
MATH 114 Sample Midterm 3 Solution

April 11, 2011

Problem 1

Solution:
First we can isolate y′

y′ − 2

x
y = x.

We have p(x) = − 2
x , Q(x) = x. The integrating factor is

I(x) = e
∫
P (x)dx = e

∫
− 2
xdx = e−2 log x = x−2.

Using the formula for general solution

y(x) =

∫
Q(x)I(x)dx+ C

I(x)
=

∫
x−1dx+ C

x−2
= x2(log x+ C).

With initial condition y(1) = e, the special solution is y(x) = x2(log x+ e).
So y(e) is

y(e) = e2(log e+ e) = e2 + e3.

Problem 2

Solution:
Same as in problem 1. We first isolate y′

y′ − xy =
cosx

x
(1)

Then P (x) = −x, Q(x) = cos x
x . The integrating factor is

I(x) = e
∫
P (x)dx = e

∫
−xdx = e−

x2

2 .

By multiplying I(x) to the left side of equation (1)

e−
x2

2 (y′ − xy) = e−
x2

2
dy

dx
+ y

d

dx
(e−

x2

2 ) =
d

dx
(e−

x2

2 y).

Where the last equation follows from the product rule.
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Problem 3

Solution:
(Please figure out the region by yourself) The original version of the region

is R = {(x, y)|0 ≤ x ≤ 3,
√
x/3 ≤ y ≤ 1}. The other version is R = {(x, y)|0 ≤

y ≤ 1, 0 ≤ x ≤ 3y2}. So the other way to interpret the original double integral
is ∫ 1

0

∫ 3y2

0

ey
3

dxdy =

∫ 1

0

3y2ey
3

dy =

∫ 1

0

ey
3

d(y3) = ey
3
∣∣∣1
0

= e− 1.

Problem 4

Solution:
The first shpere under Cartesian coordinates is (ρ2 = ρ cos(φ)) x2+y2+z2 =

z. By completing square, we have x2 + y2 + (z − 1
2 )2 = ( 1

2 )2. So the region
looks like a small ball being removed from a large hemisphere. Since z ≥ 0,
then the region in shperical coordinates is E = {(ρ, φ, θ)|0 ≤ θ ≤ 2π, 0 ≤ φ ≤
π/2, cosφ ≤ ρ ≤ 2}. The triple integral will give us the volume of the region E

V (E) =

∫ 2π

0

∫ π
2

0

∫ 2

cosφ

1 · ρ2 sin(φ) · dρdφdθ

=

∫ 2π

0

∫ π
2

0

ρ3

3

∣∣∣∣2
ρ=cos(φ)

sin(φ)dφdθ

=
8

3

∫ 2π

0

∫ π
2

0

sin(φ)dφdθ − 1

3

∫ 2π

0

∫ π
2

0

cos3(φ) sin(φ)dφdθ

Where the first term is actually the volume of the hemisphere.

8

3

∫ 2π

0

∫ π
2

0

sin(φ)dφdθ =
8

3

∫ 2π

0

[− cos(φ)]|
π
2

φ=0 dθ =
16π

3
.

While the second term is the volume of the removed small ball. We have
cos3(φ) sin(φ)dφ = − cos3(φ)d(cos(φ)) = − 1

4d(cos4(φ)), so we can use the change
of variable to evalue the inner integral

1

3

∫ 2π

0

∫ π
2

0

cos3(φ) sin(φ)dφdθ =
1

3

∫ 2π

0

[−1

4
cos4(φ)]

∣∣∣∣π2
φ=0

dθ =
π

6
.

So the original integral is

V (E) =
16π

3
− π

6
=

31π

6
.

Problem 5

Solution: (Updated)
(a) Assume the radius is 1 without loss of generality. The solid lies above

the 45◦ north latitude line is enclosed by the surfaces z =
√

1− x2 − y2 (top of

2



hemisphere) and z =
√

2/2. By letting the first surface higher than the second

√
1− x2 − y2 ≥

√
2

2

x2 + y2 ≤ 1

2
,

we have the region over which the double integral should be set up. To evaluate
the volume ∫∫

x2+y2≤1/2

√
1− x2 − y2 −

√
2

2
dxdy.

