Math 503 Fall 2015 Practice Problems for the Midterm

- (1) True or false. Give a reason or a counter-example
 - (a) The map $\sigma : GL_n(\mathbb{R}) \to \operatorname{Aut}_{\operatorname{Set}}(\operatorname{Mat}_{n \times n}(\mathbb{R}))$ given by $\sigma_P(A) = PAP^t$ defines an action of $GL_n(\mathbb{R})$ on the set of $n \times n$ matrices.
 - (b) Let G be a group acting on a set X. Let $H \subset G$ be the subset $H = \{g \in G \mid g \cdot x = x\}$. Then H is a normal subgroup of G.
 - (c) If $n \ge 3$, then S_n has trivial center.
 - (d) If G is a group of odd order and $x \neq e \in G$, then x can not be conjugate to x^{-1} .
- (2) Determine the automorphism group of a cyclic group of order 10.
- (3) Find all finite groups that have exactly two conjugacy classes.

(4) Let B be the group of invertible upper-triangular n×n matrices. Consider the standard action of B on Rⁿ and let

$$a = \begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix} \in \mathbb{R}^n$$

Describe $\operatorname{Stab}_B(a)$.

(5) Consider the elements

$$x = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix} \qquad y = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$$

in the symmetric group S_4 of permutaions on four letters. Show that x and y are not conjugate in S_4 , i.e. show that there is no element $\sigma \in S_4$ satisfying $y = \sigma x \sigma^{-1}$.

- (6) Let G be a finite group and let $x, y \in G$ be two elements of order two. Show that the subgroup of G generated by x and y is isomorphic to the dihedral group $D_{2|xy|}$.
- (7) Let G be a non-commutative group. Show that Aut(G) can not be cyclic.
- (8) Suppose a group G acts on a set X. Let $x \neq y \in X$ and let $C = \{g \in G \mid g \cdot x = y\}$. Prove that C is a left coset for $\operatorname{Stab}_G(x)$ and a right coset for $\operatorname{Stab}_G(y)$.

- (9) Let G be a group of order pk with p prime and 1 < k < p. Prove that G is not simple.
- (10) Let G be a group of order $p_1^2 p_2^2 p_3^2$ with p_1 , p_2 , and p_3 distinct primes. Suppose that all Sylow subgroups of G are normal. Show that G must be abelian. *Hint:* Show that G must be the product of all it Sylow subgroups.
- (11) Prove that if |G| = 105 then G has a normal 5-Sylow subgroup and a normal 7-Sylow subgroup.
- (12) Find the number of p-Sylow subgroups of A_5 for p = 2, 3, 5.
- (13) Let $H \triangleleft G$. Show that H' is a normal subgroup of G.
- (14) Prove that if A and B are solvable, then $A \times B$ is solvable.
- (15) Prove that every group of order n is solvable if (a) n = 12, (b) n = 20, (c) n = 100.
- (16) Prove that the dihedral group D_{16} is nilpotent.