Math 603. Homework 1
Hints on problem 2

2. Let A be a commutative ring. Recall that if M, N are A-modules the
commutativity of A implies that the abelian group Hom (M, N) of A-
module homomorphisms has itself a natural A-module structure given
as follows. Given a € A and an A-module homomorphism f: M — N
we define a new A-module homomorphism

a-f:M— N, zw— af(z),

where af(x) denotes the action of @ on f(x) in the module N.

Fix a finitely generated projective A-module P.

(a) Write PV for the A-module Hom, (P, A). Consider the natural
adjunction map ev : P — PYV which to each z € P assigns the
homomorphism ev, : PV — A, £ — &(x) of evaluation on z. Prove
that ev is an isomorphism.

(b) Define an A-linear map tr : Ends(P) — A with the property:
for any A-linear map 7 : End4s(P) — A there exists a unique
endomorphism ¢ € Ends(P) so that 7(f) = tr(fp) for all f €
EndA(P)

(c) Show that an A-linear map 7 : End4(P) — A satisfies 7(f o g) =
(g o f) for all f,g € Enda(P) if and only if 7 = a - tr for some
ac A

(d) Given f € End4(P) define f¥ € Ends(PY) as the A-linear map
fY:PY — PY &~ Eo f. Show that tr(f) = tr(fY).



Some hints:

For part (b) use to identification End4(P) = PY ®4 P to define tr. Argue
that for every decomposable tensor £ x x with £ € P¥ and x € X we will
have to have tr({ ® x) = £(x).

Part (¢) turns out to be more complicated than I originally intended so in
the homework I have changed the statement to the stronger assumption that
P is not just finitely generated projective but is actually a free A-module of
finite rank.

Here is how you can go on aboout proving the statement in general.

Let P be projective of finite rank, and let 7 : P — A be an A-linear map
such that 7(fg) = 7(gf) for all endomorphisms f and g. As we know for
every A-linear 7 there is a unique endomorphism ¢ so that 7(f) = tr(fp)
for all f.

If g corresponds to the decomposable tensor £ ® z, then gy corresponds to
the decomposable tensor ({ogp)®x while g corresponds to the decomposable
tensor £ ® p(x). Thus we compute that

7(f9) = tr(fgp) = &(p(f(2))) and  7(gf) = tr(gfp) = £(f((2))),

or equivalently

(1, ¢l(x)) =0

for all £ and z. Thus evis g, : PY — A is the zero map and so [f, g](z) =0
for all z since the adjunction P — PVV is an isomorphism. This shows that
© commutes with every endomorphism f: P — P.

Now let Z C Enda(P) be the center of the algebra End4(P), i.e. the sub-
module of all endomorphisms that commute with every other endomorphism.
Let S ={a-id | a € A} be the submodule of scalar endomorphisms.

We have natural inclusions of submodules S C Z C Ends(P) and we
want to argue that ¢ belongs to S.

Suppose first that the module P is free and let x4, ..., x, be a system of
generators. Then every endomorphism corresponds to an n X n matrix with
entries in A and the trace map is given by the usual matrix formula.

If n equals 1 the statement is obvious. Suppose that n > 1. We want
to show that if ¢ € Mat, x,(A) commutes with every other matrix, then ¢
must be a scalar matrix. This is the usual linear algebra argument. If ¢ # j
and E;; is the elementary matrix with entry 1 at place (i, j) and entry zero
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everywhere else, then the requirement that ¢ commutes with I,, + E;; for all
J says that the (i,4) diagonal entry is the only non-zero entry in the i-th row
of ¢. This shows that the matrix ¢ is diagonal. Next let s;; be the matrix
that switches z; and z; and keeps all remaining generators fixed. Requiring
that ¢ commutes with s;; implies that the i-th and j-th diagonal entries of
@ are equal.

For the general case of P projective you can use a local to global argument
and notice that for all prime ideal p the localized module F, is free and so
one can use the above argument to show that ¢, = 0 € (Z/5),.



