Math 371, practice problems for exam 3

1. Let $A \neq 0$ be a unital commutative ring.
(a) View A as an A-module and let $x, y \in A$ be any two elements. Show that x and y must be linearly dependent over A.
(b) Suppose that every ideal in A is free as an A-module. Show that A is a PID.
2. Let $R=\mathbb{Z}[1 / 2] \subset \mathbb{Q}$ and consider the matrix $A \in \operatorname{Mat}_{2 \times 3}(R)$ given by

$$
A=\left(\begin{array}{ccc}
14 & 2 & 3 / 2 \\
-6 & 0 & -10
\end{array}\right)
$$

(a) Prove that R is a PID.
(b) Use invertible row and column operations over R to diagonalize the matrix A.
3. Prove the following facts using the Eistenstein criterion.
(a) $\sqrt{2}$ is not a rational number.
(b) $x^{6}+4 x^{3}+1$ is irreducible in $\mathbb{Q}[x]$.
(c) $\mathbb{C}[x, y, z, w] /(x w-y z)$ is an integral domain.
4. Let R be a domain. View R as a module over itself. Show that the module R is isomorphic to every non-zero submodule $M \subset R$ if and only if R is a PID.
5. Let R be a PID and let A, B, and C be finitely generated R-modules. Show that $A \oplus B \cong A \oplus C$ implies $B \cong C$.
6. Let M be the finitely generated abelian group obtained as the quotient of $\mathbb{Z}^{\oplus 3}$ by the subgoup N spanned by the elements x_{1}, x_{2}, x_{3}, where

$$
\begin{aligned}
& x_{1}=7 e_{1}+2 e_{2}+3 e_{3} \\
& x_{2}=21 e_{1}+8 e_{2}+9 e_{3} \\
& x_{3}=5 e_{1}-4 e_{2}+3 e_{3}
\end{aligned}
$$

Find the decomposition of M into a direct sum of a free abelian group and primary cylic groups.
7. Let $A \subset B$ be finitely generated abelian groups. Show that $\operatorname{rank}(B / A)=\operatorname{rank}(B)-$ $\operatorname{rank}(A)$.
8. Let R be a ring. An R-module M is called irreducible if $M \neq 0$ and the only submodules of M are 0 and M.
(a) Show that M is irreducible if and only if $M \neq 0$ and M is cyclic with any non-zero element as generator.
(b) Find all irreducible \mathbb{Z}-modules.
9. Let $A \neq 0$ be a unital commutative ring. View A as module over itself via multiplication. Prove that $\operatorname{End}_{A}(A)$ and A are isomorphic as rings.
10. Let $V=\mathbb{C}^{2}$ be the two dimensional coordinate space over \mathbb{C}, and let $f: V \rightarrow V$ be the linear operator given by $f(x, y)=(0, y)$. Consider V as a module over the polynomial ring $\mathbb{C}[t]$ via the action $p(t) \cdot v=p(f)(v)$ for any $p(t) \in \mathbb{C}[t]$ and any $v \in V$. Find all $\mathbb{C}[t]$-submodules in V.

