MATH 114 Sample Midterm 3 Solution

April 11, 2011

Problem 1

Solution:

First we can isolate y^{\prime}

$$
y^{\prime}-\frac{2}{x} y=x .
$$

We have $p(x)=-\frac{2}{x}, Q(x)=x$. The integrating factor is

$$
I(x)=e^{\int P(x) d x}=e^{\int-\frac{2}{x} d x}=e^{-2 \log x}=x^{-2} .
$$

Using the formula for general solution

$$
y(x)=\frac{\int Q(x) I(x) d x+C}{I(x)}=\frac{\int x^{-1} d x+C}{x^{-2}}=x^{2}(\log x+C) .
$$

With initial condition $y(1)=e$, the special solution is $y(x)=x^{2}(\log x+e)$. So $y(e)$ is

$$
y(e)=e^{2}(\log e+e)=e^{2}+e^{3} .
$$

Problem 2

Solution:

Same as in problem 1. We first isolate y^{\prime}

$$
\begin{equation*}
y^{\prime}-x y=\frac{\cos x}{x} \tag{1}
\end{equation*}
$$

Then $P(x)=-x, Q(x)=\frac{\cos x}{x}$. The integrating factor is

$$
I(x)=e^{\int P(x) d x}=e^{\int-x d x}=e^{-\frac{x^{2}}{2}}
$$

By multiplying $I(x)$ to the left side of equation (1)

$$
e^{-\frac{x^{2}}{2}}\left(y^{\prime}-x y\right)=e^{-\frac{x^{2}}{2}} \frac{d y}{d x}+y \frac{d}{d x}\left(e^{-\frac{x^{2}}{2}}\right)=\frac{d}{d x}\left(e^{-\frac{x^{2}}{2}} y\right)
$$

Where the last equation follows from the product rule.

Problem 3

Solution:

(Please figure out the region by yourself) The original version of the region is $R=\{(x, y) \mid 0 \leq x \leq 3, \sqrt{x / 3} \leq y \leq 1\}$. The other version is $R=\{(x, y) \mid 0 \leq$ $\left.y \leq 1,0 \leq x \leq 3 y^{2}\right\}$. So the other way to interpret the original double integral is

$$
\int_{0}^{1} \int_{0}^{3 y^{2}} e^{y^{3}} d x d y=\int_{0}^{1} 3 y^{2} e^{y^{3}} d y=\int_{0}^{1} e^{y^{3}} d\left(y^{3}\right)=\left.e^{y^{3}}\right|_{0} ^{1}=e-1
$$

Problem 4

Solution:

The first shpere under Cartesian coordinates is $\left(\rho^{2}=\rho \cos (\phi)\right) x^{2}+y^{2}+z^{2}=$ z. By completing square, we have $x^{2}+y^{2}+\left(z-\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}$. So the region looks like a small ball being removed from a large hemisphere. Since $z \geq 0$, then the region in shperical coordinates is $E=\{(\rho, \phi, \theta) \mid 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq$ $\pi / 2, \cos \phi \leq \rho \leq 2\}$. The triple integral will give us the volume of the region \bar{E}

$$
\begin{aligned}
V(E) & =\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \int_{\cos \phi}^{2} 1 \cdot \rho^{2} \sin (\phi) \cdot d \rho d \phi d \theta \\
& =\left.\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \frac{\rho^{3}}{3}\right|_{\rho=\cos (\phi)} ^{2} \sin (\phi) d \phi d \theta \\
& =\frac{8}{3} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \sin (\phi) d \phi d \theta-\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \cos ^{3}(\phi) \sin (\phi) d \phi d \theta
\end{aligned}
$$

Where the first term is actually the volume of the hemisphere.

$$
\frac{8}{3} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \sin (\phi) d \phi d \theta=\left.\frac{8}{3} \int_{0}^{2 \pi}[-\cos (\phi)]\right|_{\phi=0} ^{\frac{\pi}{2}} d \theta=\frac{16 \pi}{3}
$$

While the second term is the volume of the removed small ball. We have $\cos ^{3}(\phi) \sin (\phi) d \phi=-\cos ^{3}(\phi) d(\cos (\phi))=-\frac{1}{4} d\left(\cos ^{4}(\phi)\right)$, so we can use the change of variable to evalue the inner integral

$$
\frac{1}{3} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{2}} \cos ^{3}(\phi) \sin (\phi) d \phi d \theta=\left.\frac{1}{3} \int_{0}^{2 \pi}\left[-\frac{1}{4} \cos ^{4}(\phi)\right]\right|_{\phi=0} ^{\frac{\pi}{2}} d \theta=\frac{\pi}{6}
$$

