Math 603. Homework 1 Hints on problem 2

2. Let A be a commutative ring. Recall that if M, N are A-modules the commutativity of A implies that the abelian group $\operatorname{Hom}_{A}(M, N)$ of A module homomorphisms has itself a natural A-module structure given as follows. Given $a \in A$ and an A-module homomorphism $f: M \rightarrow N$ we define a new A-module homomorphism

$$
a \cdot f: M \rightarrow N, \quad x \mapsto a f(x),
$$

where $a f(x)$ denotes the action of a on $f(x)$ in the module N.
Fix a finitely generated projective A-module P.
(a) Write P^{\vee} for the A-module $\operatorname{Hom}_{A}(P, A)$. Consider the natural adjunction map ev : $P \rightarrow P^{\vee \vee}$ which to each $x \in P$ assigns the homomorphism $\mathrm{ev}_{x}: P^{\vee} \rightarrow A, \xi \mapsto \xi(x)$ of evaluation on x. Prove that ev is an isomorphism.
(b) Define an A-linear map $\operatorname{tr}: \operatorname{End}_{A}(P) \rightarrow A$ with the property: for any A-linear map $\tau: \operatorname{End}_{A}(P) \rightarrow A$ there exists a unique endomorphism $\varphi \in \operatorname{End}_{A}(P)$ so that $\tau(f)=\operatorname{tr}(f \varphi)$ for all $f \in$ $\operatorname{End}_{A}(P)$.
(c) Show that an A-linear map $\tau: \operatorname{End}_{A}(P) \rightarrow A$ satisfies $\tau(f \circ g)=$ $\tau(g \circ f)$ for all $f, g \in \operatorname{End}_{A}(P)$ if and only if $\tau=a \cdot \operatorname{tr}$ for some $a \in A$.
(d) Given $f \in \operatorname{End}_{A}(P)$ define $f^{\vee} \in \operatorname{End}_{A}\left(P^{\vee}\right)$ as the A-linear map $f^{\vee}: P^{\vee} \rightarrow P^{\vee}, \xi \mapsto \xi \circ f$. Show that $\operatorname{tr}(f)=\operatorname{tr}\left(f^{\vee}\right)$.

Some hints:

For part (b) use to identification $\operatorname{End}_{A}(P) \cong P^{\vee} \otimes_{A} P$ to define tr. Argue that for every decomposable tensor $\xi \times x$ with $\xi \in P^{\vee}$ and $x \in X$ we will have to have $\operatorname{tr}(\xi \otimes x)=\xi(x)$.

Part (c) turns out to be more complicated than I originally intended so in the homework I have changed the statement to the stronger assumption that P is not just finitely generated projective but is actually a free A-module of finite rank.

Here is how you can go on aboout proving the statement in general.
Let P be projective of finite rank, and let $\tau: P \rightarrow A$ be an A-linear map such that $\tau(f g)=\tau(g f)$ for all endomorphisms f and g. As we know for every A-linear τ there is a unique endomorphism φ so that $\tau(f)=\operatorname{tr}(f \varphi)$ for all f.

If g corresponds to the decomposable tensor $\xi \otimes x$, then $g \varphi$ corresponds to the decomposable tensor $(\xi \circ \varphi) \otimes x$ while φg corresponds to the decomposable tensor $\xi \otimes \varphi(x)$. Thus we compute that

$$
\tau(f g)=\operatorname{tr}(f g \varphi)=\xi(\varphi(f(x))) \quad \text { and } \quad \tau(g f)=\operatorname{tr}(g f \varphi)=\xi(f(\varphi(x)))
$$

or equivalently

$$
\xi([f, \varphi](x))=0
$$

for all ξ and x. Thus $\mathrm{ev}_{[f, g](x)}: P^{\vee} \rightarrow A$ is the zero map and so $[f, g](x)=0$ for all x since the adjunction $P \rightarrow P^{\vee \vee}$ is an isomorphism. This shows that φ commutes with every endomorphism $f: P \rightarrow P$.

Now let $Z \subset \operatorname{End}_{A}(P)$ be the center of the algebra $\operatorname{End}_{A}(P)$, i.e. the submodule of all endomorphisms that commute with every other endomorphism. Let $S=\{a \cdot \mathrm{id} \mid a \in A\}$ be the submodule of scalar endomorphisms.

We have natural inclusions of submodules $S \subset Z \subset \operatorname{End}_{A}(P)$ and we want to argue that φ belongs to S.

Suppose first that the module P is free and let x_{1}, \ldots, x_{n} be a system of generators. Then every endomorphism corresponds to an $n \times n$ matrix with entries in A and the trace map is given by the usual matrix formula.

If n equals 1 the statement is obvious. Suppose that $n>1$. We want to show that if $\varphi \in \operatorname{Mat}_{n \times n}(A)$ commutes with every other matrix, then φ must be a scalar matrix. This is the usual linear algebra argument. If $i \neq j$ and $E_{i j}$ is the elementary matrix with entry 1 at place (i, j) and entry zero
everywhere else, then the requirement that φ commutes with $I_{n}+E_{i j}$ for all j says that the (i, i) diagonal entry is the only non-zero entry in the i-th row of φ. This shows that the matrix φ is diagonal. Next let $s_{i j}$ be the matrix that switches x_{i} and x_{j} and keeps all remaining generators fixed. Requiring that φ commutes with $s_{i j}$ implies that the i-th and j-th diagonal entries of φ are equal.

For the general case of P projective you can use a local to global argument and notice that for all prime ideal \mathfrak{p} the localized module $P_{\mathfrak{p}}$ is free and so one can use the above argument to show that $\varphi_{\mathfrak{p}}=0 \in(Z / S)_{\mathfrak{p}}$.

