Solutions to the Midterm Exam, Math 214, Spring 2020

Question 1. True or false. Give a reason or a counter-example
(a) If an \mathbb{R}-vector space has a finite generating set, then it is finite dimensional.
(b) A generating subset in a finite dimensional \mathbb{R}-vector space must consist of finitely many vectors.
(c) If S is a finite set, and \mathbb{K} is a field, then the vector space $\operatorname{Fun}(S, \mathbb{K})$ of all functions from S to \mathbb{K} is finite dimensional.

Answer 1. Statement (a) is True because every finite generating set contains a maximal linearly independent subset and hence contains a basis.

Statement (b) is False since the set of all vectors in a vectors space is a spanning set. For instance if we view $V=\mathbb{R}$ as an \mathbb{R}-vector space, then V contains infinitely many elements and they trivially genererate V.

Statement (c) is True since the collection of delta functions $\left\{\delta_{s}\right\}_{s \in S}$ is a basis of $\operatorname{Fun}(S, \mathbb{K})$.

Question 2. Let V be a vector space over a field \mathbb{K}, and let $\mathbf{x}, \mathbf{y} \in V$ be two vectors, and $a, b \in \mathbb{K}$ be two scalars. Show that

$$
a \mathbf{x}+b \mathbf{y}=b \mathbf{x}+a \mathbf{y}
$$

if and only if $a=b$ and/or $\mathbf{x}=\mathbf{y}$.

Answer 2. Since

$$
a \mathbf{x}+b \mathbf{y}=b \mathbf{x}+a \mathbf{y}
$$

the existence of additive inverses for vector addition gives

$$
a \mathbf{x}+b \mathbf{y}-b \mathbf{x}-a \mathbf{y}=\mathbf{0}
$$

Commutativity of addition and distributivity of scaling and addition then give

$$
(a-b)(\mathbf{x}-\mathbf{y})=\mathbf{0} .
$$

If $a-b \neq 0$ we can multiply both sides of the last identity by $1 /(a-b)$ which gives $\mathbf{x}-\mathbf{y}=\mathbf{0}$.

Question 3. Which of the following subsets of vectors are vector subspaces. In each case either check the subspace properties or point out a property that fails and explain why.
(a) In the real 2-space \mathbb{R}^{2} the subset $S \subset \mathbb{R}^{2}$ of all vectors with integral coordinates:

$$
S=\left\{\left.\binom{a}{b} \in \mathbb{R}^{2} \right\rvert\, a, b \in \mathbb{Z}\right\} .
$$

(b) in the complex space \mathbb{C}^{∞} of all sequences $\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)$ of complex numbers (with the term-by-by term addition and scaling) the subset $B \subset \mathbb{C}^{\infty}$ of all bounded sequences:

$$
B=\left\{\begin{array}{l|l}
\left(a_{i}\right)_{i=1}^{\infty} \in \mathbb{C}^{\infty} & \begin{array}{l}
\text { there exists a positive real constant } \\
c>0 \text { so that }\left|a_{i}\right|<c \text { for all } i
\end{array}
\end{array}\right\}
$$

Answer 3. In part (a) S is not a subspace. It is closed under addition but it is not closed under scaling. Specifically if we scale a vector with integral coordinates by a general real number we will get a vector with non-integral coordinates. For instance

$$
\sqrt{2}\binom{1}{0}=\binom{\sqrt{2}}{0} .
$$

In part (b) S is a subspace. To check this suppose $\mathbf{a}=\left(a_{i}\right)$ and $\mathbf{b}=\left(b_{i}\right)$ are two bounded sequences of complex numbers and α is a real number.

- Since $\left(a_{i}\right)$ is bounded we can find a positive real constant A so that $\left|a_{i}\right|<A$ for all $i=1,2, \ldots$. Similarly since $\left(b_{i}\right)$ is bounded we can find a positive real constant B so that $\left|b_{i}\right|<B$ for all $i=1,2, \ldots$.

