Solutions to the Midterm Exam, Math 214,
Spring 2020

Question 1.  True or false. Give a reason or a counter-example
(a) If an R-vector space has a finite generating set, then it is finite dimensional.

(b) A generating subset in a finite dimensional R-vector space must consist of finitely many
vectors.

(c) If S is a finite set, and K is a field, then the vector space Fun(S,K) of all functions
from S to K is finite dimensional.

Statement (a) is True because every finite generating set contains a maximal
linearly independent subset and hence contains a basis.

Statement (b) is False since the set of all vectors in a vectors space is a spanning set. For
instance if we view V = R as an R-vector space, then V' contains infinitely many elements
and they trivially genererate V.

Statement (c) is True since the collection of delta functions {0,}secs is a basis of Fun(S, K).
O

Question 2. Let V be a vector space over a field K, and let x,y € V' be two vectors, and
a,b € K be two scalars. Show that

ax + by = bx + ay

if and only if @ = b and/or x =y.




Since
ax + by = bx + ay

the existence of additive inverses for vector addition gives
ax + by — bx —ay = 0.
Commutativity of addition and distributivity of scaling and addition then give
(a—b)(x—y)=0.

If a—b # 0 we can multiply both sides of the last identity by 1/(a—b) which gives x —y = 0.
O

Question 3.  Which of the following subsets of vectors are vector subspaces. In each case
either check the subspace properties or point out a property that fails and explain why:.

(a) In the real 2-space R? the subset S C R? of all vectors with integral coordinates:

~{()ex

(b) in the complex space C* of all sequences (ay, as, ..., ay,,...) of complex numbers (with
the term-by-by term addition and scaling) the subset B C C* of all bounded sequences:

a,bEZ}.

B = {(ai);-’il e C™

there exists a positive real constant
¢ > 0 so that |a;| < ¢ for all

In part (a) S is not a subspace. It is closed under addition but it is not closed
under scaling. Specifically if we scale a vector with integral coordinates by a general real
number we will get a vector with non-integral coordinates. For instance

#6)-()

In part (b) S is a subspace. To check this suppose a = (a;) and b = (b;) are two bounded
sequences of complex numbers and « is a real number.

e Since (a;) is bounded we can find a positive real constant A so that |a;] < A for all
i =1,2,.... Similarly since (b;) is bounded we can find a positive real constant B so
that |b;| < B forall i =1,2,....



Consider the sum a + b. Since the sum of sequences is defined term by term it follows
that
a+b= (Cll—i‘bl):il

But by the triangle inequality for the absolute value we have

for all # = 1,2,.... Therefore a + b is a bounded sequence as well. This shows that
the sum in R* preserves the condition of being bounded.

e Since the scaling of a sequence is defined term by term we have that
aa = (a-a;), .
Then by the multiplicativity of the absolute value we have
o ai = [ - |ai| < laf - A

for all « = 1,2,.... This shows that scaling in R*> preserves the condition of being
bounded.

Question 4.  Let Pol be the vector space of all polynomials with real coefficients in one
variable. Suppose that V' C Pol is a vector subspace such that:

e For every k =0,1,2,...,n the subspace V contains a polynomial of degree exactly k.
In other words for every k = 0,1,2,...,n we have a polynomial py(xz) € V such that
pe(7) = cpa® + lower degree terms, and ¢, # 0.

e 1/ does not contain any polynomials of degree > n.

Show that V' nust be equal to the subspace Pol,, C Pol of polynomials of degree at most n.

By assumption V' does not contain any polynomials of degree > n. Therefore
V C Pol,,. To show that VV = Pol, it suffices to check that V' contains a set of polynomials
that spans Pol,,.
We are given polynomials pg(x), p1(x), ..., po(z) in V such that for every k =0,1,...,n
we have
pi(2) = cxz® + lower degree terms, and ¢, # 0.

We can use these polynomials to argue that V' contains all monomials 1, x, 2%, ..., 2".

We will argue by induction on n.



Base: n = 0. We need to show that 1 € V. By assumption we know that we have a
polynomial pg(x) € V' where
po(z) = co, and ¢ # 0.

Since V' is a vector subspace we will have that %po(x) € V But %po(x) =1hencel € V.

Step: Suppose that we know that if V' contains polynomials py(x), ...p,—1(z) satisfying
pr(z) = cra® + lower degree terms, with ¢, # 0.

for k=1,...,n — 1, then V contains the monomials 1,z,...,2" 1. Suppose in addition V
contains a polynomial p,(z) such that

pn(z) = cpz™ + lower degree terms, with ¢, # 0.

We need to show that V' contains the monomial z".

Explicitly
1 2
pu(T) = cpx” + ap12" "+ a2 agx + ag,
and so )
Ap—1 3] Qg
xn:—pn(;p)— n n—1 e e

Since p,(x) € V and by the inductive assumption 1,z,...,2""! it follows that the right
hand side is a linear combination of polynomials in V. Since V is a vector space this implies
z™ € V and completes the check.

O

Question 5.  Let U C Matgys(R) be the subspace of all symmetric matrices and V' C
Mataoyo(R) be the subspace of all strictly upper triangular matrices:

o {2 ) [aees).
v (0 9) ] aex)

(a) Show that U &V = Mataya(R).