So the original integral is

$$
V(E)=\frac{16 \pi}{3}-\frac{\pi}{6}=\frac{31 \pi}{6}
$$

Problem 5

Solution: (Updated)

(a) Assume the radius is 1 without loss of generality. The solid lies above the 45° north latitude line is enclosed by the surfaces $z=\sqrt{1-x^{2}-y^{2}}$ (top of
hemisphere) and $z=\sqrt{2} / 2$. By letting the first surface higher than the second

$$
\begin{aligned}
\sqrt{1-x^{2}-y^{2}} & \geq \frac{\sqrt{2}}{2} \\
x^{2}+y^{2} & \leq \frac{1}{2}
\end{aligned}
$$

we have the region over which the double integral should be set up. To evaluate the volume

$$
\iint_{x^{2}+y^{2} \leq 1 / 2} \sqrt{1-x^{2}-y^{2}}-\frac{\sqrt{2}}{2} d x d y
$$

The first part can be evaluated as

$$
\begin{aligned}
& \iint_{x^{2}+y^{2} \leq 1 / 2} \sqrt{1-x^{2}-y^{2}} d x d y \\
= & \int_{0}^{2 \pi} \int_{0}^{\frac{\sqrt{2}}{2}} \sqrt{1-r^{2}} r d r d \theta \\
= & 2 \pi \int_{0}^{\frac{\sqrt{2}}{2}} \sqrt{1-r^{2}} \frac{1}{2} d\left(r^{2}\right) \\
= & \left.2 \pi\left[-\frac{1}{3}\left(1-r^{2}\right)^{\frac{3}{2}}\right]\right|_{0} ^{\frac{\sqrt{2}}{2}} \\
= & \frac{2 \pi}{3}-\frac{\sqrt{2} \pi}{6}
\end{aligned}
$$

The second part describes a cylinder with base area $\pi / 2$ and height $\sqrt{2} / 2$, so the volume is $\sqrt{2} \pi / 4$. Then the total volume is $\frac{2 \pi}{3}-\frac{5 \sqrt{2} \pi}{12}$.

Hence the proportion is

$$
p=\frac{\frac{2 \pi}{3}-\frac{5 \sqrt{2} \pi}{12}}{\frac{4 \pi}{3}}=\frac{8-5 \sqrt{2}}{16} .
$$

(b) Under the (same!) appropriate coordinate transformation, the volume of northern region and the whole earth are simutaneouly multiplied by the same constant $\operatorname{det}(J)=\lambda^{2}$. For both of them, the volume is increasing at the same rate, and the proportion stays the same.

Problem 6

Solution:

The region is just the first quadrant, with polar coordinates $R=\{(r, \theta) \mid 0 \leq$
$r<\infty, 0 \leq \theta \leq \pi / 2\}$. The double integral can be rewritten as

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\left(1+x^{2}+y^{2}\right)^{2}} d x d y \\
= & \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} \frac{1}{\left(1+r^{2}\right)^{2}} r d r d \theta \\
= & \frac{\pi}{2} \int_{0}^{\infty} \frac{1}{\left(1+r^{2}\right)^{2}} \frac{1}{2} d\left(1+r^{2}\right) \\
= & \left.\frac{\pi}{4}\left[-\frac{1}{1+r^{2}}\right]\right|_{r=0} ^{\infty} \\
= & \frac{\pi}{4}
\end{aligned}
$$

where the third equation is because $d\left(1+r^{2}\right)=2 r d r$.

Problem 7

Solution:

By eliminating r in two equations, we know $4 \cos \theta=\sec \theta$, the solution is $\theta= \pm \arccos \left(\frac{1}{2}\right)= \pm \frac{\pi}{3}$. So the region can be interpreted as $R=\left\{(r, \theta) \left\lvert\, \frac{\pi}{3} \leq \theta \leq\right.\right.$ $\left.\frac{\pi}{3}, \sec \theta \leq r \leq 4 \cos \theta\right\}$. The double integral to evaluate the area is (with a little help from integration table)

$$
\begin{aligned}
\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{\sec \theta}^{4 \cos \theta} r d r d \theta & =\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} 8 \cos ^{2} \theta-\frac{1}{2 \cos ^{2} \theta} d \theta \\
& =\left.\left[4 \theta+2 \sin (2 \theta)-\frac{1}{2} \tan \theta\right]\right|_{-\frac{\pi}{3}} ^{\frac{\pi}{3}} \\
& =\frac{8 \pi}{3}+2 \sqrt{3}-\sqrt{3} \\
& =\frac{8 \pi}{3}+\sqrt{3}
\end{aligned}
$$

To give you some geometric sense, the first equation is a circle with center $(2,0)$ and radius 2 . The second equation is the straight line $x=1$.