Consider the sum $\mathbf{a}+\mathbf{b}$. Since the sum of sequences is defined term by term it follows that

$$
\mathbf{a}+\mathbf{b}=\left(a_{i}+b_{i}\right)_{i=1}^{\infty}
$$

But by the triangle inequality for the absolute value we have

$$
\left|a_{i}+b_{i}\right| \leq\left|a_{i}\right|+\left|b_{i}\right|<A+B,
$$

for all $i=1,2, \ldots$. Therefore $\mathbf{a}+\mathbf{b}$ is a bounded sequence as well. This shows that the sum in \mathbb{R}^{∞} preserves the condition of being bounded.

- Since the scaling of a sequence is defined term by term we have that

$$
\alpha \mathbf{a}=\left(\alpha \cdot a_{i}\right)_{i=1}^{\infty}
$$

Then by the multiplicativity of the absolute value we have

$$
\left|\alpha \cdot a_{i}\right|=|\alpha| \cdot\left|a_{i}\right|<|\alpha| \cdot A
$$

for all $i=1,2, \ldots$. This shows that scaling in \mathbb{R}^{∞} preserves the condition of being bounded.

Question 4. Let Pol be the vector space of all polynomials with real coefficients in one variable. Suppose that $V \subset \mathrm{Pol}$ is a vector subspace such that:

- For every $k=0,1,2, \ldots, n$ the subspace V contains a polynomial of degree exactly k. In other words for every $k=0,1,2, \ldots, n$ we have a polynomial $p_{k}(x) \in V$ such that $p_{k}(x)=c_{k} x^{k}+$ lower degree terms, and $c_{k} \neq 0$.
- V does not contain any polynomials of degree $>n$.

Show that V nust be equal to the subspace $\operatorname{Pol}_{n} \subset \operatorname{Pol}$ of polynomials of degree at most n.

Answer 4. By assumption V does not contain any polynomials of degree $>n$. Therefore $V \subset \operatorname{Pol}_{n}$. To show that $V=\mathrm{Pol}_{n}$ it suffices to check that V contains a set of polynomials that spans Pol_{n}.

We are given polynomials $p_{0}(x), p_{1}(x), \ldots, p_{n}(x)$ in V such that for every $k=0,1, \ldots, n$ we have

$$
p_{k}(x)=c_{k} x^{k}+\text { lower degree terms, and } c_{k} \neq 0
$$

We can use these polynomials to argue that V contains all monomials $1, x, x^{2}, \ldots, x^{n}$.
We will argue by induction on n.

Base: $n=0$. We need to show that $1 \in V$. By assumption we know that we have a polynomial $p_{0}(x) \in V$ where

$$
p_{0}(x)=c_{0}, \text { and } c_{0} \neq 0
$$

Since V is a vector subspace we will have that $\frac{1}{c_{0}} p_{0}(x) \in V$ But $\frac{1}{c_{0}} p_{0}(x)=1$ hence $1 \in V$.
Step: Suppose that we know that if V contains polynomials $p_{0}(x), \ldots p_{n-1}(x)$ satisfying

$$
p_{k}(x)=c_{k} x^{k}+\text { lower degree terms, with } c_{k} \neq 0
$$

for $k=1, \ldots, n-1$, then V contains the monomials $1, x, \ldots, x^{n-1}$. Suppose in addition V contains a polynomial $p_{n}(x)$ such that

$$
p_{n}(x)=c_{n} x^{n}+\text { lower degree terms, with } c_{n} \neq 0 .
$$

We need to show that V contains the monomial x^{n}.
Explicitly

$$
p_{n}(x)=c_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2} \cdots a_{1} x+a_{0}
$$

and so

$$
x^{n}=\frac{1}{c_{n}} p_{n}(x)-\frac{a_{n-1}}{c_{n}} x^{n-1}-\cdots-\frac{a_{1}}{c_{n}} x-\frac{a_{0}}{c_{n}} .
$$

Since $p_{n}(x) \in V$ and by the inductive assumption $1, x, \ldots, x^{n-1}$ it follows that the right hand side is a linear combination of polynomials in V. Since V is a vector space this implies $x^{n} \in V$ and completes the check.

