Math 603. Homework 1 Hints on problem 2

2. Let A be a commutative ring. Recall that if M, N are A-modules the commutativity of A implies that the abelian group $\operatorname{Hom}_A(M, N)$ of A-module homomorphisms has itself a natural A-module structure given as follows. Given $a \in A$ and an A-module homomorphism $f: M \to N$ we define a new A-module homomorphism

$$a \cdot f : M \to N, \quad x \mapsto af(x),$$

where af(x) denotes the action of a on f(x) in the module N.

Fix a finitely generated projective A-module P.

- (a) Write P^{\vee} for the A-module $\operatorname{Hom}_A(P, A)$. Consider the natural adjunction map $\operatorname{ev} : P \to P^{\vee \vee}$ which to each $x \in P$ assigns the homomorphism $\operatorname{ev}_x : P^{\vee} \to A, \xi \mapsto \xi(x)$ of evaluation on x. Prove that ev is an isomorphism.
- (b) Define an A-linear map tr : $\operatorname{End}_A(P) \to A$ with the property: for any A-linear map τ : $\operatorname{End}_A(P) \to A$ there exists a unique endomorphism $\varphi \in \operatorname{End}_A(P)$ so that $\tau(f) = \operatorname{tr}(f\varphi)$ for all $f \in \operatorname{End}_A(P)$.
- (c) Show that an A-linear map τ : End_A(P) \rightarrow A satisfies $\tau(f \circ g) = \tau(g \circ f)$ for all $f, g \in \text{End}_A(P)$ if and only if $\tau = a \cdot \text{tr}$ for some $a \in A$.
- (d) Given $f \in \operatorname{End}_A(P)$ define $f^{\vee} \in \operatorname{End}_A(P^{\vee})$ as the A-linear map $f^{\vee}: P^{\vee} \to P^{\vee}, \xi \mapsto \xi \circ f$. Show that $\operatorname{tr}(f) = \operatorname{tr}(f^{\vee})$.

Some hints:

For part (b) use to identification $\operatorname{End}_A(P) \cong P^{\vee} \otimes_A P$ to define tr. Argue that for every decomposable tensor $\xi \times x$ with $\xi \in P^{\vee}$ and $x \in X$ we will have to have $\operatorname{tr}(\xi \otimes x) = \xi(x)$.

Part (c) turns out to be more complicated than I originally intended so in the homework I have changed the statement to the stronger assumption that P is not just finitely generated projective but is actually a free A-module of finite rank.

Here is how you can go on about proving the statement in general.

Let P be projective of finite rank, and let $\tau : P \to A$ be an A-linear map such that $\tau(fg) = \tau(gf)$ for all endomorphisms f and g. As we know for every A-linear τ there is a unique endomorphism φ so that $\tau(f) = \operatorname{tr}(f\varphi)$ for all f.

If g corresponds to the decomposable tensor $\xi \otimes x$, then $g\varphi$ corresponds to the decomposable tensor $(\xi \circ \varphi) \otimes x$ while φg corresponds to the decomposable tensor $\xi \otimes \varphi(x)$. Thus we compute that

 $\tau(fg) = \operatorname{tr}(fg\varphi) = \xi(\varphi(f(x))) \quad \text{and} \quad \tau(gf) = \operatorname{tr}(gf\varphi) = \xi(f(\varphi(x))),$

or equivalently

$$\xi([f,\varphi](x)) = 0$$

for all ξ and x. Thus $\operatorname{ev}_{[f,g](x)} : P^{\vee} \to A$ is the zero map and so [f,g](x) = 0 for all x since the adjunction $P \to P^{\vee\vee}$ is an isomorphism. This shows that φ commutes with every endomorphism $f : P \to P$.

Now let $Z \subset \operatorname{End}_A(P)$ be the center of the algebra $\operatorname{End}_A(P)$, i.e. the submodule of all endomorphisms that commute with every other endomorphism. Let $S = \{a \cdot \operatorname{id} \mid a \in A\}$ be the submodule of scalar endomorphisms.

We have natural inclusions of submodules $S \subset Z \subset \operatorname{End}_A(P)$ and we want to argue that φ belongs to S.

Suppose first that the module P is free and let x_1, \ldots, x_n be a system of generators. Then every endomorphism corresponds to an $n \times n$ matrix with entries in A and the trace map is given by the usual matrix formula.

If n equals 1 the statement is obvious. Suppose that n > 1. We want to show that if $\varphi \in \operatorname{Mat}_{n \times n}(A)$ commutes with every other matrix, then φ must be a scalar matrix. This is the usual linear algebra argument. If $i \neq j$ and E_{ij} is the elementary matrix with entry 1 at place (i, j) and entry zero everywhere else, then the requirement that φ commutes with $I_n + E_{ij}$ for all j says that the (i, i) diagonal entry is the only non-zero entry in the *i*-th row of φ . This shows that the matrix φ is diagonal. Next let s_{ij} be the matrix that switches x_i and x_j and keeps all remaining generators fixed. Requiring that φ commutes with s_{ij} implies that the *i*-th and *j*-th diagonal entries of φ are equal.

For the general case of P projective you can use a local to global argument and notice that for all prime ideal \mathfrak{p} the localized module $P_{\mathfrak{p}}$ is free and so one can use the above argument to show that $\varphi_{\mathfrak{p}} = 0 \in (Z/S)_{\mathfrak{p}}$.