(b) Decompose the matrix FE = <; _11) into a sum E = A + B
with A€ U and Be U



For part (a) consider the subspace W := U+V C Matax2(R). Note that UNV = {0}.
Indeed, if X € U NV is a matrix which is both in U and V, then on one hand we have

x- (1),
x- (0 1),

Therefore we must have b = d, and a = 0, b = 0, and ¢ = 0. This shows that W = U @& V. But
every matrix in U can be written uniquely as

()= (5 ) o (0 8) e (09):
o o) o) G 2}

is a basis of U and so dimU = 3. Similarly, note that every matrix in V is a scaling of (8 (1)>

and thus dim V' = 1. Since W = U @V this imples that dimW = dimU +dimV =3+ 1 = 4. But
dim Matox2(R) is also equal to 4 and since W is a subspace we must have W = Mataxo(R). This
proves part (a).

and on the other

Therefore

For part (b) we need to solve the equation

2 4)=0 o)+ (0 0):

This is equivalent to 1 =a,1 =b+d, 2 =0, and —1 = ¢, and so we get

G )=0 20 )

Question 6. Let S be a finite set and let V' = (P(S), +, ) be the power set of S considered as
a vector space over Fy where for A, B C S, and o € Fy we have

A+ B=AAB=AUB-ANB

oA A, ifa=1,
g, ifa=0,

Suppose that X, Y, Z are subsets in S such that X ¢ YUZ, Y ¢ XU Z, and Z ¢ X UY. Show
that X, Y, and Z are linearly independent when viewed as vectors in V.



We have to check that there is no non-trivial linear combination of X, Y, and Z which
is equal to 0 € V. Since the coefficients in any linear combination can be equal to either 0 or 1 the
non-trivial linear combinations are

" X+0-Y40-Z=X,
X+1-Y+0-Z=Y,
X+0-Y4+1-Z=2,
X+1-Y+40-Z=X+Y, (1)

X40-Y4+1-Z=X+2,
X+41-Y+1-Z=Y+2Z,
X+1-Y+1-Z=X+Y+Z

_ O = = O O =

Since in V' the zero vector corresponds to the empty subset @ C S, we need to show that the
subsets in the (1) are never empty.

First note that @ is contained in every subset, and so the conditions X ¢ YU Z, Y ¢ X U Z,
and Z ¢ X UY imply that none of X, Y, and Z can be empty.

Let us examine X + Y next. By definition X +Y = (X UY) — (X NY) consists of all points
in the unon of X and Y which do not belong simultaneoously in X and Y. But we know that
X ¢ YUZ so we know that there is a point z € X which does not belong to Y and does not belong
to Z. Hence z ¢ XNY and so z € (X UY) — (X NY). This shows that (X UY)— (X NY) is
not empty or equivalently that X + Y ## 0. The same reasoning shows that X + Z # 0 and that
Y+ Z#0.

Finally note that we chose z € X such that ¢ Y and z ¢ Z. Thusz € X4+Y = (XUY)—(XnN
Y)butz & (XUY)NZ D (X+Y)NZ. Thereforex € X+Y +7 = ((X+Y)UZ)—(X+Y)NZ).
This shows that X +Y + Z # @ or equivalently X + Y + Z #£ 0. O

Question 7.  Let V and W be real vector spaces with bases E = {e;,eq2,e3} and F = {f},fs}

1 2) Find the matrix of

respectively. Suppose that the linear map T : V — W has matrix <3 16

T in the bases E' = {e;,e; + e2,e1 + €3 + e3} and F' = {f}, f; + £5}.

Write €], €}, €5 for the elements of the basis E' and f{, f; for the elements of the
elements of the basis F'. To compute the matrix of T in these bases we need to compute the
coordinates of the vectors in the collection T'(E’) in the basis F'. Using the matrix of 7" in the bases



E and F we compute

T(e'l) = T(el) =0-f1+3-f
= 3f27

T(e'2) = T(el + 62) = T(el) + T(GQ) = (3f2) + (1 . f1 +4- fz)
= fi + 7fs,

T(e) =T(e; +ey+e3)=T(er)+T(ex) +T(e3) =
=)+ (1-fi+4-fo)+(2-f1 +6-f5)
= 3f; + 13f,.

This gives the vectors T'(E') in terms of the basis F. To get expressions for these vectors in terms of
the basis F” we need to solve for the vectors in IF in terms of the vectors in [F’. This is straightforward:
since f] = f; and ) = f; + f> we get f; = f] and fo = —f] 4+ £. Substituting these expression in the

previous formulas gives
T(e}) = 3fy = —3f] + 3£},

/

1
T(eh) = £, + 78 = —6f] + 7£},
T(e}) = 3£y + 136, = —10f] + 13£},.

Hence the matrix of T in the bases E' and F’ is

-3 —6 —-10
3 7 13 )

Question 8. Let V be a vector space over a field K and let f : V — K be a linear function
which is not identically zero. Consider the subspace U = {x € V' | f(x) = 0} and let a € V' be any
vector that does not belong to U.

(a) Show that for every vector v € V' the vector

fv)

X=VvV-—"——=a

is well defined and belongs to U.
(b) Show that U @ span(a) = V.

For part (a) note that a ¢ U means f(a) # 0 in K. Therefore we can divide by f(a)
in K and so the vector

_ .t
X=V— ma
is well defined. To check that this vector belongs to U we evaluate f on x:
_ fv) N\ V) oy _
1 =1 (v 4¥a) = ) = 20 ) = 500 - 500 =

7



This shows that x € U.

For part (b) note that part (a) implies that any vector v € V' is equal to the sum
f(v)

T
and that x € U. Since (f(v)/f(a))-ais a scaling of a it belongs to span(a) and so V' = U +span(a).
To check that this is a direct sum we need to check that U Nspan(a) = {0}.
Suppose x € U Nspan(a). Then f(x) = 0 and x = «aa for some « € K. But then 0 = f(x) =
f(aa) = af(a). Since f(a) # 0 it follows that we must have o = 0. This implies that x =0-a =0
and so U Nspan(a) = {0}.

a




