Math 603. Homework 1 (due Monday, February 25, 2019)

1. Let A be a commutative ring. Suppose P_{1} and P_{2} are projective A modules and M is some A-module. Let

$$
\begin{aligned}
& 0 \longrightarrow K_{1} \xrightarrow{i_{1}} P_{1} \xrightarrow{q_{1}} M \longrightarrow 0 \\
& 0 \longrightarrow K_{2} \xrightarrow{i_{2}} P_{2} \xrightarrow{q_{2}} M \longrightarrow 0
\end{aligned}
$$

be short exact sequences of A-modules. The following steps prove the strong version of Schanuel's lemma: $K_{1} \oplus P_{2}$ and $P_{1} \oplus K_{2}$ are isomorphic as A-modules.
(a) Consider the map of A-modules

$$
\begin{aligned}
f: \quad & P_{1} \oplus P_{2} \longrightarrow M \\
& \binom{x_{1}}{x_{2}} \longmapsto\left(q_{1}, q_{2}\right)\binom{x_{1}}{x_{2}}=q_{1}\left(x_{1}\right)+q_{2}\left(x_{2}\right)
\end{aligned}
$$

Let $N=\operatorname{ker}(f)$. Show that N fits in a short exact sequence

$$
0 \longrightarrow N \longrightarrow P_{1} \oplus P_{2} \xrightarrow{f} M \longrightarrow 0 .
$$

(b) Let $\varphi: P_{1} \rightarrow P_{2}$ and $\psi: P_{2} \rightarrow P_{1}$ be maps of A-modules that fill the projectivity diagrams

Define maps $u, v \in \operatorname{End}_{A}\left(P_{1} \oplus P_{2}\right)$ by the formulas:

$$
u=\left(\begin{array}{cc}
\mathrm{id}_{P_{1}} & 0 \\
\varphi & \operatorname{id}_{P_{2}}
\end{array}\right), \quad v=\left(\begin{array}{cc}
\mathrm{id}_{P_{1}} & \psi \\
0 & \operatorname{id}_{P_{2}}
\end{array}\right) .
$$

Show that u and v are automorphisms and that they induce a commutative diagram of A-modules with exact rows:

(c) Check that $v_{\mid N}: N \rightarrow K_{1} \oplus P_{2}$ amd $u_{\mid N}: N \rightarrow P_{1} \oplus K_{2}$ are isomorphisms.
2. Let A be a commutative ring. Recall that if M, N are A-modules the commutativity of A implies that the abelian group $\operatorname{Hom}_{A}(M, N)$ of A module homomorphisms has itself a natural A-module structure given as follows. Given $a \in A$ and an A-module homomorphism $f: M \rightarrow N$ we define a new A-module homomorphism

$$
a \cdot f: M \rightarrow N, \quad x \mapsto a f(x),
$$

where $a f(x)$ denotes the action of a on $f(x)$ in the module N.
Fix a finitely generated projective A-module P.
(a) Write P^{\vee} for the A-module $\operatorname{Hom}_{A}(P, A)$. Consider the natural adjunction map ev : $P \rightarrow P^{\vee \vee}$ which to each $x \in P$ assigns the homomorphism $\mathrm{ev}_{x}: P^{\vee} \rightarrow A, \xi \mapsto \xi(x)$ of evaluation on x. Prove that ev is an isomorphism.
(b) Define an A-linear map $\operatorname{tr}: \operatorname{End}_{A}(P) \rightarrow A$ with the property: for any A-linear map $\tau: \operatorname{End}_{A}(P) \rightarrow A$ there exists a unique endomorphism $\varphi \in \operatorname{End}_{A}(P)$ so that $\tau(f)=\operatorname{tr}(f \varphi)$ for all $f \in$ $\operatorname{End}_{A}(P)$.
(c) Show that if P is free, then an A-linear map $\tau: \operatorname{End}_{A}(P) \rightarrow A$ satisfies $\tau(f \circ g)=\tau(g \circ f)$ for all $f, g \in \operatorname{End}_{A}(P)$ if and only if $\tau=a \cdot \operatorname{tr}$ for some $a \in A$.
(d) Given $f \in \operatorname{End}_{A}(P)$ define $f^{\vee} \in \operatorname{End}_{A}\left(P^{\vee}\right)$ as the A-linear map $f^{\vee}: P^{\vee} \rightarrow P^{\vee}, \xi \mapsto \xi \circ f$. Show that $\operatorname{tr}(f)=\operatorname{tr}\left(f^{\vee}\right)$.
3. (a) Prove that every direct summand in an injective module is injective.
(b) Find an injective resolution of \mathbb{Z} / p as a \mathbb{Z}-module.
(c) Let R be an integral domain which is not a field. Suppose M is an R-module which is at the same time injective and projective. Show that $M=\{0\}$.

