Math 603. Homework 3 (due Wednesday, March 27, 2019)

- 1. (a) Let K be a field of characteristic p and let $a \in F$. Show that the polynomial $x^p a \in F[x]$ is either irreducible or is the p-th power of a linear polynomial.
 - (b) Let P be a field of characteristic p > 0 and let F = P(t) be the field of rational functions with coefficients in P. Show that the polynomial $x^p t \in F[x]$ is irreducible.
- 2. Let $\Phi_n(x)$ be the *n*-th cyclotomic polynomial. Show that for every d < n with d|n the product $(x^d 1)\Phi_n(x)$ divides $x^n 1$ in the polynomial ring $\mathbb{Z}[x]$.
- 3. Consider the tower of finite fields

$$\mathbb{F}_p \subset \mathbb{F}_{p^{2!}} \subset \mathbb{F}_{p^{3!}} \subset \mathbb{F}_{p^{4!}} \subset \cdot.$$

Let $\mathbb{F}_{p^{\infty}} = \bigcup_{n=1}^{\infty} \mathbb{F}_{p^{n}}$ with the natural addition and multiplication. Show that $\mathbb{F}_{p^{\infty}}$ is algebraically closed.