The first part can be evaluated as∫∫
x2+y2≤1/2

√
1− x2 − y2 dxdy

=

∫ 2π

0

∫ √
2

2

0

√
1− r2r drdθ

= 2π

∫ √
2

2

0

√
1− r2 1

2
d(r2)

= 2π

[
−1

3
(1− r2)

3
2

]∣∣∣∣
√

2
2

0

=
2π

3
−
√

2π

6
.

The second part describes a cylinder with base area π/2 and height
√

2/2,

so the volume is
√

2π/4. Then the total volume is 2π
3 −

5
√
2π

12 .
Hence the proportion is

p =
2π
3 −

5
√
2π

12
4π
3

=
8− 5

√
2

16
.

(b) Under the (same!) appropriate coordinate transformation, the volume of
northern region and the whole earth are simutaneouly multiplied by the same
constant det(J) = λ2. For both of them, the volume is increasing at the same
rate, and the proportion stays the same.

Problem 6

Solution:
The region is just the first quadrant, with polar coordinates R = {(r, θ)|0 ≤
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r <∞, 0 ≤ θ ≤ π/2}. The double integral can be rewritten as∫ ∞
0

∫ ∞
0

1

(1 + x2 + y2)2
dxdy

=

∫ π
2

0

∫ ∞
0

1

(1 + r2)2
rdrdθ

=
π

2

∫ ∞
0

1

(1 + r2)2
1

2
d(1 + r2)

=
π

4

[
− 1

1 + r2

]∣∣∣∣∞
r=0

=
π

4
,

where the third equation is because d(1 + r2) = 2rdr.

Problem 7

Solution:
By eliminating r in two equations, we know 4 cos θ = sec θ, the solution is

θ = ± arccos( 1
2 ) = ±π3 . So the region can be interpreted as R = {(r, θ)|π3 ≤ θ ≤

π
3 , sec θ ≤ r ≤ 4 cos θ}. The double integral to evaluate the area is (with a little
help from integration table)∫ π

3

−π3

∫ 4 cos θ

sec θ

rdrdθ =

∫ π
3

−π3
8 cos2 θ − 1

2 cos2 θ
dθ

=

[
4θ + 2 sin(2θ)− 1

2
tan θ

]∣∣∣∣π3
−π3

=
8π

3
+ 2
√

3−
√

3

=
8π

3
+
√

3

To give you some geometric sense, the first equation is a circle with center
(2, 0) and radius 2. The second equation is the straight line x = 1.

Problem 8

Solution:
First of all, the volume of unit cube is always 1 (That’s why it’s called

*unit*). Then the average of square distance to the origin of a unit cube in Rn

is just the n-ple integral∫ 0.5

−0.5
· · ·
∫ 0.5

−0.5

n∑
i=1

x2i dx1 · · · dxn =

∫ 0.5

−0.5
· · ·
∫ 0.5

−0.5
nx21dx1 · · · dxn

=

∫ 0.5

−0.5
nx21dx1 = n/12.
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The first equation is due to symmetry over indices. The second equation is

due to Fubini’s theorem and evaluating all the irrelevant integrals
∫ 0.5

−0.5 1dxj = 1
with j > 1.

Problem 9

Solution:
By eliminating z, we have the area on xy-space. 5 − x2 − y2 ≥ 4x2 + 4y2

since the first parabloid is on top of the second one. By solving this inequality
we have x2 + y2 ≤ 1. So the volume is∫∫

x2+y2≤1

5− x2 − y2 − (4x2 + 4y2) dxdy

=

∫ 2π

0

∫ 1

0

(5− 5r2)r drdθ

= 2π

[
5

2
r2 − 5

4
r4
]∣∣∣∣1

0

=
5π

2

Problem 10

Solution: (Updated)
The original region of double integral is a triangle with vertices (0, 0), (2, 0)

and (2/3, 2/3) in xy-coordinates. Now if we use the linear transformation u =
x+ 2y and v = x− y. The Jacobian and its determinant is

J =
∂(u, v)

∂(x, y)
=

[
1 2
1 −1

]
, det(J) = −3.