Question 5. Let $U \subset \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be the subspace of all symmetric matrices and $V \subset$ $\operatorname{Mat}_{2 \times 2}(\mathbb{R})$ be the subspace of all strictly upper triangular matrices:

$$
\begin{aligned}
& U=\left\{\left.\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\} \\
& V=\left\{\left.\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right) \right\rvert\, d \in \mathbb{R}\right\}
\end{aligned}
$$

(a) Show that $U \oplus V=\operatorname{Mat}_{2 \times 2}(\mathbb{R})$.
(b) Decompose the matrix $E=\left(\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right)$ into a sum $E=A+B$ with $A \in U$ and $B \in U$

Answer 5. For part (a) consider the subspace $W:=U+V \subset \operatorname{Mat}_{2 \times 2}(\mathbb{R})$. Note that $U \cap V=\{\mathbf{0}\}$. Indeed, if $\mathbf{X} \in U \cap V$ is a matrix which is both in U and V, then on one hand we have

$$
\mathbf{X}=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

and on the other

$$
\mathbf{X}=\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right) .
$$

Therefore we must have $b=d$, and $a=0, b=0$, and $c=0$. This shows that $W=U \oplus V$. But every matrix in U can be written uniquely as

$$
\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)=a \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+b \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+c \cdot\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Therefore

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

is a basis of U and so $\operatorname{dim} U=3$. Similarly, note that every matrix in V is a scaling of $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ and thus $\operatorname{dim} V=1$. Since $W=U \oplus V$ this imples that $\operatorname{dim} W=\operatorname{dim} U+\operatorname{dim} V=3+1=4$. But $\operatorname{dim} \operatorname{Mat}_{2 \times 2}(\mathbb{R})$ is also equal to 4 and since W is a subspace we must have $W=\operatorname{Mat}_{2 \times 2}(\mathbb{R})$. This proves part (a).

For part (b) we need to solve the equation

$$
\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)+\left(\begin{array}{ll}
0 & d \\
0 & 0
\end{array}\right) .
$$

This is equivalent to $1=a, 1=b+d, 2=b$, and $-1=c$, and so we get

$$
\left(\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right)+\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) .
$$

Question 6. Let S be a finite set and let $V=(\mathcal{P}(S),+, \cdot)$ be the power set of S considered as a vector space over \mathbb{F}_{2} where for $A, B \subset S$, and $\alpha \in \mathbb{F}_{2}$ we have

$$
\begin{aligned}
A+B & =A \Delta B=A \cup B-A \cap B \\
\alpha \cdot A & = \begin{cases}A, & \text { if } \alpha=1, \\
\varnothing, & \text { if } \alpha=0,\end{cases}
\end{aligned}
$$

Suppose that X, Y, Z are subsets in S such that $X \not \subset Y \cup Z, Y \not \subset X \cup Z$, and $Z \not \subset X \cup Y$. Show that X, Y, and Z are linearly independent when viewed as vectors in V.

Answer 6. We have to check that there is no non-trivial linear combination of X, Y, and Z which is equal to $\mathbf{0} \in V$. Since the coefficients in any linear combination can be equal to either 0 or 1 the non-trivial linear combinations are

$$
\begin{align*}
& 1 \cdot X+0 \cdot Y+0 \cdot Z=X \\
& 0 \cdot X+1 \cdot Y+0 \cdot Z=Y \\
& 0 \cdot X+0 \cdot Y+1 \cdot Z=Z \\
& 1 \cdot X+1 \cdot Y+0 \cdot Z=X+Y \tag{1}\\
& 1 \cdot X+0 \cdot Y+1 \cdot Z=X+Z \\
& 0 \cdot X+1 \cdot Y+1 \cdot Z=Y+Z \\
& 1 \cdot X+1 \cdot Y+1 \cdot Z=X+Y+Z
\end{align*}
$$

Since in V the zero vector corresponds to the empty subset $\varnothing \subset S$, we need to show that the subsets in the (1) are never empty.

First note that \varnothing is contained in every subset, and so the conditions $X \not \subset Y \cup Z, Y \not \subset X \cup Z$, and $Z \not \subset X \cup Y$ imply that none of X, Y, and Z can be empty.