Problem 8

Solution:

First of all, the volume of unit cube is always 1 (That's why it's called *unit*). Then the average of square distance to the origin of a unit cube in \mathbf{R}^{n} is just the n-ple integral

$$
\begin{aligned}
\int_{-0.5}^{0.5} \cdots \int_{-0.5}^{0.5} \sum_{i=1}^{n} x_{i}^{2} d x_{1} \cdots d x_{n} & =\int_{-0.5}^{0.5} \cdots \int_{-0.5}^{0.5} n x_{1}^{2} d x_{1} \cdots d x_{n} \\
& =\int_{-0.5}^{0.5} n x_{1}^{2} d x_{1}=n / 12
\end{aligned}
$$

The first equation is due to symmetry over indices. The second equation is due to Fubini's theorem and evaluating all the irrelevant integrals $\int_{-0.5}^{0.5} 1 d x_{j}=1$ with $j>1$.

Problem 9

Solution:

By eliminating z, we have the area on $x y$-space. $5-x^{2}-y^{2} \geq 4 x^{2}+4 y^{2}$ since the first parabloid is on top of the second one. By solving this inequality we have $x^{2}+y^{2} \leq 1$. So the volume is

$$
\begin{aligned}
& \iint_{x^{2}+y^{2} \leq 1} 5-x^{2}-y^{2}-\left(4 x^{2}+4 y^{2}\right) d x d y \\
= & \int_{0}^{2 \pi} \int_{0}^{1}\left(5-5 r^{2}\right) r d r d \theta \\
= & \left.2 \pi\left[\frac{5}{2} r^{2}-\frac{5}{4} r^{4}\right]\right|_{0} ^{1} \\
= & \frac{5 \pi}{2}
\end{aligned}
$$

Problem 10

Solution: (Updated)

The original region of double integral is a triangle with vertices $(0,0),(2,0)$ and $(2 / 3,2 / 3)$ in $x y$-coordinates. Now if we use the linear transformation $u=$ $x+2 y$ and $v=x-y$. The Jacobian and its determinant is

$$
J=\frac{\partial(u, v)}{\partial(x, y)}=\left[\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right], \operatorname{det}(J)=-3
$$

The new $u v$-coordinates for those vertices are $(0,0),(2,2)$ and $(2,0)$. The linear transformation will only shear or translate the region. So the new region must be the triangle with those 3 new vertices. So we can choose our new region as $R=\{(u, v) \mid 0 \leq u \leq 2,0 \leq v \leq u\}$. The new double integral is

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{u} u e^{-v}\left|\operatorname{det}\left(\frac{\partial(x, y)}{\partial(u, v)}\right)\right| d v d u \\
= & \int_{0}^{2} \int_{0}^{u} u e^{-v}\left|\operatorname{det}\left(J^{-1}\right)\right| d v d u \\
= & \frac{1}{3} \int_{0}^{2} u\left(1-e^{-u}\right) d u \\
= & \left.\frac{1}{3}\left[\frac{u^{2}}{2}+u e^{-u}+e^{-u}\right]\right|_{0} ^{2} \\
= & \frac{1}{3}+e^{-2} .
\end{aligned}
$$

Please note that you would need to do integration by parts (or look at an integration table) in the middle of this

Problem 11

Solution:

The region can be descried as $E=\{(x, y, z) \mid x \in[0,2], y \in[0, \sqrt{x}], z \in$ $\left.\left[0,4-x^{2}\right]\right\}$. So the mass of the solid is

$$
\begin{aligned}
m & =\int_{0}^{2} \int_{0}^{\sqrt{x}} \int_{0}^{4-x^{2}} \rho(x, y, z) d z d y d x=\int_{0}^{2} \int_{0}^{\sqrt{x}} \int_{0}^{4-x^{2}} x y d z d y d x \\
& =\left.\int_{0}^{2} \int_{0}^{\sqrt{x}}[z]\right|_{0} ^{4-x^{2}} x y d y d x=\int_{0}^{2} \int_{0}^{\sqrt{x}}\left(4 x-x^{3}\right) y d y d x \\
& =\left.\int_{0}^{2}\left(4 x-x^{3}\right)\left[\frac{y^{2}}{2}\right]\right|_{0} ^{\sqrt{x}} d x=\int_{0}^{2}\left(2 x^{2}-\frac{x^{4}}{2}\right) d x \\
& =\left.\left[\frac{2 x^{3}}{3}-\frac{x^{5}}{10}\right]\right|_{0} ^{2}=\frac{32}{15}
\end{aligned}
$$

