Math $503 \quad$ Fall 2015 Practice Problems for the Midterm

(1) True or false. Give a reason or a counter-example
(a) The map $\sigma: G L_{n}(\mathbb{R}) \rightarrow \operatorname{Aut}_{\text {Set }}\left(\operatorname{Mat}_{n \times n}(\mathbb{R})\right)$ given by $\sigma_{P}(A)=$ $P A P^{t}$ defines an action of $G L_{n}(\mathbb{R})$ on the set of $n \times n$ matrices.
(b) Let G be a group acting on a set X. Let $H \subset G$ be the subset $H=\{g \in G \mid g \cdot x=x\}$. Then H is a normal subgroup of G.
(c) If $n \geq 3$, then S_{n} has trivial center.
(d) If G is a group of odd order and $x \neq e \in G$, then x can not be conjugate to x^{-1}.
(2) Determine the automorphism group of a cyclic group of order 10 .
(3) Find all finite groups that have exactly two conjugacy classes.
(4) Let B be the group of invertible upper-triangular $n \times n$ matrices. Consider the standard action of B on \mathbb{R}^{n} and let

$$
a=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) \in \mathbb{R}^{n} .
$$

Describe $\operatorname{Stab}_{B}(a)$.
(5) Consider the elements

$$
x=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
3 & 2 & 1 & 4
\end{array}\right) \quad y=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
4 & 1 & 3 & 2
\end{array}\right)
$$

in the symmetric group S_{4} of permuations on four letters. Show that x and y are not conjugate in S_{4}, i.e. show that there is no element $\sigma \in S_{4}$ satisfying $y=\sigma x \sigma^{-1}$.
(6) Let G be a finite group and let $x, y \in G$ be two elements of order two. Show that the subgroup of G generated by x and y is isomorphic to the dihedral group $D_{2|x y|}$.
(7) Let G be a non-commutative group. Show that $\operatorname{Aut}(G)$ can not be cyclic.
(8) Suppose a group G acts on a set X. Let $x \neq y \in X$ and let $C=$ $\{g \in G \mid g \cdot x=y\}$. Prove that C is a left coset for $\operatorname{Stab}_{G}(x)$ and a right coset for $\operatorname{Stab}_{G}(y)$.
(9) Let G be a group of order $p k$ with p prime and $1<k<p$. Prove that G is not simple.
(10) Let G be a group of order $p_{1}^{2} p_{2}^{2} p_{3}^{2}$ with p_{1}, p_{2}, and p_{3} distinct primes. Suppose that all Sylow subgroups of G are normal. Show that G must be abelian. Hint: Show that G must be the product of all it Sylow subgroups.
(11) Prove that if $|G|=105$ then G has a normal 5 -Sylow subgroup and a normal 7-Sylow subgroup.
(12) Find the number of p-Sylow subgroups of A_{5} for $p=2,3,5$.
(13) Let $H \triangleleft G$. Show that H^{\prime} is a normal subgroup of G.
(14) Prove that if A and B are solvable, then $A \times B$ is solvable.
(15) Prove that every group of order n is solvable if (a) $n=12, \quad$ (b) $n=20$, (c) $n=100$.
(16) Prove that the dihedral group D_{16} is nilpotent.