Let us examine $X+Y$ next. By definition $X+Y=(X \cup Y)-(X \cap Y)$ consists of all points in the unon of X and Y which do not belong simultaneoously in X and Y. But we know that $X \not \subset Y \cup Z$ so we know that there is a point $x \in X$ which does not belong to Y and does not belong to Z. Hence $x \notin X \cap Y$ and so $x \in(X \cup Y)-(X \cap Y)$. This shows that $(X \cup Y)-(X \cap Y)$ is not empty or equivalently that $X+Y \neq \mathbf{0}$. The same reasoning shows that $X+Z \neq \mathbf{0}$ and that $Y+Z \neq \mathbf{0}$.

Finally note that we chose $x \in X$ such that $x \notin Y$ and $x \notin Z$. Thus $x \in X+Y=(X \cup Y)-(X \cap$ $Y)$ but $x \notin(X \cup Y) \cap Z \supset(X+Y) \cap Z$. Therefore $x \in X+Y+Z=((X+Y) \cup Z)-(X+Y) \cap Z)$. This shows that $X+Y+Z \neq \varnothing$ or equivalently $X+Y+Z \neq \mathbf{0}$.

Question 7. Let V and W be real vector spaces with bases $\mathbb{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ and $\mathbb{F}=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}\right\}$ respectively. Suppose that the linear map $T: V \rightarrow W$ has matrix $\left(\begin{array}{lll}0 & 1 & 2 \\ 3 & 4 & 6\end{array}\right)$. Find the matrix of T in the bases $\mathbb{E}^{\prime}=\left\{\mathbf{e}_{1}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right\}$ and $\mathbb{F}^{\prime}=\left\{\mathbf{f}_{1}, \mathbf{f}_{1}+\mathbf{f}_{2}\right\}$.

Answer 7. Write $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}$ for the elements of the basis \mathbb{E}^{\prime} and $\mathbf{f}_{1}^{\prime}, \mathbf{f}_{2}^{\prime}$ for the elements of the elements of the basis \mathbb{F}^{\prime}. To compute the matrix of T in these bases we need to compute the coordinates of the vectors in the collection $T\left(\mathbb{E}^{\prime}\right)$ in the basis \mathbb{F}^{\prime}. Using the matrix of T in the bases
\mathbb{E} and \mathbb{F} we compute

$$
\begin{aligned}
T\left(\mathbf{e}_{1}^{\prime}\right) & =T\left(\mathbf{e}_{1}\right)=0 \cdot \mathbf{f}_{1}+3 \cdot \mathbf{f}_{2} \\
& =3 \mathbf{f}_{2}, \\
T\left(\mathbf{e}_{2}^{\prime}\right) & =T\left(\mathbf{e}_{1}+\mathbf{e}_{2}\right)=T\left(\mathbf{e}_{1}\right)+T\left(\mathbf{e}_{2}\right)=\left(3 \mathbf{f}_{2}\right)+\left(1 \cdot \mathbf{f}_{1}+4 \cdot \mathbf{f}_{2}\right) \\
& =\mathbf{f}_{1}+7 \mathbf{f}_{2}, \\
T\left(\mathbf{e}_{3}^{\prime}\right) & =T\left(\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{3}\right)=T\left(\mathbf{e}_{1}\right)+T\left(\mathbf{e}_{2}\right)+T\left(\mathbf{e}_{3}\right)= \\
& =\left(3 \mathbf{f}_{2}\right)+\left(1 \cdot \mathbf{f}_{1}+4 \cdot \mathbf{f}_{2}\right)+\left(2 \cdot \mathbf{f}_{1}+6 \cdot \mathbf{f}_{6}\right) \\
& =3 \mathbf{f}_{1}+13 \mathbf{f}_{2} .
\end{aligned}
$$

