MATH 114 Sample Midterm 2 Solution

February 28, 2011

Problem 1

Solution:

Note: $(1,2,3)$ isn't on the surface! So we change the equation to $x^{3}-x y^{2}+4 x z=9$

Rearrange the equation as $4 x z=9-x^{3}+x y^{2}$, so

$$
z=f(x, y)=\frac{1}{4}\left(-x^{2}+y^{2}+\frac{9}{x}\right)
$$

The first partial derivatives are

$$
\begin{gathered}
f_{x}(x, y)=-\frac{x}{2}-\frac{9}{4 x^{2}}, f_{x}(1,2)=-\frac{11}{4} \\
f_{y}(x, y)=\frac{y}{2}, f_{y}(1,2)=1
\end{gathered}
$$

Hence the tangent plan at the given point is given by the following equation

$$
(z-3)=-\frac{11}{4}(x-1)+(y-2)
$$

Thank Rafael Pelles for pointing out a mistake in the old solution.

Problem 2

Solution:

$$
\begin{aligned}
D_{(0,0,0)}(f \circ g) & =D_{g(0,0,0)} f \cdot D_{(0,0,0)} g \\
& =D_{(0,0, \pi)} f \cdot D_{(0,0,0)} g,
\end{aligned}
$$

where

$$
\begin{aligned}
D_{(0,0, \pi)} f & =\left.\left[\begin{array}{ccc}
-v w \sin (u v w) & -u w \sin (u v w) & -u v \sin (u v w) \\
v w \cos (u v w) & u w \cos (u v w) & u v \cos (u v w) \\
\sec ^{2}(u+v+w) & \sec ^{2}(u+v+w) & \sec ^{2}(u+v+w)
\end{array}\right]\right|_{(0,0, \pi)} \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
D_{(0,0,0)} g & =\left.\left[\begin{array}{ccc}
1 & 1 & 1 \\
y z & x z & x y \\
\pi y z e^{x y z} & \pi x z e^{x y z} & \pi x y e^{x y z}
\end{array}\right]\right|_{(0,0,0)} \\
& =\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Hence

$$
D_{(0,0,0)}(f \circ g)=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Problem 3

Expand the equation of the ellipse at $(1,1)$ as

$$
\begin{aligned}
0 & =2 x^{2}+y^{2}-3 \\
& =2[(x-1)+1]^{2}+[(y-1)+1]^{2}-3 \\
& =2(x-1)^{2}+4(x-1)+2+(y-1)^{2}+2(y-1)+1-3 \\
& =4(x-1)+2(y-1)+o(2)
\end{aligned}
$$

Drop the non-linear terms (quadratic terms here) so we have the equation of the tangent line

$$
0=4(x-1)+2(y-1)
$$

Problem 4

We have the derivative of f and the Hessian of f as

$$
\begin{aligned}
D f(1,-2,1) & =\left.\left(3 x^{2}-2 y+2 x z,-2 x, x^{2}+7\right)\right|_{(1,-2,1)}=(9,-2,8) \\
H f(1,-2,1) & =\left.\left[\begin{array}{ccc}
6 x+2 z & -2 & 2 x \\
-2 & 0 & 0 \\
2 x & 0 & 0
\end{array}\right]\right|_{(1,-2,1)}=\left[\begin{array}{ccc}
8 & -2 & 2 \\
-2 & 0 & 0 \\
2 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

So the taylor expansion up to order 2 is

$$
\begin{aligned}
f(x, y, z) \approx & f(1,-2,1)+d \cdot D f+\frac{1}{2} d^{\prime}[H f] d \\
= & 13+9(x-1)-2(y+2)+8(z-1) \\
& +4(x-1)^{2}-2(x-1)(y+2)+2(x-1)(z-1)
\end{aligned}
$$

x produces the largest change in f when varied because the coefficient for $(x-1)$ has the largest absolute value among all the three ($9,-2$ and 8).

Problem 5

Note that

$$
\left.\nabla f\right|_{(1,1,0)}=\left.(2 x,-2 y,-2 z)\right|_{(1,1,0)}=(2,-2,0)
$$

So the direction with deepest decrease is $(-2,2,0)$.

Problem 6

Let $f(x, y)=x^{3}-12 x y+8 y^{3}$. Then the derivative and Hessian are

$$
\begin{aligned}
D f(x, y) & =\left(3 x^{2}-12 y,-12 x+24 y^{2}\right) \\
H f(x, y) & =\left[\begin{array}{cc}
6 x & -12 \\
-12 & 48 y
\end{array}\right]
\end{aligned}
$$

By setting $D f=0$, we have two critical points $(0,0)$ and $(2,1)$. For $(0,0)$, $\operatorname{det}[H f]=-144<0$. So $(0,0)$ is a saddle point. For $(2,1)$, $\operatorname{det}[H f]=432>0$ and $f_{x x}=12>0$, so $(2,1)$ is a local minimum.

