (X+Y )∩Z).
This shows that X + Y + Z 6= ∅ or equivalently X + Y + Z 6= 0. 2

Question 7. Let V and W be real vector spaces with bases E = {e1, e2, e3} and F = {f1, f2}

respectively. Suppose that the linear map T : V → W has matrix

(
0 1 2
3 4 6

)
. Find the matrix of

T in the bases E′ = {e1, e1 + e2, e1 + e2 + e3} and F′ = {f1, f1 + f2}.

Answer 7. Write e′1, e
′
2, e

′
3 for the elements of the basis E′ and f ′1, f

′
2 for the elements of the

elements of the basis F′. To compute the matrix of T in these bases we need to compute the
coordinates of the vectors in the collection T (E′) in the basis F′. Using the matrix of T in the bases
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E and F we compute

T (e′1) = T (e1) = 0 · f1 + 3 · f2
= 3f2,

T (e′2) = T (e1 + e2) = T (e1) + T (e2) = (3f2) + (1 · f1 + 4 · f2)
= f1 + 7f2,

T (e′3) = T (e1 + e2 + e3) = T (e1) + T (e2) + T (e3) =

= (3f2) + (1 · f1 + 4 · f2) + (2 · f1 + 6 · f6)
= 3f1 + 13f2.

This gives the vectors T (E′) in terms of the basis F. To get expressions for these vectors in terms of
the basis F′ we need to solve for the vectors in F in terms of the vectors in F′. This is straightforward:
since f ′1 = f1 and f ′2 = f1 + f2 we get f1 = f ′1 and f2 = −f ′1 + f ′2. Substituting these expression in the
previous formulas gives

T (e′1) = 3f2 = −3f ′1 + 3f ′2,

T (e′2) = f1 + 7f2 = −6f ′1 + 7f ′2,

T (e′3) = 3f1 + 13f2 = −10f ′1 + 13f ′2.

Hence the matrix of T in the bases E′ and F′ is(
−3 −6 −10
3 7 13

)
.

2

Question 8. Let V be a vector space over a field K and let f : V → K be a linear function
which is not identically zero. Consider the subspace U = {x ∈ V | f(x) = 0} and let a ∈ V be any
vector that does not belong to U .

(a) Show that for every vector v ∈ V the vector

x = v − f(v)

f(a)
a

is well defined and belongs to U .

(b) Show that U ⊕ span(a) = V .

Answer 8. For part (a) note that a 6∈ U means f(a) 6= 0 in K. Therefore we can divide by f(a)
in K and so the vector

x = v − f(v)

f(a)
a

is well defined. To check that this vector belongs to U we evaluate f on x:

f(x) = f

(
v − f(v)

f(a)
a

)
= f(v)− f(v)

f(a)
f(a) = f(v)− f(v) = 0.

7



This shows that x ∈ U .

For part (b) note that part (a) implies that any vector v ∈ V is equal to the sum

v = x +
f(v)

f(a)
a,

and that x ∈ U . Since (f(v)/f(a)) ·a is a scaling of a it belongs to span(a) and so V = U+span(a).
To check that this is a direct sum we need to check that U ∩ span(a) = {0}.

Suppose x ∈ U ∩ span(a). Then f(x) = 0 and x = αa for some α ∈ K. But then 0 = f(x) =
f(αa) = αf(a). Since f(a) 6= 0 it follows that we must have α = 0. This implies that x = 0 · a = 0
and so U ∩ span(a) = {0}.

2
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