MATH 114 Sample Midterm 1 Solution

February 7, 2011

Problem 1

Solution:

L_{1} and L_{2} pass through the same point $(3,-4,4) . L_{1}$ is parrallel to vector $\vec{v}_{1}=(-1,1,2)$ and L_{2} is parrallel to vector $\vec{v}_{2}=(1,1,-1)$. So the normal vector is

$$
\mathbf{n}=\mathbf{v}_{1} \times \mathbf{v}_{2}=(-3,1,-2)
$$

So the equation of the plane is

$$
-3 x+y-2 z+d=0
$$

for some d. Plug in the coordinates $(3,-4,4)$,

$$
-9-4-8+d=0 \Rightarrow d=21
$$

The equation of the plane is $-3 x+y-2 z+21=0$.

Problem 2

Solution:

Since $y=f(x)=x^{2}$, we have $f^{\prime}(x)=2 x$ and $f^{\prime \prime}(x)=2$. So the curvature is

$$
\kappa(x)=\frac{f^{\prime \prime}(x)}{\left(1+f^{\prime 2}(x)\right)^{3 / 2}}=\frac{2}{\left(1+4 x^{2}\right)^{3 / 2}},
$$

which attains its maximum at $x=0$, with $\kappa_{\max }=2$. So the osculating circle has minimum radius at $x=0$ with $\rho_{\min }=1 / \kappa_{\max }=1 / 2$. The equation of the circle is

$$
x^{2}+\left(y-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2} .
$$

Problem 3

Solution:

The velocity vector is

$$
\frac{d \vec{r}}{d t}=(\cos t,-2,-\sin t)
$$

So the arclength is

$$
\begin{aligned}
l & =\int_{\pi}^{2 \pi} \sqrt{(\cos t)^{2}+(-2)^{2}+(\sin t)^{2}} d t \\
& =\int_{\pi}^{2 \pi} \sqrt{5} d t \\
& =\sqrt{5} \pi
\end{aligned}
$$

Problem 4

Solution:

If \vec{u} and \vec{v} are orthogonal, we have

$$
0=\vec{u} \cdot \vec{v}=k^{2}-6-k
$$

The solutions are $k=-2$ or $k=3$.

Problem 5

Solution:

The function F is

$$
F(r, l)=(V(r, l), S(r, l))=\left(\pi r^{2} l, 2 \pi r l+2 \pi r^{2}\right)
$$

with derivative

$$
\left[\begin{array}{ll}
\frac{\partial V}{\partial r} & \frac{\partial V}{\partial l} \\
\frac{\partial S}{\partial r} & \frac{\partial S}{\partial l}
\end{array}\right]=\left[\begin{array}{cc}
2 \pi r l & \pi r^{2} \\
2 \pi l+4 \pi r & 2 \pi r
\end{array}\right]
$$

Problem 6

Solution:

Let $\vec{v}_{1}=(1,2,0)$ and $\vec{v}_{2}=(3,0,2)$. Then the area of the parallelogram spanned by them is

$$
S=\left|\vec{v}_{1} \times \vec{v}_{2}\right|=|(4,-2,-6)|=\sqrt{(4)^{2}+(-2)^{2}+\left(-6^{2}\right)}=2 \sqrt{14} .
$$

Problem 7

Solution:

$$
\begin{gathered}
\frac{d \vec{r}(t)}{d t}=(\omega \sinh (\omega t), \omega \cosh (\omega t)) \\
\frac{d^{2} \vec{r}(t)}{d t^{2}}=\left(\omega^{2} \cosh (\omega t), \omega^{2} \sinh (\omega t)\right)=\omega^{2} \vec{r}(t)
\end{gathered}
$$

So the scalar factor is ω^{2}.

Problem 8

Solution:

All pairs of points have distance $\sqrt{2}$ and the angle between any two intersectiong edges is $\pi / 3$.

Problem 9

Solution:

Denote the function for volume, area and cost as V, A, C. It is easy to show that $V(h, w, d)=w h d, A(h, w, d)=2 w h+2 h d+2 w d$ and $C(h, w, d)=$ $13 w h+6 h d+6 w d$. Their derivatives are

$$
\begin{gathered}
V^{\prime}=(w d, h d, w h)=(16,16,16) \\
A^{\prime}=(2 w+2 d, 2 h+2 d, 2 h+2 w)=(16,16,16) \\
C^{\prime}=(13 w+6 d, 13 h+6 d, 6 h+6 w)=(76,76,48)
\end{gathered}
$$

The dimension with least cost increase is the depth. Because $\partial C / \partial d$ is the smallest among three dimensions.