This gives the vectors $T\left(\mathbb{E}^{\prime}\right)$ in terms of the basis \mathbb{F}. To get expressions for these vectors in terms of the basis \mathbb{F}^{\prime} we need to solve for the vectors in \mathbb{F} in terms of the vectors in \mathbb{F}^{\prime}. This is straightforward: since $\mathbf{f}_{1}^{\prime}=\mathbf{f}_{1}$ and $\mathbf{f}_{2}^{\prime}=\mathbf{f}_{1}+\mathbf{f}_{2}$ we get $\mathbf{f}_{1}=\mathbf{f}_{1}^{\prime}$ and $\mathbf{f}_{2}=-\mathbf{f}_{1}^{\prime}+\mathbf{f}_{2}^{\prime}$. Substituting these expression in the previous formulas gives

$$
\begin{aligned}
& T\left(\mathbf{e}_{1}^{\prime}\right)=3 \mathbf{f}_{2}=-3 \mathbf{f}_{1}^{\prime}+3 \mathbf{f}_{2}^{\prime}, \\
& T\left(\mathbf{e}_{2}^{\prime}\right)=\mathbf{f}_{1}+7 \mathbf{f}_{2}=-6 \mathbf{f}_{1}^{\prime}+7 \mathbf{f}_{2}^{\prime}, \\
& T\left(\mathbf{e}_{3}^{\prime}\right)=3 \mathbf{f}_{1}+13 \mathbf{f}_{2}=-10 \mathbf{f}_{1}^{\prime}+13 \mathbf{f}_{2}^{\prime} .
\end{aligned}
$$

Hence the matrix of T in the bases \mathbb{E}^{\prime} and \mathbb{F}^{\prime} is

$$
\left(\begin{array}{ccc}
-3 & -6 & -10 \\
3 & 7 & 13
\end{array}\right)
$$

Question 8. Let V be a vector space over a field \mathbb{K} and let $f: V \rightarrow \mathbb{K}$ be a linear function which is not identically zero. Consider the subspace $U=\{\mathbf{x} \in V \mid f(\mathbf{x})=\mathbf{0}\}$ and let $\mathbf{a} \in V$ be any vector that does not belong to U.
(a) Show that for every vector $\mathbf{v} \in V$ the vector

$$
\mathbf{x}=\mathbf{v}-\frac{f(\mathbf{v})}{f(\mathbf{a})} \mathbf{a}
$$

is well defined and belongs to U.
(b) Show that $U \oplus \operatorname{span}(\mathbf{a})=V$.

Answer 8. For part (a) note that $\mathbf{a} \notin U$ means $f(\mathbf{a}) \neq 0$ in \mathbb{K}. Therefore we can divide by $f(\mathbf{a})$ in \mathbb{K} and so the vector

$$
\mathbf{x}=\mathbf{v}-\frac{f(\mathbf{v})}{f(\mathbf{a})} \mathbf{a}
$$

is well defined. To check that this vector belongs to U we evaluate f on \mathbf{x} :

$$
f(\mathbf{x})=f\left(\mathbf{v}-\frac{f(\mathbf{v})}{f(\mathbf{a})} \mathbf{a}\right)=f(\mathbf{v})-\frac{f(\mathbf{v})}{f(\mathbf{a})} f(\mathbf{a})=f(\mathbf{v})-f(\mathbf{v})=0 .
$$

This shows that $\mathbf{x} \in U$.
For part (b) note that part (a) implies that any vector $\mathbf{v} \in V$ is equal to the sum

$$
\mathbf{v}=\mathbf{x}+\frac{f(\mathbf{v})}{f(\mathbf{a})} \mathbf{a}
$$

and that $\mathbf{x} \in U$. Since $(f(\mathbf{v}) / f(\mathbf{a})) \cdot \mathbf{a}$ is a scaling of \mathbf{a} it belongs to $\operatorname{span}(\mathbf{a})$ and so $V=U+\operatorname{span}(\mathbf{a})$. To check that this is a direct sum we need to check that $U \cap \operatorname{span}(\mathbf{a})=\{\mathbf{0}\}$.

Suppose $\mathbf{x} \in U \cap \operatorname{span}(\mathbf{a})$. Then $f(\mathbf{x})=0$ and $\mathbf{x}=\alpha \mathbf{a}$ for some $\alpha \in \mathbb{K}$. But then $0=f(\mathbf{x})=$ $f(\alpha \mathbf{a})=\alpha f(\mathbf{a})$. Since $f(\mathbf{a}) \neq 0$ it follows that we must have $\alpha=0$. This implies that $\mathbf{x}=0 \cdot \mathbf{a}=\mathbf{0}$ and so $U \cap \operatorname{span}(\mathbf{a})=\{\mathbf{0}\}$.