The new uv-coordinates for those vertices are (0, 0), (2, 2) and (2, 0). The
linear transformation will only shear or translate the region. So the new region
must be the triangle with those 3 new vertices. So we can choose our new region
as R = {(u, v)|0 ≤ u ≤ 2, 0 ≤ v ≤ u}. The new double integral is∫ 2

0

∫ u

0

ue−v
∣∣∣∣det(

∂(x, y)

∂(u, v)
)

∣∣∣∣ dvdu
=

∫ 2

0

∫ u

0

ue−v
∣∣det(J−1)

∣∣ dvdu
=

1

3

∫ 2

0

u(1− e−u)du

=
1

3

[
u2

2
+ ue−u + e−u

]∣∣∣∣2
0

=
1

3
+ e−2.

Please note that you would need to do integration by parts (or look at an
integration table) in the middle of this.
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Problem 11

Solution:
The region can be descried as E = {(x, y, z)|x ∈ [0, 2], y ∈ [0,

√
x], z ∈

[0, 4− x2]}. So the mass of the solid is

m =

∫ 2

0

∫ √x
0

∫ 4−x2

0

ρ(x, y, z) dzdydx =

∫ 2

0

∫ √x
0

∫ 4−x2

0

xy dzdydx

=

∫ 2

0

∫ √x
0

[z]|4−x
2

0 xy dydx =

∫ 2

0

∫ √x
0

(4x− x3)y dydx

=

∫ 2

0

(4x− x3)

[
y2

2

]∣∣∣∣
√
x

0

dx =

∫ 2

0

(2x2 − x4

2
) dx

=

[
2x3

3
− x5

10

]∣∣∣∣2
0

=
32

15
.

And the total x coordinate is

mx =

∫ 2

0

∫ √x
0

∫ 4−x2

0

xρ(x, y, z) dzdydx =

∫ 2

0

∫ √x
0

∫ 4−x2

0

x2y dzdydx

=

∫ 2

0

∫ √x
0

[z]|4−x
2

0 x2y dydx =

∫ 2

0

∫ √x
0

(4x2 − x4)y dydx

=

∫ 2

0

(4x2 − x4)

[
y2

2

]∣∣∣∣
√
x

0

dx =

∫ 2

0

(2x3 − x5

2
) dx

=

[
x4

2
− x6

12

]∣∣∣∣2
0

=
8

3
.

The total y coordinate is

my =

∫ 2

0

∫ √x
0

∫ 4−x2

0

yρ(x, y, z) dzdydx =

∫ 2

0

∫ √x
0

∫ 4−x2

0

xy2 dzdydx

=

∫ 2

0

∫ √x
0

[z]|4−x
2

0 xy2 dydx =

∫ 2

0

∫ √x
0

(4x− x3)y2 dydx

=

∫ 2

0

(4x− x3)

[
y3

3

]∣∣∣∣
√
x

0

dx =

∫ 2

0

(
4x2.5

3
− x4.5

3
) dx

=

[
4x3.5

10.5
− x5.5

16.5

]∣∣∣∣2
0

=
64
√

2

231
.

6



The total z coordinate is

m =

∫ 2

0

∫ √x
0

∫ 4−x2

0

zρ(x, y, z) dzdydx =

∫ 2

0

∫ √x
0

∫ 4−x2

0

xyz dzdydx

=

∫ 2

0

∫ √x
0

[
z2

2

]∣∣∣∣4−x
2

0

xy dydx =

∫ 2

0

∫ √x
0

(8x− 4x3 +
x5

2
)y dydx

=

∫ 2

0

(8x− 4x3 +
x5

2
)

[
y2

2

]∣∣∣∣
√
x

0

dx =

∫ 2

0

(4x2 − 2x4 +
x6

4
) dx

=

[
4x3

3
− 2x5

5
+
x7

28

]∣∣∣∣2
0

=
256

105
.

Hence the center of mass is at 1
m (mx,my,mz) = (5

4 ,
10
√
2

77 , 87 ).

Problem 12

Solution:
The original region can be regarded as a triangle with vertices (0, 0), (R, 0)

and (R,R) under xy-coordinates with R→∞. With the same idea as problem
10, if we apply the transformation u = x − y, v = y. The Jacobian and its
determinant is

∂(u, v)

∂(x, y)
=

[
1 −1
0 1

]
, det(J) = 1.

The vertices are transformed to (0, 0), (R, 0) and (0, R) under uv-coordinates.
However, as R → ∞, the limit of the region is the first quadrant. Hence the
new double integral is ∫ ∞

0

∫ ∞
0

e−su−svf(u, v)dudv
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