Math 603. Homework 3 (due Wednesday, March 27, 2019)

1. (a) Let K be a field of characteristic p and let $a \in F$. Show that the polynomial $x^{p}-a \in F[x]$ is either irreducible or is the p-th power of a linear polinomial.
(b) Let P be a field of characteristic $p>0$ and let $F=P(t)$ be the field of rational functions with coefficients in P. Show that the polynomial $x^{p}-t \in F[x]$ is irreducible.
2. Let $\Phi_{n}(x)$ be the n-th cyclotomic polynomial. Show that for every $d<$ n with $d \mid n$ the product $\left(x^{d}-1\right) \Phi_{n}(x)$ divides $x^{n}-1$ in the polynomial ring $\mathbb{Z}[x]$.
3. Consider the tower of finite fields

$$
\mathbb{F}_{p} \subset \mathbb{F}_{p^{2!}} \subset \mathbb{F}_{p^{3!}} \subset \mathbb{F}_{p^{4!}} \subset
$$

Let $\mathbb{F}_{p^{\infty!}}=\cup_{n=1}^{\infty} \mathbb{F}_{p^{n!}}$ with the natural addition and multiplication. Show that $\mathbb{F}_{p^{\infty} \text { ! }}$ is algebraically closed.

