Math 603. Homework 2 (due Monday, March 11, 2019)

- **1.** Let A be a commutative ring and let $S \subset A \{0\}$ be any subset. Write $\operatorname{mult}(S)$ for the multiplicative closure of S and set $S^{-1}A := \operatorname{mult}(S)^{-1}A$. Let $S = \{s_1, \ldots, s_k\} \subset A - \{0\}$. Show that $S^{-1}A = \{s\}^{-1}A$, where $s = s_1s_2 \ldots s_k$.
- **2.** A multiplicatively closed subset $S \subset A$ in a commutative ring is called *saturated* if $ab \in S$ implies that $a, b \in S$.
 - (a) Prove that A^{\times} , the set of all units in A, is saturated.
 - (b) If $S \subset A$ is multiplicatively closed, show that there exists a smallest subset $\operatorname{sat}(S) \subset A$, so that $S \subset \operatorname{sat}(S)$ and $\operatorname{sat}(S)$ is saturated. prove that $\operatorname{sat}(S)^{-1}A \cong S^{-1}A$.
 - (c) Suppose $S \subset A$ is saturated. Show that A S is a union of prime ideals.
- **3.** Let A be a commutative ring and let $S \subset A$ be a multiplicatively closed subset. Show that the localization functor

$$S^{-1}: A - \operatorname{mod} \to S^{-1}A - \operatorname{mod}$$

preserves the following classes of modules:

- (a) free modules,
- (b) finitely generated modules,
- (c) projective modules.