MATH 114 Quiz 1 Solution

January 31, 2011

Notice: You should show your work to justify your answer. Each correct step will be rewarded. Problems are on BOTH sides of this paper.

Problem 1

Let P be the plane that contains the points $(1,0,0),(0,2,0)$, and $(0,0,3)$. What is the distance from P to the origin?

Solution:

First of all, we need to find the equation of the plane P. Denote $A(1,0,0), B(0,2,0), C(0,0,3)$. Then two vectors in the plane:

$$
\begin{aligned}
& \overrightarrow{A B}=-\mathbf{i}+2 \mathbf{j} \\
& \overrightarrow{A C}=-\mathbf{i}+3 \mathbf{k}
\end{aligned}
$$

The normal vector of plane P :

$$
\begin{aligned}
\mathbf{n}=\overrightarrow{A B} \times \overrightarrow{A C} & =\mathbf{i} \times \mathbf{i}-3 \mathbf{i} \times \mathbf{k}-2 \mathbf{j} \times \mathbf{i}+6 \mathbf{j} \times \mathbf{k} \\
& =6 \mathbf{i}+3 \mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

So the equation of the plane is

$$
6 x+3 y+2 z-6=0
$$

The distance D from ($0,0,0$) to this plane is (by formula 9 on page 837)

$$
D=\frac{|6 \cdot 0+3 \cdot 0+2 \cdot 0-6|}{\sqrt{6^{2}+3^{2}+2^{2}}}=\frac{|-6|}{\sqrt{36+9+4}}=\frac{6}{\sqrt{49}}=\frac{6}{7}
$$

Problem 2

A helix has parametric equation $\mathbf{r}(t)=(\cos t, \sin t, t)$. Find the arc length from $\mathbf{r}(0)$ to $\mathbf{r}(2 \pi)$.

Solution:

The tangent vector to the curve $\mathbf{f}(t)=(\cos t, \sin t, t)$ is given by

$$
\mathbf{r}^{\prime}(t)=(-\sin t, \cos t, 1)
$$

The time range is $t \in[0,2 \pi]$, along with formula 2 on page 866 , the arc length is

$$
L=\int_{0}^{2 \pi} \sqrt{(-\sin t)^{2}+(\cos t)^{2}+(1)^{2}} d t=\int_{0}^{2 \pi} \sqrt{2} d t=2 \sqrt{2} \pi
$$

