
Math 603. Homework 1
Hints on problem 2

2. Let A be a commutative ring. Recall that if M , N are A-modules the
commutativity of A implies that the abelian group HomA(M,N) of A-
module homomorphisms has itself a natural A-module structure given
as follows. Given a ∈ A and an A-module homomorphism f : M → N
we define a new A-module homomorphism

a · f : M → N, x 7→ af(x),

where af(x) denotes the action of a on f(x) in the module N .

Fix a finitely generated projective A-module P .

(a) Write P∨ for the A-module HomA(P,A). Consider the natural
adjunction map ev : P → P∨∨ which to each x ∈ P assigns the
homomorphism evx : P∨ → A, ξ 7→ ξ(x) of evaluation on x. Prove
that ev is an isomorphism.

(b) Define an A-linear map tr : EndA(P ) → A with the property:
for any A-linear map τ : EndA(P ) → A there exists a unique
endomorphism ϕ ∈ EndA(P ) so that τ(f) = tr(fϕ) for all f ∈
EndA(P ).

(c) Show that an A-linear map τ : EndA(P ) → A satisfies τ(f ◦ g) =
τ(g ◦ f) for all f, g ∈ EndA(P ) if and only if τ = a · tr for some
a ∈ A.

(d) Given f ∈ EndA(P ) define f∨ ∈ EndA(P∨) as the A-linear map
f∨ : P∨ → P∨, ξ 7→ ξ ◦ f . Show that tr(f) = tr(f∨).
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Some hints:

For part (b) use to identification EndA(P ) ∼= P∨ ⊗A P to define tr. Argue
that for every decomposable tensor ξ × x with ξ ∈ P∨ and x ∈ X we will
have to have tr(ξ ⊗ x) = ξ(x).

Part (c) turns out to be more complicated than I originally intended so in
the homework I have changed the statement to the stronger assumption that
P is not just finitely generated projective but is actually a free A-module of
finite rank.

Here is how you can go on aboout proving the statement in general.
Let P be projective of finite rank, and let τ : P → A be an A-linear map

such that τ(fg) = τ(gf) for all endomorphisms f and g. As we know for
every A-linear τ there is a unique endomorphism ϕ so that τ(f) = tr(fϕ)
for all f .

If g corresponds to the decomposable tensor ξ⊗x, then gϕ corresponds to
the decomposable tensor (ξ◦ϕ)⊗x while ϕg corresponds to the decomposable
tensor ξ ⊗ ϕ(x). Thus we compute that

τ(fg) = tr(fgϕ) = ξ(ϕ(f(x))) and τ(gf) = tr(gfϕ) = ξ(f(ϕ(x))),

or equivalently
ξ([f, ϕ](x)) = 0

for all ξ and x. Thus ev[f,g](x) : P∨ → A is the zero map and so [f, g](x) = 0
for all x since the adjunction P → P∨∨ is an isomorphism. This shows that
ϕ commutes with every endomorphism f : P → P .

Now let Z ⊂ EndA(P ) be the center of the algebra EndA(P ), i.e. the sub-
module of all endomorphisms that commute with every other endomorphism.
Let S = {a · id | a ∈ A} be the submodule of scalar endomorphisms.

We have natural inclusions of submodules S ⊂ Z ⊂ EndA(P ) and we
want to argue that ϕ belongs to S.

Suppose first that the module P is free and let x1, . . . , xn be a system of
generators. Then every endomorphism corresponds to an n× n matrix with
entries in A and the trace map is given by the usual matrix formula.

If n equals 1 the statement is obvious. Suppose that n > 1. We want
to show that if ϕ ∈ Matn×n(A) commutes with every other matrix, then ϕ
must be a scalar matrix. This is the usual linear algebra argument. If i 6= j
and Eij is the elementary matrix with entry 1 at place (i, j) and entry zero
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everywhere else, then the requirement that ϕ commutes with In +Eij for all
j says that the (i, i) diagonal entry is the only non-zero entry in the i-th row
of ϕ. This shows that the matrix ϕ is diagonal. Next let sij be the matrix
that switches xi and xj and keeps all remaining generators fixed. Requiring
that ϕ commutes with sij implies that the i-th and j-th diagonal entries of
ϕ are equal.

For the general case of P projective you can use a local to global argument
and notice that for all prime ideal p the localized module Pp is free and so
one can use the above argument to show that ϕp = 0 ∈ (Z/S)p.
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