Problem 7

Assume the silo has the cylinder part with radius r and height h. Then the volume and the cost functions are

$$
\begin{aligned}
V(r, h) & =\pi r^{2} h+\frac{2}{3} \pi r^{3} \\
C(r, h) & =\pi r^{2}+4 \pi r h+10 \pi r^{2}
\end{aligned}
$$

With the constraint $V(r, h)=900 \pi$, we want to minimze $C(r, h)$. The Langrange multiplier method can be applied as follows,

$$
\begin{aligned}
& \nabla V=\left(2 \pi r h+2 \pi r^{2}, \pi r^{2}\right) \\
& \nabla C=(2 \pi r+4 \pi h+20 \pi r, 4 \pi r)=(22 \pi r+4 \pi h, 4 \pi r)
\end{aligned}
$$

The extreme value is attained when $\nabla C=\lambda \nabla V$ for some λ. By comparing the second coordinate we know $\lambda=4 / r$. Then plug that into the equation for first coordinate, we have

$$
\begin{aligned}
8 \pi h+8 \pi r & =22 \pi r+4 \pi h \\
(8-4) \pi h & =(22-8) \pi r \\
h & =\frac{7}{2} r
\end{aligned}
$$

Plug this equation into $V(r, h)=900 \pi$, the solution is

$$
\begin{aligned}
r & =6 \\
h & =21
\end{aligned}
$$

Thank Spencer Lee for pointing out a mistake in the old solution.

Problem 8

$$
\begin{aligned}
& \sin \left(y+z+e^{x y}-\cos (x z)\right) \\
= & \sin \left[y+z+\left(1+x y+\frac{x^{2} y^{2}}{2}+o(4)\right)-\left(1-\frac{x^{2} z^{2}}{2}+o(4)\right)\right] \\
= & \sin \left[y+z+x y+\frac{x^{2} y^{2}}{2}+\frac{x^{2} z^{2}}{2}+o(4)\right] \\
= & {\left[y+z+x y+\frac{x^{2} y^{2}}{2}+\frac{x^{2} z^{2}}{2}\right]-\frac{1}{3!}\left[y+z+x y+\frac{x^{2} y^{2}}{2}+\frac{x^{2} z^{2}}{2}\right]^{3}+o(4) } \\
= & y+z+x y+\frac{x^{2} y^{2}}{2}+\frac{x^{2} z^{2}}{2}-\frac{1}{6}\left[(y+z)^{3}+3 x y(y+z)\right]+o(4) \\
\approx & y+z+x y-\frac{y^{3}}{6}-\frac{3 y^{2} z}{6}-\frac{3 y z^{2}}{6}-\frac{z^{3}}{6}-\frac{3 x y^{2}}{6}-\frac{3 x y z}{6}+\frac{x^{2} y^{2}}{2}+\frac{x^{2} z^{2}}{2} .
\end{aligned}
$$

Note that the second last equation is because we can pick out all the products which won't blow the order limit 4 . In this case we can choose the cube of order 1 terms $(y+z)$, or the product of one order two terms $(x y)$ and the square of order 1 terms $(y+z)$.

Problem 9

Same as problem 6, the derivative and Hessian are

$$
\begin{aligned}
D f(x, y) & =\left(-4 x^{3}+8 x^{2},-4 y^{3}+12 y^{2}\right) \\
H f(x, y) & =\left[\begin{array}{cc}
-12 x^{2}+16 x & 0 \\
0 & -12 y^{2}+24 y
\end{array}\right]
\end{aligned}
$$

By setting $D f=0$, we have 4 critical points $(0,0),(0,3),(2,0)$ and (2,3). For the first 3 , $\operatorname{det}[H f]=0$, so they can't be classified. For the last critical point, $\operatorname{det}[H f]=576>0$, and $f_{x x}=-16<0$, so it's a local maximum.

For the global maximum, by plug into the 4 critical points, we know it attains its maximum at

$$
f(2,3)=\frac{97}{3}
$$

Problem 10

Since $c=2 s-a-b$, so we turn this problem into maximize

$$
S(a, b)=A^{2}(a, b)=s(s-a)(s-b)(a+b-s)
$$

with the constraint $s>0$ is some constant. So we only need to assume s is some constant, and find the global maximum for A^{2}. The derivative of S is

$$
D S(a, b)=(s(s-b)(2 s-2 a-b), s(s-a)(2 s-a-2 b))
$$

By setting it to 0 , we have several solutions. If $b=s$, then we need either $a=0$ or $a=s$, which doesnt make sense because we don't want either side of
the trianble to have length 0 . So the only solution is $a=b=\frac{2 s}{3}$. In this case c is also $\frac{2 s}{3}$. This indicates that the maximum area is attained by equilateral triangle.

Problem 11

We can linearly expande the function A around $(2,1)$

$$
\begin{aligned}
A(r, h) & =\pi r \sqrt{r^{2}+h^{2}} \\
& =\pi[(r-2)+2] \sqrt{[(r-2)+2]^{2}+[(h-1)+1]^{2}} \\
& \approx \pi[(r-2)+2] \sqrt{4(r-2)+2(h-1)+5} \\
& =\sqrt{5} \pi[(r-2)+2] \sqrt{1+\frac{4}{5}(r-2)+\frac{2}{5}(h-1)} \\
& \approx \sqrt{5} \pi[(r-2)+2]\left[1+\frac{2}{5}(r-2)+\frac{1}{5}(h-1)\right] \\
& \approx \sqrt{5} \pi\left[2+\frac{9}{5}(r-2)+\frac{2}{5}(h-1)\right] .
\end{aligned}
$$

In the fifth line we are using the Taylor expansion of $\sqrt{1+x} \approx 1+\frac{x}{2}+o(x)$. Now we plugin $(1.98,1.03)$

$$
A(1.98,1.03) \approx \sqrt{5} \pi[2+1.8 \cdot(-0.02)+0.4 \cdot(0.03)]=4.418 \pi
$$

It's pretty close to the true value $A(1.98,1.03)=4.419 \pi$.

