Math 503 Spring 2015 Practice Problems for the Final

(1) Prove that if R is a division ring, then $\operatorname{Mat}_{n \times n}(R)$ has no nontrivial two-sided ideals.
(2) Let R be a ring. Prove that the center of the ring $\operatorname{Mat}_{n \times n}(R)$ consists of all matrices of the form $a \cdot I_{n}$, where I_{n} is the identity matrix, and a belongs to the center of R.
(3) (i) Suppose that G is a finite group and k is a field. Prove that $k[G]^{o p} \cong k[G]$.
(ii) Let \mathbb{H} be the division ring of all quaternions, i.e. the subring of $\operatorname{Mat}_{2 \times 2}(\mathbb{C})$ consisting of matrices of the form $\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)$. Prove that $\mathbb{H}^{o p} \cong \mathbb{H}$.
(4) Let $A=\mathbb{Z} \oplus \mathbb{Z} i \subset \mathbb{C}$ be the subring of Gaussian integers.
(a) Prove that $A /(2)$ is not a field.
(b) Prove that $A /(3)$ is a field.
(5) Find all $a \in \mathbb{F}_{7}$ for which $\mathbb{F}_{7}[x] /\left(x^{2}+a\right)$ is a field.
(6) Let R be a commutative ring with the property that every left R module is free. Show that R is a field.
(7) Let A be a commutative ring and let M be an A-module.
(a) Show that M and $\operatorname{Hom}_{A}(A, M)$ are isomorpic A-modules.
(b) Show that the natural forgetful map $\operatorname{Hom}_{A}(A, M) \rightarrow \operatorname{Hom}_{\mathbb{Z}}(A, M)$ is an inclusion of abelian groups. Give an explicit example of A and M where this map is not an isomorphism.
(8) Let F be a field, let $F[t]$ be the polynomial ring in one variable over F, and let $a \neq b \in F$.
(i) Show that the quotient rings $F[t] /(t-a)$ and $F[t] /(t-b)$ are both isomorphic to F.
(ii) Show that the quotient $F[t]$-modules $F[t] /(t-a)$ and $F[t] /(t-b)$ are not isomorphic.
(iii) Prove that the $F[t]$-module $(F[t] /(t-a)) \oplus(F[t] /(t-b))$ is cyclic.
(9) Let A be an integral domain and let M be a free A-module. Prove that if $x \in M$ and $a \in A$ are such that $a x=0$, then either $a=0$ or $x=0$. Give examples to sho that this is no longer true if you drop either the condition that A is an integral domain or the condition that M is free.
(10) Let $A \subset B$ be finitely generated abelian groups. Show that $\operatorname{rank}(B / A)=$ $\operatorname{rank}(B)-\operatorname{rank}(A)$.
(11) Let R be a PID and let A, B, and C be finitely generated R-modules. Show that $A \oplus B \cong A \oplus C$ implies $B \cong C$.
(12) Let M be the finitely generated abelian group obtained as the quotient of $\mathbb{Z}^{\oplus 3}$ by the subgoup N spanned by the elements x_{1}, x_{2}, x_{3}, where

$$
\begin{aligned}
& x_{1}=7 e_{1}+2 e_{2}+3 e_{3}, \\
& x_{2}=21 e_{1}+8 e_{2}+9 e_{3}, \\
& x_{3}=5 e_{1}-4 e_{2}+3 e_{3} .
\end{aligned}
$$

Find the decomposition of M into a direct sum of a free abelian group and primary cylic groups.