If $d h / d t=2, d w / d t=3$ and $d d / d t=0$, then we have

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{\partial V}{\partial h} \frac{d h}{d t}+\frac{\partial V}{\partial w} \frac{d w}{d t}+\frac{\partial V}{\partial d} \frac{d d}{d t}=16 \cdot 2+16 \cdot 3+16 \cdot 0=80 \\
\frac{d A}{d t} & =\frac{\partial A}{\partial h} \frac{d h}{d t}+\frac{\partial A}{\partial w} \frac{d w}{d t}+\frac{\partial A}{\partial d} \frac{d d}{d t}=16 \cdot 2+16 \cdot 3+16 \cdot 0=80 \\
\frac{d C}{d t} & =\frac{\partial C}{\partial h} \frac{d h}{d t}+\frac{\partial C}{\partial w} \frac{d w}{d t}+\frac{\partial C}{\partial d} \frac{d d}{d t}=76 \cdot 2+76 \cdot 3+48 \cdot 0=380
\end{aligned}
$$

Problem 10

Solution:

(To make typing easier, I have changed the n-by-1 vector to 1 -by- n. Don't do this when you are taking the exam) The two particles intersect when $\vec{r}(t)=\vec{s}(t)$ for $t>0$. We have

$$
\vec{r}(t)-\vec{s}(t)=\left(5 t-t^{2}, 5 t-t^{2}, 5 t-t^{2}\right)
$$

So the two particles intersect when $t=5$.
For particle \vec{r}, the unit tangent vector is

$$
\mathbf{T}_{r}(t)=\frac{\vec{r}^{\prime}(t)}{\left|\vec{r}^{\prime}(t)\right|}=\frac{(1,2,-1)}{\sqrt{6}}=\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)
$$

Since $\mathbf{T}_{r}^{\prime}(t)=0$, the normal vector is undefined. But the curvature is $\kappa_{r}(5)=0$, and the unit tangent vector is $\mathbf{T}_{r}(5)=\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)$.

For particle \vec{s}, the unit tangent vector is

$$
\mathbf{T}_{s}(t)=\frac{\vec{s}^{\prime}(t)}{\left|\vec{s}^{\prime}(t)\right|}=\frac{(-4+2 t, 7-2 t,-6+2 t)}{\sqrt{12 t^{2}-68 t+101}}=f(t)(-4+2 t, 7-2 t,-6+2 t)
$$

where

$$
\begin{gathered}
f(t)=\left(12 t^{2}-68 t+101\right)^{-\frac{1}{2}}=\left(12 t^{2}-68 t+101\right)^{-\frac{3}{2}}\left(12 t^{2}-68 t+101\right) \\
f^{\prime}(t)=-\frac{1}{2}\left(12 t^{2}-68 t+101\right)^{-\frac{3}{2}}(24 t-68)=\left(12 t^{2}-68 t+101\right)^{-\frac{3}{2}}(-12 t+34)
\end{gathered}
$$

So the unit normal vector is

$$
\mathbf{N}_{s}(t)=\frac{\mathbf{T}_{s}^{\prime}(t)}{\left|\mathbf{T}_{s}^{\prime}(t)\right|}=\frac{(48 t+66,-84 t+36,72 t-2)}{\sqrt{(48 t+66)^{2}+(-84 t+36)^{2}+(72 t-2)^{2}}}
$$

Plug in $t=5$, we have

$$
\begin{gathered}
\mathbf{T}_{s}(5)=\frac{(6,-3,4)}{\sqrt{61}}=\left(\frac{6}{\sqrt{61}}, \frac{-3}{\sqrt{61}}, \frac{4}{\sqrt{61}}\right) \\
\mathbf{N}_{s}(5)=\frac{(306,-384,358)}{\sqrt{369256}}=\left(\frac{153}{\sqrt{92314}},-\frac{192}{\sqrt{92314}}, \frac{179}{\sqrt{92314}}\right)
\end{gathered}
$$

For the curvature κ_{s}, we have to compute the velocity and acceleration

$$
\vec{s}^{\prime}(t)=(-4+2 t, 7-2 t,-6+2 t), \vec{s}^{\prime \prime}(t)=(2,-2,2)
$$

so the curvature is

$$
\kappa_{s}(5)=\frac{|(6,-3,4) \times(2,-2,2)|}{|(6,-3,4)|^{3}}=\frac{2 \sqrt{14}}{61 \sqrt{61}} .
$$

Problem 11

Solution:

The function is $S(\rho, \theta, \phi)=(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$. The determinant of the derivative matrix is

$$
\begin{aligned}
D S & =\left|\begin{array}{ccc}
\cos \theta \sin \phi & -\rho \sin \theta \sin \phi & \rho \cos \theta \cos \phi \\
\sin \theta \sin \phi & \rho \cos \theta \sin \phi & \rho \sin \theta \cos \phi \\
\cos \phi & 0 & -\rho \sin \phi
\end{array}\right| \\
& =\rho^{2}\left(-\cos ^{2} \theta \sin ^{3} \phi-\sin ^{2} \theta \sin \phi \cos ^{2} \phi-\cos ^{2} \theta \sin \phi \cos ^{2} \phi-\sin ^{2} \theta \sin ^{3} \phi\right) \\
& =\rho^{2}\left(-\sin ^{3} \phi-\sin \phi \cos ^{2} \phi\right) \\
& =-\rho^{2} \sin \phi
\end{aligned}
$$

Problem 12

Solution:

Since $P V=n R T$, then

$$
P=\frac{n R T}{V}, V=\frac{n R T}{P}, T=\frac{P V}{n R} .
$$

Then the partial derivative is

$$
\frac{\partial P}{\partial V}=-\frac{n R T}{V^{2}}, \frac{\partial V}{\partial T}=\frac{n R}{P}, \frac{\partial T}{\partial P}=\frac{V}{n R}
$$

So their product is

$$
\frac{\partial P}{\partial V} \frac{\partial V}{\partial T} \frac{\partial T}{\partial P}=-\frac{n^{2} R^{2} T V}{V^{2} P n R}=-\frac{n R T}{P V}=-1
$$