And the total x coordinate is

$$
\begin{aligned}
m_{x} & =\int_{0}^{2} \int_{0}^{\sqrt{x}} \int_{0}^{4-x^{2}} x \rho(x, y, z) d z d y d x=\int_{0}^{2} \int_{0}^{\sqrt{x}} \int_{0}^{4-x^{2}} x^{2} y d z d y d x \\
& =\left.\int_{0}^{2} \int_{0}^{\sqrt{x}}[z]\right|_{0} ^{4-x^{2}} x^{2} y d y d x=\int_{0}^{2} \int_{0}^{\sqrt{x}}\left(4 x^{2}-x^{4}\right) y d y d x \\
& =\left.\int_{0}^{2}\left(4 x^{2}-x^{4}\right)\left[\frac{y^{2}}{2}\right]\right|_{0} ^{\sqrt{x}} d x=\int_{0}^{2}\left(2 x^{3}-\frac{x^{5}}{2}\right) d x \\
& =\left.\left[\frac{x^{4}}{2}-\frac{x^{6}}{12}\right]\right|_{0} ^{2}=\frac{8}{3}
\end{aligned}
$$

The total y coordinate is

$$
\begin{aligned}
m_{y} & =\int_{0}^{2} \int_{0}^{\sqrt{x}} \int_{0}^{4-x^{2}} y \rho(x, y, z) d z d y d x=\int_{0}^{2} \int_{0}^{\sqrt{x}} \int_{0}^{4-x^{2}} x y^{2} d z d y d x \\
& =\left.\int_{0}^{2} \int_{0}^{\sqrt{x}}[z]\right|_{0} ^{4-x^{2}} x y^{2} d y d x=\int_{0}^{2} \int_{0}^{\sqrt{x}}\left(4 x-x^{3}\right) y^{2} d y d x \\
& =\left.\int_{0}^{2}\left(4 x-x^{3}\right)\left[\frac{y^{3}}{3}\right]\right|_{0} ^{\sqrt{x}} d x=\int_{0}^{2}\left(\frac{4 x^{2.5}}{3}-\frac{x^{4.5}}{3}\right) d x \\
& =\left.\left[\frac{4 x^{3.5}}{10.5}-\frac{x^{5.5}}{16.5}\right]\right|_{0} ^{2}=\frac{64 \sqrt{2}}{231}
\end{aligned}
$$

The total z coordinate is

$$
\begin{aligned}
m & =\int_{0}^{2} \int_{0}^{\sqrt{x}} \int_{0}^{4-x^{2}} z \rho(x, y, z) d z d y d x=\int_{0}^{2} \int_{0}^{\sqrt{x}} \int_{0}^{4-x^{2}} x y z d z d y d x \\
& =\left.\int_{0}^{2} \int_{0}^{\sqrt{x}}\left[\frac{z^{2}}{2}\right]\right|_{0} ^{4-x^{2}} x y d y d x=\int_{0}^{2} \int_{0}^{\sqrt{x}}\left(8 x-4 x^{3}+\frac{x^{5}}{2}\right) y d y d x \\
& =\left.\int_{0}^{2}\left(8 x-4 x^{3}+\frac{x^{5}}{2}\right)\left[\frac{y^{2}}{2}\right]\right|_{0} ^{\sqrt{x}} d x=\int_{0}^{2}\left(4 x^{2}-2 x^{4}+\frac{x^{6}}{4}\right) d x \\
& =\left.\left[\frac{4 x^{3}}{3}-\frac{2 x^{5}}{5}+\frac{x^{7}}{28}\right]\right|_{0} ^{2}=\frac{256}{105}
\end{aligned}
$$

Hence the center of mass is at $\frac{1}{m}\left(m_{x}, m_{y}, m_{z}\right)=\left(\frac{5}{4}, \frac{10 \sqrt{2}}{77}, \frac{8}{7}\right)$.

Problem 12

Solution:

The original region can be regarded as a triangle with vertices $(0,0),(R, 0)$ and (R, R) under $x y$-coordinates with $R \rightarrow \infty$. With the same idea as problem 10 , if we apply the transformation $u=x-y, v=y$. The Jacobian and its determinant is

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right], \operatorname{det}(J)=1
$$

The vertices are transformed to $(0,0),(R, 0)$ and $(0, R)$ under $u v$-coordinates. However, as $R \rightarrow \infty$, the limit of the region is the first quadrant. Hence the new double integral is

$$
\int_{0}^{\infty} \int_{0}^{\infty} e^{-s u-s v} f(u, v) d u d v
$$

